Annual Environmental Monitoring Report - 2000

New York District Formerly Utilized Sites Remedial Action Program Maywood Superfund Site

Prepared by: Stone & Webster, Inc. 100 West Hunter Ave. Maywood, New Jersey 07607

US Army Corps of Engineers for: US Army Corps of Engineers - Kansas City District Formerly Utilized Sites Remedial Action Program Contract No. DACW41-99-D-9001

June 2001

ANNUAL ENVIRONMENTAL MONITORING REPORT - 2000

FUSRAP Maywood Superfund Site Maywood and, Lodi, and Rochelle Park, New Jersey

Contract No. DACW41-99-D-9001 Task Order No. 0001 WAD 02, WBS 07

Submitted to:

Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106

Department of the Army U.S. Army Engineer District, New York **Corps of Engineers** FUSRAP Project Office 26 Federal Plaza New York, New York 10007

Submitted by:

Submitted by:

Stone & Webster 100 West Hunter Avenue Maywood, NJ 07607

Revision 0, June 2001

Issued to:

Date: _____

Copy #: _____ Controlled Uncontrolled

Annual Environmental Monitoring Report - 2000 FUSRAP Maywood Superfund Site Maywood, Lodi, and Rochelle Park, New Jersey

> Contract No. DACW41-99-D-9001 Task Order No. 0001 WAD 02, WBS 07

> > Submitted to:

Department of the Army U.S. Army Engineer District, Kansas City **Corps of Engineers** 700 Federal Building Kansas City, Missouri 64106

Department of the Army U.S. Army Engineer District, New York **Corps of Engineers FUSRAP** Project Office **26 Federal Plaza** New York, New York 10007

Submitted by:

Stone & Webster Inc. **100 West Hunter Avenue** Maywood, New Jersey 07607

June 2001

Reviewed/ Approved by:

Sam Rice, P.É. **Project Manager**

Reviewed/ Approved by:

Kevin Donnelly, P.E. Project Environmental Engineer

iel.

Reviewed/ Approved by:

Daniel Samela, Ph.D., P.E. **Task Manager**

Reviewed/ Approved by:

Maurice Hanashy **Task Engineer**

man

121/01 Date:

Date:

<u>6/21/01</u> 6/21/01 Date:

Date:

TABLE OF CONTENTS

Section Page
TABLE OF CONTENTSi
LIST OF TABLESiii
LIST OF FIGURESv
APPENDICESvi
LIST OF ABBREVIATIONS AND ACRONYMSvii
EXECUTIVE SUMMARYES-1
1.0 INTRODUCTION1-1
1.1 MEASURED PARAMETERS
2.0 EVALUATION CRITERIA2-1
2.1EXTERNAL GAMMA RADIATION AND AIR (RADON GAS AND AIRBORNE PARTICULATES) 2-12.2SEDIMENT, SURFACE WATER AND GROUNDWATER - RADIOACTIVE CONSTITUENTS
3.0 SAMPLING LOCATIONS AND RATIONALE
4.0 MONITORING METHODOLOGY4-1
5.0 ANALYTICAL DATA AND INTERPRETATION OF RESULTS
5.1External Gamma Radiation5-15.2Radon-220 and Radon-2225-15.3Radon-222 Flux5-25.4Airborne Particulate Dose5-25.5Surface Water and Sediment5-4
5.5.1 Surface Water
5.5.1.1 RADIOACTIVE CONSTITUENTS
5.5.2.1 RADIOACTIVE CONSTITUENTS
5.5.2.2 METALS5-6 5.5.2.3 SEDIMENT SCREENING VALUES IN THE BASELINE ECOLOGICAL EVALUATION
5.6.1 Groundwater Flow System
5.6.1.1 NATURAL SYSTEM

	5.6.	1.3 GROUNDWATER FLOW SYSTEM	5-9
	5.6.2	Groundwater Quality	5-10
	5.6.2	2.1 Field Parameters	5-10
	5.6.2	2.2 WATER QUALITY PARAMETERS	5-11
	5.6.3	Groundwater - Radioactive Constituents	5-11
	5.6.4	Groundwater - Metals	5-12
	5.6.5	Groundwater - Organic Compounds	5-13
6.0	CON	CLUSIONS	6-1
6	.1 Ехт	FERNAL GAMMA RADIATION	6-1
6.	.2 RAD	DON-220 AND RADON-222	6-1
6.	.3 RAD	DON-222 FLUX	6-1
6.	.4 AIRI	BORNE PARTICULATE DOSE	6-1
6	6.5 CUMULATIVE DOSE FROM EXTERNAL GAMMA RADIATION AND AIRBORNE PARTICULATE 6-2		
6.	.6 SUR	RFACE WATER	6-2
6.	.7 Sed	DIMENT	6-2
6	.8 GRC	OUNDWATER	6-3
7.0	REFE	ERENCES	7-1

LIST OF TABLES

1	2000 Environmental Monitoring Program Summary Maywood Interim Storage Site
2	2000 External Gamma Radiation Dose rates Maywood Interim Storage Site
3	2000 Radon Gas Concentrations Maywood Interim Storage Site
3-A	2000 Radon Flux Monitoring Results Maywood Interim Storage Site
4	2000 Surface Water Analytical Results – Radioactive Constituents Maywood Interim Storage Site, 2000
4-A	2000 Surface Water Analytical Results – Radioactive Constituents Maywood Interim Storage Site-October, 2000
5	2000 Surface Water Analytical Results – Metals Maywood Interim Storage Site-July, 2000
5-A	2000 Surface Water Analytical Results – Metals Maywood Interim Storage Site-October, 2000
6	2000 Sediment Analytical Results – Radioactive Constituents Maywood Interim Storage Site-July, 2000
6-A	2000 Sediment Analytical Results – radioactive Constituents Maywood Interim Storage Site-October, 2000
6-B	2000 Sediment Analytical Results – Metals Maywood Interim Storage Site
7	Depth to Groundwater and Groundwater Elevations for Overburden Monitoring Wells Maywood Interim Storage Site
8	Depth to Groundwater and Groundwater Piezometric Surface Elevations for Bedrock Monitoring Wells Maywood Interim Storage Site
9	Vertical Gradient Calculations for Monitoring Well Clusters Maywood Interim Storage Site
10	2000 Field Parameter Summary Maywood Interim Storage Site

11	2000 Groundwater Analytical Results – Radioactive Constituents
	Maywood Interim Storage Site

- 12 2000 Groundwater Analytical Results Metals Maywood Interim Storage Site
- 13 2000 Groundwater analytical Results Volatile Organic Compounds Maywood Interim Storage Site
- 14 2000 List of Analytes and Detection Limits for Metals and Volatile Organic Compounds Maywood Interim Storage Site

LIST OF FIGURES

1	Maywood Interim Storage Site, Site Location and Site Map
2	Maywood Interim Storage Site Environmental Monitoring Sampling Locations: External Gamma Radiation, Radon-222/Radon-220 and Groundwater
3	Surface Water and Sediment Sampling Locations (July, 2000)
4-A	Surface Water and Sediment Sample Locations (October, 2000)
4-B	Surface Water and Sediment Sample Locations (October, 2000)
5	Maywood Interim Storage Site, Radon Flux Monitoring Locations
6	Groundwater Contour Map-Jan 19, 2000 (Overburden)
7	Groundwater Contour Map-Mar 27, 2000 (Overburden)
8	Groundwater Contour Map-Jun 12, 2000 (Overburden)
9	Groundwater Contour Map-Sep 22, 2000 (Overburden)
10	Groundwater Contour Map-Nov 29, 2000 (Overburden)
11	Groundwater Contour Map-Jan 19, 2000 (Shallow & Deep Bedrock)
12	Groundwater Contour Map-Mar 27, 2000 (Shallow & Deep Bedrock)
13	Groundwater Contour Map-Jun 12, 2000 (Shallow & Deep Bedrock)
14	Groundwater Contour Map-Sep 29, 2000 (Shallow & Deep Bedrock)
15	Groundwater Contour Map-Nov 29, 2000 (Shallow & Deep Bedrock)
16	Contour Map of the Bedrock in the Maywood Area

APPENDICES

Appendix A -	Historical Results
Appendix A-1:	Historical Results for Radioactive Parameters in Sediment at MISS
Appendix A-2:	Historical Results for Radioactive Parameters in Groundwater at MISS
Appendix A-3:	Historical Results for Detected Selected Metals in Groundwater at MISS
Appendix A-4:	Historical Results for Detected Volatile Organic Compounds in Groundwater at MISS
Appendix B -	Water Level Measurements
Appendix C –	Annual NESHAPS Compliance Report - 2000

LIST OF ABBREVIATIONS AND ACRONYMS

AEC	Atomic Energy Commission		
AL	Action Level		
ANL	Argonne National Laboratory		
ASTM	American Society for Testing and Materials		
BEE	Baseline Ecological Evaluation		
Bgs	Below Ground Surface		
BNI	Bechtel National, Incorporated		
Bq	Becquerel		
CAA	Clean Air Act		
CAP88-PC	Clean Air Act Assessment Package 1988 – Personal Computer		
CFR	Code of Federal Regulations		
cm	Centimeter		
DOE	Department of Energy		
DTW	Depth to Water		
EMP	Environmental Monitoring Program		
EPA U.S. Environmental Protection Agency			
ft	Feet		
ft FUSRAP	Feet Formerly Utilized Sites Remedial Action Program		
ft FUSRAP	Feet Formerly Utilized Sites Remedial Action Program		
ft FUSRAP g	Feet Formerly Utilized Sites Remedial Action Program Gram		
ft FUSRAP g gal	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon		
ft FUSRAP g gal GWQC	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria		
ft FUSRAP g gal GWQC	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria		
ft FUSRAP g gal GWQC ha	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare		
ft FUSRAP g gal GWQC ha	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare		
ft FUSRAP g gal GWQC ha IG	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides		
ft FUSRAP g gal GWQC ha IG in.	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides Inches		
ft FUSRAP g gal GWQC ha IG in.	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides Inches		
ft FUSRAP g gal GWQC ha IG in. kg	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides Inches		
ft FUSRAP g gal GWQC ha IG in. kg km	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides Inches Kilogram Kilometers		
ft FUSRAP g gal GWQC ha IG in. kg km	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides Inches Kilogram Kilometers		
ft FUSRAP g gal GWQC ha IG in. kg km L	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides Inches Kilogram Kilometers		
ft FUSRAP g gal GWQC ha IG in. kg km L lb LEL	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides Inches Kilogram Kilometers		
ft FUSRAP g gal GWQC ha IG in. kg km L lb LEL LEL LNAPI	Feet Formerly Utilized Sites Remedial Action Program Gram Gallon Groundwater Quality Criteria Hectare Instruction Guides Inches Kilogram Kilometers Liters Pound Lowest Effect Level		

m	Meters
m3	Cubic meters
mg/l	Milligrams per liter
mi	Miles
MCL	Maximum Contaminant Level
MCW	Maywood Chemical Works
MDA	Minimum Detectable Activity
MISS	Maywood Interim Storage Site
ml	Milliliter
mSv	Millisievert
mrem	Millirem
mrem/vr	Millirem per vear
MSL	Mean Sea Level
N/A	Not Applicable
NJAC	New Jersev Administrative Code
NJDEP	New Jersey Department of Environmental Protection
NE	Not Established
NESHAPS	Nation Emission Standards for Hazardous Air Pollutants
NRC	Nuclear Regulatory Commission
OZ	Ounces
pCi	Picocurie
pCi/g	Picocuries per gram
pCi/l	Picocuries per liter
ppm	Parts per million
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SCC	Soil Cleanup Criteria
SEL	Severe Effects Level
SDWA	Safe Drinking Water Act
SD	Sediment
SMCL	Secondary Maximum Contaminant Level
SOR	Sum of Ratios
SQL	Sample Quantitation Limit
SW	Surface Water
TBD	To Be Determined
TCRA	Time Critical Removal Action
TETLD	Tissue-equivalent Thermo-luminescent Dosimeter
TOR	Top of Riser
uq	Micrograms
USACE	U. S. Army Corps of Engineers

VOC VP	Volatile Organic Compound Vicinity Property
WL	Working Level
yd3	Cubic yard

EXECUTIVE SUMMARY

This report presents and interprets analytical results and measurements obtained from the 2000 Environmental Monitoring Program (EMP) for the Maywood Interim Storage Site (MISS) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The FY 1998 Energy and Water Appropriations Bill, signed into law on October 13, 1997, transferred management of FUSRAP from the U.S. Department of Energy (DOE) to the U.S. Army Corps of Engineers (USACE). Consistent with USACE policy, U.S. Nuclear Regulatory Commission (NRC) and U. S. Environmental Protection Agency (EPA) criteria for radionuclides have been used to evaluate analytical results. DOE criteria for radionuclides have been retained when the criteria are either agreed to by EPA, are site specific, or are not available from the EPA or NRC.

In the early history of the site (i.e., from 1916 to 1959), Maywood Chemical Works (MCW) extracted radioactive thorium from monazite sand resulting in contamination of the property with low levels of thorium and lower levels of uranium and radium. The EMP for the site includes sampling of air, water, and streambed sediment to aid in the evaluation of potential hazards to the offsite population presented by these materials. This report compares the results taken in the year 2000 of external gamma radiation measurements, radon gas measurements, and samples of environmental media to the historical background conditions and to regulatory and other criteria.

Federal and State regulations and other criteria are used to evaluate concentrations of radioactive constituents and doses at the site. The calculated dose to the maximally exposed individual from direct gamma radiation at the MISS in 2000, based on the measured TETLD results, is 7.15 mrem; which is well below the NRC standard of 100 mrem. Based on TETLD measurements from 1/00 to 1/01, the maximum gamma radiation value obtained (corrected for background, exposure duration, and attenuation) was 674.6 mrem/yr. Measured radon-222 concentrations for 2000 ranged from non-detectable to 0.6 pCi/l, which is well below the 4 pCi/l EPA action level. Radon-220 concentrations ranged from non-detect to a maximum of 3.84 pCi/l, which is also below the EPA action level.

The airborne particulate dose to the hypothetically maximally exposed individual in 2000 was 0.085 mrem/year which is well below the 10 mrem/year standard specified in 40 CFR, Part 61, Subpart H. No radiological parameter exceeded relevant criteria, except as discussed below.

- Sediment samples (collected in October 2000) from one location in the eastern tributary of Lodi Brook (LBSED-1) exceeded the DOE/EPA soil cleanup criteria for radium-226, thorium-228, and thorium-232. The measured concentrations (10.41 pCi/g radium-226, 23.58 pCi/g thorium-228, and 21.48 pCi/g thorium-232) were the highest concentrations measured at the site in 2000. In the absence of regulatory criteria for sediment, the limits established by the DOE/EPA agreement are used to evaluate concentrations of radioactive constituents in shallow streambed sediment. Further downstream at LBSED-6, LBSED-7, and LBSED-8 along Lodi Brook, detected concentrations of all analyzed radionuclides were below the soil cleanup criteria. All sediment samples collected in July 2000 in Lodi Brook had radionuclide concentrations below soil cleanup criteria. All analyzed radionuclides were below the soil cleanup criteria for sediment samples collected in Westerly Brook in both July 2000 and October 2000. Results for 2000 are within the historical range for these radionuclides and confirm the presence of localized contamination in the streambed sediment of the eastern tributary of Lodi Brook.
- Conservative Federal and State drinking water Standards for radiological contaminants were used as criteria to evaluate monitoring results for surface water. Surface water samples collected in October 2000 from the western tributary of Lodi Brook (LBSW-2) and from two locations below Essex Street on Lodi Brook (LBSW-5 and LBSW-7) exceeded criteria for combined radium-226

and radium-228. The measured concentrations ranged from 5.75 pCi/L to 9.25 pCi/L at these locations. Two downstream locations on Westerly Brook (WBSW-1 and WBSW-2) also exceeded the radium criteria. The measured concentrations were 5.1 pCi/L and 5.58 pCi/L, respectively. No surface water samples collected in July 2000 exceeded any radiological criteria on Lodi Brook or on Westerly Brook.

• The same conservative Federal and State drinking water Standards for radiological contaminants were used as criteria to evaluate monitoring results for groundwater. There was one exceedance of the combined radium criteria for groundwater samples collected in 2000. Monitoring well B38W18D, collected near Building 76 had a measured concentration of 19.4 pCi/L for combined radium. There was also one exceedance of the uranium criteria with a measured uranium concentration of 73.48 pCi/L for monitoring well MISS05A. There were six exceedances of the gross alpha criteria with the highest measured concentration of 230 pCi/L for monitoring well B38W18D. All other gross alpha exceedances ranged from 18.9 to 27.0 pCi/L. There were also seven exceedances of the gross beta with the highest measured concentration of 886 pCi/L for monitoring well MISS05B. Results for 2000 are within the historical range for radium, thorium and uranium (gross alpha and gross beta have not been monitored previously).

Conservative Federal and State standards for chemical contamination in soil and water were used as criteria to evaluate monitoring results for streambed sediments, surface water, and groundwater. Some metals exceeded proposed New Jersey Soil cleanup criteria in sediment samples. Some metals exceeded Federal and State standards in surface water. Some metals and volatile organic compounds (VOCs) in groundwater samples exceeded the State and Federal standards:

- Lodi Brook sediment concentrations of arsenic (LBSED-1) and lead (LBSED-7) were above the State proposed soil cleanup criteria at one location each. Arsenic and lead in 1999 were elevated but did not exceed State Criteria. There were no exceedances of the State proposed soil cleanup criteria in Westerly Brook. There were several exceedances of the Lower Effects Level (LEL) for lead, copper, zinc, chromium and nickel in both Lodi Brook and Westerly Brook. Elevated concentration of metals is expected given the generally industrialized nature of the area surrounding the site. Offsite contributors of these metals are likely. Concentrations of heavy metals at upstream and downstream environmental monitoring locations have frequently exceeded the proposed New Jersey soil cleanup criteria. The somewhat sporadic nature of the fluctuations in metal concentrations implies that the contamination is present in localized areas that are distributed during heavy runoff.
- Federal Safe Drinking Water Act (SDWA) maximum contaminant levels (MCLs) and New Jersey Groundwater Quality Standards for Class II A aquifers were used as conservative criteria to evaluate monitoring results for chemical contaminants in surface water. Metals that exceeded both the Federal and State standards in Lodi Brook include aluminum, chromium, and lead. Aluminum also exceeded Federal and State standards in Westerly Brook. Arsenic exceeded State standards in both Lodi Brook and Westerly Brook.
- Metals which exceeded either the SDWA MCLs or New Jersey Groundwater Quality Standards for Class IIA aquifers in at least one groundwater sample include arsenic, chromium, lead, and nickel. These metals were detected in both onsite and offsite wells. These same metals exceeded standards in 1999. Although groundwater at the MISS is not used as a public drinking water supply, State groundwater quality limits and Federal drinking water standards were used as a conservative basis of comparison for chemical concentrations in groundwater.
- The detection of VOCs in groundwater in 2000 is consistent with historical results. The detected VOCs in groundwater at the MISS are tetrachloroethene and its degradation products: trichloroethene, dichloroethenes, and vinyl chloride. VOCs are present in both onsite (primarily

in bedrock) and offsite (shallow and bedrock) groundwater. The presence of VOCs in downgradient monitoring wells B38W14D, B38W14S, B38W15D, MISS01B and MISS07B is due to either groundwater movement or infiltration from Westerly Brook to these wells.

The results described above are comparable to results reported in previous years. No significant changes were observed.

1.0 INTRODUCTION

The Maywood Interim Storage Site (MISS) is located in Bergen County, New Jersey, approximately 20 km (12 mi) northwest of New York City and 21 km (13 mi) northeast of Newark, New Jersey (Figure 1). The Maywood site includes the 4.7-ha (11.7 acres) federally-owned the MISS and over 85 vicinity properties (VPs) in Maywood, Lodi, and Rochelle Park. The site is bordered to the west by State Route 17, to the north by the New York Susquehanna and Western Railroad line and to the south and east by commercial and industrial properties.

The Maywood Chemical Works (MCW) site was constructed in 1895. During the years 1916 to 1959, MCW extracted radioactive thorium and rare earth metals from monazite sand for production of mantles for gas lanterns. The waste materials generated during this process contained thorium-232 and associated decay products, with lesser amounts of radionuclides in the uranium-238 decay series. Slurry containing waste from these operations was pumped into two earthen-diked retention ponds west of the plant. These ponds were subsequently capped. Some process waste sands were combined with tea and coca leaves from other MCW operations, and then removed from the site and used as mulch and fill material on nearby properties. Additional waste was transported offsite by the Lodi Brook that ran southward along the facility property line and into the Borough of Lodi. Thorium residues in the brook settled onto adjacent properties where buildings and residences were subsequently built. In 1959, the MCW facility was sold to the Stepan Company. The Stepan Company has never processed radioactive material (DOE 1992).

In 1961, the Atomic Energy Commission (AEC) issued a radioactive material license to the Stepan Company for radioactive material storage and remediation of the facility. Between 1966 to 1968, contaminated material was removed from the property west of New Jersey Route 17 and buried in three pits on the Stepan Company site.

In 1983, the Environmental Protection Agency (EPA) added the Maywood site to the National Priorities List and, the following year, cleanup of radioactive contamination at the Maywood Site was assigned to DOE by Congress. To expedite remediation of the Maywood site and its VPs, DOE purchased a 4.7-ha (11.7 acre) portion of the Stepan Company property for use as an interim storage facility for radioactively-contaminated materials (DOE 1992). This property was referred to as the MISS. On October 13, 1997, the FY 1998 Energy and Water Appropriations Bill transferred management of FUSRAP from DOE to USACE. The USACE became a successor to the DOE as of March 17, 1999. FUSRAP activities presently continue with USACE.

1.1 MEASURED PARAMETERS

The key elements of the 2000 EMP program at the MISS were:

- measurement of external gamma radiation;
- measurement of radon gas concentrations in air (from radon-220 and radon-222);
- measurement of radon flux;
- sampling and analysis of streambed sediment for radioactive constituents and metals;
- sampling and analysis of surface water for radioactive constituents and metals; and
- sampling and analysis of groundwater for radioactive constituents, metals, and volatile organic compounds (VOCs).

1.2 UNIT CONVERSIONS

The following tables list the units of measurement and appropriate abbreviations used in this document. Conventional units for radioactivity are used because the regulatory guidelines are generally provided in these terms; Système Internationale (SI) units of measurement are used in the discussion of all other parameters. Unit conversions are provided in the text for water level information only.

Parameter	Conventional Units	SI Units	Conversion Factor
Dose	millirem (mrem)	MilliSievert (mSv)	1 mrem = 0.01 mSv
Activity	picocurie (pCi)	Becquerel (Bq)	1 pCi = 0.037 Bq

Units of Measurement and Conversion Factors - Mass, Length, Area, and Volume

Parameter	SI Units	English Units	Conversion Factor
Mass	gram (g)	ounce (oz)	1 g = 0.035 oz
	kilogram (kg)	pound (lb)	1 kg = 2.2046 lb
Length	centimeter (cm)	inch (in.)	1 cm = 0.394 in.
	meter (m)	foot (ft)	1 m = 3.281 ft
	kilometer (km)	mile (mi)	1 km = 0.621 mi
Area	hectare (ha)	Acre	1 ha = 2.47 acres
Volume	Milliliter (mL)	fluid ounce (fl. oz.)	1 mL = 0.0338 fl. oz.
	liter (L)	gallon (gal)	1 L = 0.264 gal
	cubic meter (m ³)	cubic yard (yd^3)	$1 \text{ m}^3 = 1.307 \text{ yd}^3$

2.0 EVALUATION CRITERIA

Regulatory and other criteria used to evaluate the results of the 2000 EMP program at the MISS are summarized below, categorized by media and parameters.

2.1 EXTERNAL GAMMA RADIATION AND AIR (RADON GAS AND AIRBORNE PARTICULATES)

Criteria for evaluating calculated maximum doses from external gamma radiation and inhalation of radioactive particulates, and measured concentrations of radon gas are as follows:

• Title 10 Code of Federal Regulations Part 20

Dose limits for members of the public are presented in this NRC standard. The primary dose limit is expressed as a total effective dose equivalent. The limit of 100-mrem total effective dose equivalent above background from all sources for a period of a year is specified in this standard. External gamma radiation dose and the calculated doses from all releases are included in the calculation of the total effective dose equivalent. The 100-mrem total effective dose equivalent above background specified in this standard includes all pathways.

• Title 40 Code of Federal Regulations Part 192

The applicable limit for radon in air is provided in this standard as 0.02 Working Levels (WLs), including background. The WL of 0.02 is applied to buildings only, where ventilation and other effective methods could be provided to maintain this limit. EPA guidance documents related to radon in homes refer to an Action Level (AL) of 4pCi/L. Radon concentrations that exceed the AL of 4 pCi/L require mitigation (EPA 1992d).

• Title 40 Code of Federal Regulations Part 61, Subparts H and Q

Section 112 of the Clean Air Act authorized EPA to promulgate the National Emission Standards for Hazardous Air Pollutants (NESHAPs), which is applicable at the MISS under Subpart H (i.e., for non-radon, radioactive constituents) and Subpart Q (for radon emissions). Compliance with Subpart H is verified by applying the EPA-approved Clean Air Act Assessment Package 1988-Personal Computer (CAP88-PC) model-version 2 (EPA 1992a). Until the storage pile was removed in 1996, compliance with subpart Q was verified by semi-annual monitoring for radon-222 flux. Radon flux monitoring was resumed in 2000 for the storage pile generated as a result of remediation and restoration of the Ballod property and operation of the pilot facility.

Parameter	NRC Standard	EPA Standard or
		Guideline
Radon-222		4 pCi/L ^a
Radon-220		b
Radon Flux		20 pCi/m ² /s ^g
Radionuclide Emissions	10 mrem/yr. ^c	10 mrem/yr. ^d
(airborne particulates and radioactive gases)		
Total Effective Dose Equivalent	100 mrem/yr. ^f	
(total contribution from all sources e)		

Summary of Radiological Criteria Used External Gamma Radiation and Air

^a EPA standard from 40 CFR 192.

- ^b Provisions applicable to radon-222 shall apply to radon-220 (40CFR192.41, provisions).
- ^c NRC standard from 10 CFR 20 for particulate and radon-220 emissions only; excludes radon-222.
- ^d EPA standard from 40 CFR Part 61, Subpart H, for particulate emissions only; excludes radon-222 and radon-220.
- ^e Contributing sources at the MISS consist of external gamma radiation exposure, radionuclide emissions listed above, and ingested radionuclides in water and soil/sediment.
- ^fNRC standard from 10 CFR 20; background is excluded in the calculation of dose.

^gEPA standard 40 CFR Part 61, Subpart Q.

2.2 SEDIMENT, SURFACE WATER AND GROUNDWATER - RADIOACTIVE CONSTITUENTS

Criteria for evaluating the measured concentrations of radionuclides in sediment, surface water, and groundwater at the MISS are:

• Soil Cleanup Criteria for the Maywood Site

The criteria for radionuclides in soil were agreed to by DOE and EPA in 1994 (DOE 1994a). The radiological soil cleanup criteria for radium and thorium are 5 pCi/g above background regardless of depth at Phase I properties. The EMP does not include analysis of onsite soils; however, because there are no standards for sediment, the soil cleanup criteria are used as a basis for evaluating the analytical results for sediment.

The MISS site-specific soil cleanup criterion for total uranium, developed at Argonne National Laboratory (ANL) for DOE, is 100 pCi/g above background (DOE 1994b). For mixtures of radionuclides, the data are evaluated by the sum-of-ratios method. By this method, the above-background concentration of each of the radioisotopes (radium-226 or thorium-230, whichever is greater; thorium-232 or radium-228, whichever is greater; and total uranium) is divided by its respective criterion values, and the ratios are summed. If the result is greater than 1, the mixture of radionuclides fails the sum-of-ratios (SOR) test and is thereby considered to exceed the soil guidelines. This SOR calculation is used for the purpose of this report and is a conservative approach.

• Title 40 Code of Federal Regulations Part 141

The regulations in 40 CFR Part 141 set maximum permissible levels of organic, inorganic, radiological and microbial contaminants in drinking water by specifying the maximum contaminant level (MCL) for each. MCLs have been promulgated for total uranium, combined

concentrations of radium-226 and radium-228, and gross alpha. Although groundwater at the MISS is not a public drinking water supply, the MCLs for drinking water are considered relevant and appropriate and are used as a conservative basis for evaluating analytical results. New Jersey drinking water regulations [New Jersey Administrative Code (NJAC) 7:10] incorporate, by reference, all the Federal drinking water standards unless a more stringent State standard for a hazardous contaminant has been promulgated. MCLs for drinking water were also used to conservatively evaluate surface water. Sampling was performed for specific radiological contaminants known to exist at the MISS (Gross alpha, Gross Beta, Rad-226/228, Th-230/232, Total Uranium). With respect to Th-230/232, comparisons will be made to the gross alpha MCL of 15 pCi/L. For total uranium, comparisons will be made to the Federal/State MCL (N.J.A.C. 7:9-6) of 30 ug/L (27pCi/L).

Parameter	New Jersey Groundwater Quality Standards	EPA Drinking Water Standard	Sediment Criteria	
Gross Alpha	15 pCi/L	15 pCi/L		
Gross Beta		50 pCi/L ^e		
Radium-226	5 pCi/L ^a	5 pCi/L ^a	5 pCi/g^{c}	
Radium-228	5 pCi/L ^a	5 pCi/L ^a	5 pCi/g^{c}	
Thorium-230	$15 \text{ pCi/L}^{\text{b}}$		5 pCi/g ^c	
Thorium-232	15 pCi/L ^b		5 pCi/g ^c	
Total	30 ug/L	30 ug/L	100 pCi/g ^d	
Uranium				

Summary of Radiological Criteria Used Water and Sediment

^aCurrent SDWA, MCL for the combined concentration of radium-226 and radium-228 in drinking water.

^bComparisons are made to the Gross Alpha criteria of 15 pCi/L.

^c Soil cleanup criteria established by DOE and EPA are used as a basis for evaluating analytical results for sediment. If a mixture of radionuclides is present, then the sum-of--ratios of the concentration of each isotope (radium-226 or thorium-230,

whichever is greater; radium-228 or thorium-232, whichever is greater; and uranium) to the allowable limit must be less than one.

^dSite-specific soil cleanup criteria developed by ANL for DOE.

^eIf the gross beta particle activity exceed 50 pCi/L, an analysis of the sample must be performed to identify the major radioactive constituents present and the appropriate organ and total body doses shall be calculated (40 CFR 141.26).

2.3 SEDIMENT - CHEMICAL PARAMETERS

Criteria for evaluating the detected concentrations of chemical parameters in sediment at the MISS are as follows:

• New Jersey Proposed Cleanup Standards for Contaminated Sites

These standards are currently being provided as guidance by the New Jersey Department of Environmental Protection (NJDEP). Because there are no standards for sediment, the New Jersey proposed cleanup standards for residential and nonresidential properties were used as a conservative basis for evaluating results of analyses for metals in sediment (NJDEP 1992).

• Sediment Screening Values for use in the Baseline Ecological Evaluation (BEE) (NJDEP 1998). To aid in the identification of contaminants of potential ecological concern, site-related sediment data are compared to established screening level criteria in the Baseline Ecological Evaluation (BEE). An exceedance above the Lowest effect Level (LEL) in the BEE indicates a potential risk (not cleanup) to the benthic community and a need for further investigation.

2.4 GROUNDWATER AND SURFACE WATER - CHEMICAL PARAMETERS

Although the groundwater at the MISS is not used as a public drinking water supply, Federal standards for drinking water and State groundwater standards are used in this document as a conservative basis for comparison of chemical analytical results.

• Title 40 Code of Federal Regulations Part 141

As noted above, the SDWA is the primary Federal law applicable to the operation of a public water system and the development of drinking water quality standards. The regulations establish MCLs for organic, inorganic and microbial contaminants in drinking water. In some cases, secondary maximum contaminant levels (SMCLs), which are not Federally enforceable (40 CFR 143), are provided as guidelines for the various states. MCLs for drinking water were used to conservatively evaluate groundwater and surface water monitoring results.

• New Jersey Groundwater Quality Criteria - Class IIA

Groundwater in New Jersey is classified according to its hydrogeological characteristics and uses. The primary designated use for Class IIA groundwater is as a potable water supply, although Class IIA uses also include agricultural and industrial water. NJAC 7:9-6 lists groundwater quality criteria (GWQC) and practical quantitation limits (PQLs).

3.0 SAMPLING LOCATIONS AND RATIONALE

Contamination at the MISS is present in the former retention ponds, on the ground surface and in onsite structures. Exposure to members of the public by this radioactively-contaminated material at the MISS is unlikely because of site access restrictions (e.g., fences) and engineering controls (e.g., pile covers). Potential pathways include direct exposure to external gamma radiation; inhalation of radon or radioactively-contaminated particulates in air; and contact with or ingestion of contaminated streambed sediments, surface water, or groundwater. The EMP at the MISS has been developed in order to evaluate and monitor these potential exposure routes through periodic sampling and analysis for radioactive and chemical constituents. Figures 2, 3, 4-A, and 4-B show the EMP sampling locations at the MISS, and indicate the type of media sampled at each location. Table 1 summarizes the 2000 monitoring program at the MISS for external gamma radiation, radon gas, surface water, sediment, and groundwater.

Measurements of external gamma radiation are taken along fenceline locations surrounding the MISS in order to assess potential exposure levels to the public and site workers (Figure 2).

Atmospheric monitoring of radon gas is conducted onsite both in known areas of contamination and at fenceline locations (Figure 2).

Radon flux data was collected for the storage pile at locations shown in Figure 5.

Surface water and sediment sampling includes the analysis for radioactive constituents and metals along Westerly Brook and Lodi Brook (Figure3, 4-A, and 4-B). Sampling locations along Lodi and Westerly Brook are used to assess both upstream and downstream conditions. Because Lodi Brook receives drainage from areas of known contamination, sampling is also conducted along the eastern and western tributaries of this stream.

Water level measurements and groundwater samples from monitoring wells enable the assessment of groundwater flow patterns and are used to evaluate groundwater quality upgradient and downgradient of the site, in the source area and at the MISS/Stepan Company boundary (Figure 2). Groundwater in both the surficial unconsolidated sediments and bedrock is monitored at the MISS.

4.0 MONITORING METHODOLOGY

Under the MISS EMP conducted in 2000, standard analytical methods approved and published by EPA and the American Society for Testing and Materials (ASTM) were used for chemical (i.e., all non-radiological) analyses. The laboratories conducting the radiological analyses adhere to EPA-approved methods and procedures developed by the Environmental Measurements Laboratory (EML) and ASTM. All laboratories analyzing FUSRAP chemical samples are certified by NJDEP. A detailed listing of the specific procedures and the data quality objectives for the monitoring conducted in 2000 program is provided in the FUSRAP Chemical Data Quality Management Plan (CDQMP).

Environmental monitoring activities at the MISS in 2000 were conducted in accordance with the Chemical Data Quality Management Plan (CDQMP) listed in the following table. The monitoring activities are based on guidelines provided in *RCRA Ground Water Monitoring: Draft Technical Guidance* (EPA 1992b); *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods,* SW-846 (EPA 1992c); and *A Compendium of Superfund Field Operations Methods (EPA 1987).* Groundwater samples were collected using the USEPA Region II memo dated March 20, 1988 titled *Final USEPA Region II Low Stress (Low Flow) Groundwater Sampling Standard Operating Procedure.*

Document Number	Document Title
SW-MWD-410-0	Groundwater Level Measurements (CDQMP,1999)
SW-MWD-506-0	Decontamination of Field Sampling Equipment at FUSRAP Sites (CDQMP, 1999)
SW-MWD-302-0	Surface Water Sampling (CDQMP, 1999)
SW-MWD-301-0	Sediment sampling (CDQMP, 1999)
191-IG-029	Radon/Thoron and TETLD Exchange (BNI 1993b)
SW-MWD-304-0	Groundwater Sampling Activities (CDQMP,1999)

FUSRAP Instruction Guides Used for Environmental Monitoring Activities

5.0 ANALYTICAL DATA AND INTERPRETATION OF RESULTS

This section presents the data and interpretation of results for the 2000 EMP at the MISS. Data for 2000 are presented in Tables 2 through 13.

In data tables containing results of analyses for radioactive constituents, some results may be expressed as negative numbers. This phenomenon occurs if the average background activity of the laboratory counting instrument exceeds the measured sample activity. In such cases, when this instrumental background activity is subtracted from the sample activity, a negative number results. For the purposes of interpretation, all values below the baseline minimum detectable activity (MDA) are interpreted as having an unknown value between zero and the MDA. Such a value is referred to as a "non-detect."

The most precise analytical method for analysis of total uranium yields results in values expressed as μ g/L and μ g/g for water and sediment samples, respectively. To allow direct comparison of results to relevant standards and the DOE/EPA soil cleanup criteria, the data must be converted to pCi/L and pCi/g units, as appropriate. Correspondence from the NJDEP states that the generic conversion factor for total uranium from μ g/L to pCi/L is 0.9. On this basis, since the new MCL for uranium is expressed as 30 μ g/L, it should also be listed as 27 pCi/L. Only the converted data are provided in the tables and text of this document. The following discussions compare results to historic data presented in Appendices A-1, A-2, A-3, and A-4.

5.1 EXTERNAL GAMMA RADIATION

External gamma radiation dose rates are measured using tissue-equivalent thermoluminescent dosimeters (TETLDs) in place at the MISS continuously throughout the year. Location of TETLDs are shown on Figure 2. Each TETLD measures a cumulative dose over the period of exposure (approximately one year). When corrected for shelter/absorption and background, and normalized to exactly one year's exposure, these detectors provide a measurement of the annual external gamma radiation dose at that location. TETLD results for the 2000 external gamma radiation dose (i.e., both raw and corrected data) are summarized in Table 2.

The corrected data are used to calculate the external gamma radiation dose to a hypothetical maximally exposed individual. Identification of this hypothetical individual is a function of the fenceline dose, the distance of the individual from the fenceline, and the amount of time that the individual spends at the specific location. The data from the side of the site displaying the highest radiation readings (i.e., location 21) are averaged, and the external gamma dose rate at the distance to individuals at the nearest commercial/industrial facility or residence is then determined. The calculated maximally exposed individual from direct gamma radiation at the MISS in 2000 was 7.15 mrem/yr (Calc. 08575-0207-002).

5.2 RADON-220 AND RADON-222

Results of the 2000 monitoring for radon gas (radon-220 and 222) are presented in Table 3; detector locations are shown on Figure 2. At each location, two types of detectors are exposed. One detector type, the RadTrack®, allows both isotopes of radon to enter. The other detector type, the RadTrack®-modified, contains a membrane that specifically excludes radon-220. Radon-222 results are reported as received from the laboratory (i.e., the data are obtained directly from the RadTrack®-modified detectors). Radon-220 concentrations are calculated using the RadTrack® and RadTrack®-modified data.

Radon-222 concentrations for 2000 ranged from non-detect to 0.6 pCi/L, below the EPA AL of 4 pCi/L. Radon-220 concentrations ranged from non-detect to a maximum of 3.84 pCi/L (location 24). While

there is undoubtedly a probability that the population of values represented by the 3.84 pCi/l value exceed the action level of 4 pCi/L, this value is the highest of 15 values. The next highest values are 2.44 and 1.82 pCi/L.

As with most low concentrations of gases in an open, unconfined area, the radon emitted from this area dissipates quickly and does not significantly affect the general population, located offsite. The closest residential inhabitants live to the northeast. Locations 32 and 33 (Figure 2) were installed in 1996 in order to examine radon gas concentrations in this area. Radon-220 results at these two locations were well below the EPA AL and were significantly lower than the concentrations detected onsite.

5.3 RADON-222 FLUX

Radon flux data was obtained for the storage pile on the MISS to verify compliance with 40 CFR Part 61, Subpart Q. To determine radon flux from a storage pile, charcoal canisters were placed on the pile at 25 ft intervals; the canisters remained on the pile for 24 hours. Radon flux measurements for 2000 are presented in Table 3-A; measurement locations are shown in Figure 5.

Analytical results from measurements obtained at the MISS in January 2001 ranged from non-detect to a maximum of 0.54 pCi/m2/s. All results are well below the 20 pCi/m2/s radon flux standard specified in 40 CFR part 61, Subpart Q.

5.4 AIRBORNE PARTICULATE DOSE

To determine the annual effective dose from airborne emissions of radioactive particulates generated during the year 2000 at the MISS and adjacent properties, multiple potential sources were considered including in situ wind erosion at the MISS; the Time Critical Removal Action (TCRA) performed for the swale; the remediation and restoration of the Ballod property; operation of the pilot demonstration facility; and operation of the exhaust system for the soil sample preparation laboratory. The particulate release rates from the in situ wind erosion at the MISS and the soil excavations and transfers associated with the TCRA for the swale, Ballod property remediation, and operation of the pilot facility were calculated using the methodology contained in the "Industrial Wind Erosion" section of EPA's AP-42 (EPA 1995). The emissions of particulate matter from the exhaust system for the soil sample preparation laboratory was determined based on the number of soil samples prepared, the average quantity of particulate emissions resulting from the grinding of the samples, and the removal efficiency of the High Efficiency Particulate Air (HEPA) filter.

The radionuclide emission rates were based on the particulate release rates and the average radionuclide source concentrations obtained from soil measurements for each of the above operations. Specifically, the source concentrations for isotopes of uranium (U-238), radium (Ra-226) and thorium (Th-232) were based on the average values obtained from the measurements of these radionuclides in surface soil samples for the in situ soil (BNI 1987); and average values measured in soil samples for the excavated soils associated with the TCRA for the swale, Ballod property remediation, operation of the pilot demonstration facility, and operation of the exhaust system for the soil sample preparation laboratory. Unknown radionuclide source concentrations were based on the known source concentrations assuming secular equilibrium in the decay chains (Shlein 1992).

Although the emission of radon gas is not considered in this analysis, the daughters of radon generated by the decay of radon-226 in dust offsite is accounted for by the model in the computation of the effective dose equivalents for the various internal and external exposure pathways. The radionuclide emissions for the year from each of the above sources were entered into the "Clean Air Assessment Package-1988 personal computer"(CAP88-PC) program (Version 2.0) to perform the following two calculations:

- 1. Estimation of the hypothetical doses from airborne radioactive particulates at downwind distances corresponding to individuals located at the nearest residences and nearest commercial/industrial facilities as measured from the centers of the above sources. Analyses were performed separately for the TCRA at the swale, Ballod property remediation and operation of the pilot demonstration facility given the differences in receptor locations most affected by each of these areas. The in situ wind erosion and the exhaust hood emissions were found to be negligible and thus, were not included in the modeling analyses. Where individual receptors are affected by more than one emission source, doses caused by those sources were added. The hypothetical doses were based on the CAP88-PC default assumption that the receptor occupies the location 100 percent of the time (i.e., 24 hours per day, 7 days per week, 52 weeks per year). The occupancy factor of 100 percent, although conservative, is considered to be appropriate for a resident. To estimate the dose to an employee working normal hours, an occupancy factor of 24 percent (i.e., 8 hours per day, 5 days per week, 50 weeks per year) was applied to the CAP88-PC result. The hypothetical individual receiving the highest of these calculated doses was then identified as the individual maximally-exposed to the airborne particulate dose. Since this dose is based in part on wind direction and not simply the distance from the site, this hypothetical maximally –exposed individual may not be the same as the person identified in the dose calculation for external gamma radiation (Section 5.1).
- 2. The hypothetical collective dose from airborne radioactive particulates for the population within 80 km of the site was estimated using a population file (generated from county population densities) to determine the number of people in graduated, concentric grid sections radiating outward to 80 km from the center of the site.

The CAP88-PC model determines the maximally exposed individual based on the radionuclide emissions, local meteorological data and other factors. The model can calculate the effective dose equivalent for any receptor of interest (e.g., residences, schools, and workers).

The CAP88-PC program computes radionuclide concentrations in air, rates of deposition on ground surfaces, concentrations in food, and intake rates to people from ingestion of food produced in the assessment area. By coupling the output of the atmospheric transport models with terrestrial food chain models from the U.S. Nuclear Regulatory Commission Regulatory Guide 1.109 ("Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I"), the program estimates the radionuclide concentrations in produce, leafy vegetables, milk, and meat consumed by humans. The population distribution array used in the computer model was calculated from known land surrounding the site and 1990 census figures. The program calculates the effective dose equivalent by combining the inhalation and ingestion intake rates and the air and ground surface concentrational Commission on Radiological Protection" (ICRP publication 26, 1977). CAP-88 PC calculates dose to the gonads, breast, lungs, red marrow, thyroid, and endosteum in addition to the 50-year effective dose equivalent. Doses can be tabulated as a function of radionuclide, pathway, location, and organ as shown in the calculation presented in Appendix C.

The hypothetical maximally exposed individual in 2000 was an individual with 100 percent occupancy time located 35 m south-southwest of the Ballod Property. The 2000 airborne particulate dose to that individual, considering all site contributions throughout the year, was 0.084 mrem/yr., which is well below the 10 mrem/yr. standard specified in 40 CFR Part 61, Subpart H. The second calculation indicates that the hypothetical airborne particulate collective dose to the population within 80 km of the site was 0.021 person-rem/yr.

5.5 SURFACE WATER AND SEDIMENT

Surface watercourses and drainage near the MISS include Westerly and Lodi Brooks (Figure 3). Westerly Brook flows through a culvert after it enters the northwestern corner of the MISS. The subsurface culvert redirects Westerly Brook to the west, south and then to the west again, along the northern and western property boundaries. After leaving the MISS, the culvert remains below grade for approximately 335 m before it terminates. At this point, Westerly Brook reemerges and resumes its westward course. Ultimately, Westerly Brook discharges into the Saddle River. Lodi Brook begins on the Sears property in a low marshy area that collects runoff from the Sears and Stepan properties; from there it flows southward under Route 17 remaining underground most of its course except for small sections on both sides of Interstate 80 and a small section along Route 17. From this area, the Brook flows approximately 1.8 miles downstream of the confluence of Westerly Brook and the Saddle River before joining the Saddle River.

Surface water and sediment samples in 2000 were collected in July and October. In July, samples (Tables 4, 5,6) were collected for the EMP (Figure 3); in October, samples (Tables 4-A, 5-A, 6-A, 6-B) were collected for the Groundwater Remedial Investigation (GWRI) program. The GWRI samples were used in the EMP to aid in the evaluation of contaminant migration further downstream from the site.

5.5.1 SURFACE WATER

Sampling locations in July 2000 (Figure 3) included location SWSD002 (downstream of the site along Westerly Brook), SWSD006 and SWSD007 (on the eastern tributary of Lodi Brook), and SWSD0005 (at the confluence of the eastern and western tributaries of Lodi Brook). The western branch of Lodi Brook drains portions of the MISS, Stepan Company, and Sears's properties. Location SWSD001, which is not shown in Figure 3, was also sampled (where Lodi Brook meets the Saddle River). Background sampling was conducted in Westerly Brook, upstream (north) of the site, at SWSD003.

Sampling locations in October 2000 (Figures 4-A, 4-B) included two upstream locations (WBSW-4 and WBSW-5), three downstream locations (WBSW-1, WBSW-2, and WBSW-3) in Westerly Brook, two upstream (LBSW-1 and LBSW-2) locations and six downstream locations (LBSW-3 to LBSW-8) along Lodi Brook. At location LBSW-1, surface water sample was not taken because the water was stagnant.

Surface water samples in 2000 were collected and analyzed for metals and radioactive constituents. According to the 1992 Environmental Surveillance Report submitted by BNI, the radiological results for surface water samples were at background levels for the previous five (5) years (1986-1991). Thus, surface water sampling for radionuclides was discontinued at that time. For 2000, the sampling for radiological constituents was resumed (Tables 4, 4-A). All samples were analyzed for gross alpha, gross beta, radium, thorium, and uranium.

5.5.1.1 Radioactive Constituents

Surface water samples collected in July (Figure 3) at Westerly Brook (SWSD002) and Lodi Brook (SWSD005, SWSD006, and SWSD007) did not exhibit elevated concentrations of the analyzed radionuclides. Results for these locations are comparable to background measurements at SWSD003 (Table 4).

Surface water samples collected in October (Figures 4-A, 4-B) exceeded the State and Federal drinking water standards for either radium-228 or the combined concentrations of radium-226 and radium-228 (Table 4-A) at locations in Lodi Brook (LBSW-2, LBSW-5, LBSW-7), and Westerly Brook (WBSW-1, and WBSW-2). At these locations, radium-228 ranged from 4.75 pCi/L (WBSW-1) to 8.23 pCi/L (LBSW-5). The maximum concentration of combined radium-226 and radium-228 was 9.25 pCi/L (LBSW-1). All other radioactive constituents were below the State and Federal standards.

5.5.1.2 Metals

Federal drinking water and New Jersey groundwater standards are used for evaluating metal concentrations in surface water. Although surface water is not used as a source of potable water, Federal and State drinking water standards are used as a conservative basis for evaluation of the results. These regulatory standards are provided in Table 5 along with detected concentrations of metals in surface water.

Monitoring results revealed elevated concentrations in surface water for iron, manganese, and sodium (i.e., above Federal and State Criteria, except for sodium which has only a State Standard). All locations sampled (on Lodi Brook or Westerly Brook) had an exceedance for at least one of these metals and several locations had exceedances of all three metals.

At SWSD007, in the eastern tributary of Lodi Brook, there were exceedances for arsenic (21.7 μ g/L), lead (162 μ g/l), chromium (156 μ g/l) and aluminum (3950 μ g/L). Federal and State Criteria for aluminum (225 μ g/L) were also exceeded in Westerly Brook (WBSW-3) downstream of the MISS. State Criteria for arsenic was exceeded on Lodi Brook at LBSW-2 (9.7 μ g/L); and on Westerly Brook at WBSW-1 (12 μ g/L), WBSW-2 (18.5 μ g/L) and WBSW-3 (48.7 μ g/L).

5.5.2 SEDIMENT

The sediment-sampling program was extended in 2000 to include more sample locations downstream of both Westerly and Lodi Brook, to identify the pattern of contaminant migration downstream from MISS. In addition to samples collected in July (Figure 3), sediment samples (Figure 4-A, 4-B) were also collected in October; samples were collected at two upstream locations and two downstream locations in Westerly Brook, and one location upstream and five downstream locations in Lodi Brook. Sediment samples could not be collected (unavailable sediment due to significant flow) at locations LBSED-2 and LBSED-005 in Lodi Brook and WBSED-3 in Westerly Brook.

5.5.2.1 Radioactive Constituents

- For the sediment samples collected in July 2000 (Figure 3), results for sample locations collected in Westerly Brook (SWSD001, SWSD002) were below soil cleanup. In the eastern tributary of Lodi Brook (SWSD005, SWSD006, SWSD007), results of sample analyses were elevated above background but below the soil cleanup criteria. Sediment sample collected at location SWSD004 was rejected for mishandling.
- For the sediment samples collected in October 2000 (Figure 4-A, 4-B), results for all locations (WBSED-1, WBSED-2, WBSED-5) were below soil cleanup criteria and comparable to background measurements at WBSED-4 (Table 6-A). Detected concentrations of radium-226 were above background at WBSED-2 (2.83 pCi/l), and WBSED-5 (1.74 pCi/L) but below the soil cleanup criteria.
- In the eastern tributary of Lodi Brook (Figure 4-A) results of sample analyses exceeded the soil cleanup criteria for radium-226, thorium-228 and thorium-232 (Table 6A). The highest concentrations (10.41 pCi/g radium-226, 23.58 radium-228, and 21.48 pCi/g thorium-232) were detected at the upstream location (LBSED-1). Further downstream, at location LBSED-3 and LBSED-4, detected concentrations of all radionuclides were above background, but below the soil cleanup criteria for all radionuclide parameters and the sum-of-ratios criterion for mixtures.
- Further downstream at LBSED-6, LBSED-7, and LBSED-8 (Figure 4-B) in Lodi Brook, detected concentrations of all analyzed radionuclides were below the soil cleanup criteria. Detected

concentrations of radium-226 at LBSED-7 (2.35 pCi/L), and LBSED-8 (2.51 pCi/L) were above background but below the soil cleanup criteria.

Results for 2000 confirm the presence of localized contamination in the streambed sediment of the eastern tributary of Lodi Brook. Variation of sediment concentrations from one year to another is typical and due to factors, such as local disturbances during and prior to sampling, and the time since the last rainfall event.

5.5.2.2 Metals

Metals concentrations in sediment are compared to the proposed New Jersey Soil Cleanup Criteria (SCC), and to the Sediment Screening Values in the BEE (NJDEP 1998).

The New Jersey residential, and less stringent nonresidential, proposed soil cleanup standards provide a basis for evaluating metal concentrations in sediment for the mixed land use area around MISS (NJDEP 1992). These proposed standards, as appropriate for the zoning of a given sampling location, are provided in Table 6-B along with the detected concentrations of metals in sediment. Sampling locations WBSED-4 (background), WBSED-5, LBSED-1, LBSED-3, and LBSED-4 are in areas zoned as light industrial (nonresidential), while sampling locations WBSED-1, WBSED-2, LBSED-6, LBSED-7, and LBSED-8 are in areas zoned for residential use.

Only the concentrations of arsenic at location LBSED-1 and lead at location LBSED-7 exceeded the proposed New Jersey Soil Cleanup Criteria. There were no exceedances of the soil cleanup criteria in Westerly Brook. The sampling results for 2000 are summarized below for each sampling location.

- At WBSED-4 and WBSED-5, the nonresidential upstream locations along Westerly Brook, no metal Concentrations exceeded the soil cleanup criteria.
- At WBSED-1 and WBSED-2, the residential downstream locations along Westerly Brook, no metal concentrations exceeded the soil cleanup criteria.
- In the eastern tributary of Lodi Brook at LBSED-1, results of sample analyses exceeded the soil cleanup criteria for arsenic (30.5 mg/kg). The elevated concentration of lead above background was reported but below the soil cleanup criteria. All other metals were below the proposed residential or nonresidential soil cleanup criteria at LBSED-1. Although the upstream location is in an area zoned for nonresidential use, two downstream sampling locations are zoned for residential use; therefore, it is prudent to evaluate upstream data against residential cleanup standards as well.
- At LBSED-3, at the confluence of the eastern and western tributaries of Lodi Brook, no metal concentrations exceeded the proposed residential or non-residential soil guidelines.
- At LBSED-4 and LBSED-6, the downstream locations along Lodi Brook, elevated concentrations of lead were reported above background but below the soil cleanup criteria. No other metal concentrations exceeded either the proposed residential or nonresidential soil guidelines.
- At LBSED-7, downstream location along Lodi Brook, elevated concentration of lead was reported at 427 mg/kg. Upstream of this sampling location and downstream from MISS, there are multiple potential industrial sources for this metal.
- At LBSED-8 further downstream along Lodi Brook, no metal concentrations exceeded either the proposed residential or nonresidential soil cleanup criteria.

5.5.2.3 Sediment Screening Values in the Baseline Ecological Evaluation.

To aid in the identification of contaminants of potential ecological concern, site related metal concentrations in sediment are compared to the Lowest Effects Level (LEL) and Severe Effects Level (SEL) concentrations listed in the screening level criteria presented in the "Guidance for Sediment Quality Evaluations" (NJDEP 1998).

Various metal concentrations exceeded the LEL used in the Baseline Ecological Evaluation (BEE) at every sampling location. There were exceedances for lead, copper, zinc, chromium, and nickel in both Lodi Brook and Westerly Brook. However, metal concentrations exceeded SEL concentrations at only three locations, LBSED-1, LBSED-7 and WBSED-4 (Figure 4-A, 4-B).

- At WBSED-4 and WBSED-5, the nonresidential upstream locations along Westerly Brook, copper, lead, and zinc exceeded the LEL. Only copper (210 mg/kg) exceeded SEL at WBSED-4.
- At WBSED-1 and WBSED-2 the residential downstream locations along Westerly Brook, copper, lead, nickel and zinc exceeded the LEL. Non of the metals exceeded SEL.
- At LBSED-1, in the eastern tributary of Lodi Brook upstream of Lodi Brook, all metals (except nickel) exceeded the LEL. Only chromium and lead exceeded the SEL with concentrations of 191 mg/kg and 354 mg/kg, respectively.
- At LBSED-3, at the confluence of the eastern and western tributaries of Lodi Brook, only copper and lead exceeded the LEL with concentrations of 70.9 mg/kg and 33.8 mg/kg, respectively.
- At LBSED-4, LBSED-6, and LBSED-8 downstream locations along Lodi Brook, various metal concentrations exceeded the LEL. However, non-of the metal concentrations exceeded the SEL.
- At LBSED-7, the residential downstream locations along Lodi Brook, nickel exceeded the LEL and the concentrations of copper, lead, and zinc exceeded both the LEL and the SEL.

5.6 **GROUNDWATER**

The locations of groundwater monitoring wells at the MISS are shown in Figure 2. Background information, descriptions of activities performed under the groundwater monitoring program and monitoring results are discussed below.

5.6.1 GROUNDWATER FLOW SYSTEM

5.6.1.1 Natural System

Groundwater in the Maywood area occurs in both the bedrock and the overlying unconsolidated sediments. Bedrock is composed of fractured sandstone and shale belonging to the Passaic Formation. Unconsolidated sediments are composed of interbedded sand and clay of glacial origin. Although there is no continuous confining layer present across the Maywood Site, the Remedial Investigation report for the Maywood Site (DOE 1992), indicated that the unconsolidated overburden deposits may be divided into three units that inter-finger with the underlying and overlying unit. The lower lithostratigraphic unit is characterized as consisting of stratified, moderately well sorted to well sorted fine grained sands and silts, with varying amounts of organic material. The middle lithostratigraphic unit consists of layers of clayey silt and silty clay with clayey to clean sand. The upper lithostratigraphic unit consists of undifferentiated deposits of sand, silt and gravel. These deposits are poorly to moderately sorted.

Although the fine grained sediments present in the middle lithostratigraphic unit are not continuous across the site, the presence of silts and clays overlying bedrock may be one cause for the higher potentiometric surface encountered in the northeastern portion of the site in the vicinity of the bedrock monitoring well

B38W05B. Bulk groundwater flow is predominantly horizontal, however, hydraulic head elevations obtained within the Maywood Site indicates that there is a downward component to groundwater flow within the MISS/Stepan property, and an apparent upward component of groundwater flow near groundwater discharge points such as the Saddle River and Lodi Brook. This information is further described in the following sections.

5.6.1.2 Water Level Measurements

Water level measurements were obtained from 35 monitoring wells (Figure 2) during 2000. Of these 35 monitoring wells, 15 are completed in unconsolidated overburden deposits, while 20 are completed in bedrock. During the synoptic gauging year 2000, five rounds of water levels were obtained. Four of these rounds (January, June, September and November) were associated with the Environmental Monitoring Program, and one round was associated with the Groundwater Remedial Investigation (GWRI). The GWRI gauging round was obtained in March 2000. Water Level Record Sheets for the five synoptic water level gauging rounds are provided in Appendix B. Water levels fluctuate in response to short and long term seasonal changes in precipitation and evapo-transpiration. In the unconsolidated deposits, groundwater levels measured during the five gauging rounds ranged as follows:

Minimum and Maximum Water Level Elevations in Overburden Monitoring Wells Synoptic Gauging Year 2000

	January 19, 2000	March 27, 2000	June 12, 2000	September 29, 2000	November 29, 2000
Minimum GW. Elv. (ft. MSL)	44.32	44.77	39.44	39.00	39.52
Maximum GW. Elv. (ft. MSL)	54.86	55.21	55.06	54.52	54.49
Well Depicting Minimum GW. Elv.	B38W12A	B38W12A	B38W14S	B38W14S	B38W15S
Well Depicting Maximum GW. Elv.	B38W01S	B38W01S	B38W01S	B38W01S	B38W01S

Table 7 presents information regarding the ground surface, top of riser, and the water table elevations for the 15 monitoring wells completed in the unconsolidated deposits. As depicted in Table 7, well B38W14S and the MISS-4A showed the minimum and maximum water level fluctuations that occurred throughout the course of the year 2000 synoptic gauging program. Well B38W14S varied by 0.44 feet, whereas, well MISS-4A varied by 3.65 feet. The maximum and minimum groundwater elevations in the upgradient monitoring well B38W01S occurred in March 2000 and September 2000, respectively.

In the bedrock aquifer, groundwater levels measured during the five gauging rounds ranged as follows:

	January 19, 2000	March 27, 2000	June 12, 2000	September 29, 2000	November 29, 2000
Minimum GW. Elv. (ft. MSL)	44.40	44.96	39.79	40.11	40.53
Maximum GW. Elv. (ft. MSL)	59.58	61.32	60.85	58.3	55.94
Well Depicting Minimum GW. Elv.	B38W19S	B38W12B	B38W14D	B38W14D	B38W15D
Well Depicting Maximum GW. Elv.	B38W05B	B38W05B	B38W05B	B38W05B	B38W05B

Minimum and Maximum Water Level Elevations in Bedrock Monitoring Wells Synoptic Gauging Year 2000

Table 8 presents information regarding the ground surface, top of riser, and the piezometric surface elevations for the 20 bedrock monitoring wells. As depicted in Table 8, well B38W14D and B38W05B showed the minimum and maximum water level fluctuations that occurred through out the course of the year 2000 synoptic gauging program. Well B38W14D varied by 0.32 feet, whereas, well B38W05B varied by 5.38 feet, respectively. The maximum and minimum groundwater elevations in the upgradient monitoring well B38W05B occurred in March 2000 and November 2000, respectively.

5.6.1.3 Groundwater Flow System

Potentiometric surface maps for the unconsolidated and bedrock groundwater flow systems during the five synoptic gauging rounds are presented in Figure 6 through 15. Figures 6 through 10 present the groundwater flow for wells completed in the overburden soils, whereas, Figures 11 through 15 presents the potentiometric surface maps for the wells completed in bedrock. Lateral groundwater flow at the MISS is strongly controlled by the morphology of the bedrock surface. The bedrock slopes westward across the site, flattens, and then rises to a subtle ridge along the Saddle River (DOE, 1992). Horizontal hydraulic gradients reflect this configuration and flatten offsite, to the west. A figure depicting the contours of the bedrock surface excerpted from the Remedial Investigation report (DOE, 1992), are presented in Figure 16. Bedrock highs exist in the northeast portion of the site within the Stepan property, these bedrock highs form a local groundwater divide, and control the direction of groundwater flow in the overburden and bedrock aquifers.

During the year 2000 synoptic gauging rounds, the horizontal hydraulic gradient varied spatially but typically ranged from approximately 0.007 ft/ft to 0.015 ft/ft in the unconsolidated overburden aquifer. The direction of groundwater flow in the overburden aquifer is predominantly to the west-southwest as depicted in Figures 6 through 10. As depicted in these figures, the highest hydraulic head was present in upgradient monitoring well B38W01S. This well is located west of the bedrock high.

The hydraulic conductivity of the overburden material was estimated to be between 8.8×10^{-5} cm/s (0.25 ft/day) to 1.4×10^{-4} cm/s (0.4 ft/day). These values exhibit hydraulic conductivity similar to those cited in Freeze and Cherry (1979) for silt to silty sands. Results reported from previous hydraulic conductivity tests conducted on Stepan monitoring wells in 1994 (Stepan, 1994) yielded similar results. The average linear groundwater velocity in the overburden was estimated to range from 0.0125 ft/day to 0.02 ft/day (Stone & Webster, 2000).

The direction of groundwater flow in bedrock is presented in Figures 11 through 15. As depicted in these figures, groundwater flow is dictated by the presence of a groundwater high, which roughly coincides

with a bedrock high located in the northeast corner of the site in the vicinity of the Stepan property, as shown on Figure 16. Figures 11 through 15 depict the groundwater divide, with groundwater flowing predominantly to the west-southwest, with a component of groundwater flow to the northwest.

In the bedrock aquifer, the horizontal hydraulic gradients ranged between 0.010 ft/ft to 0.020 ft/ft during the year 2000 synoptic gauging program. The hydraulic conductivity of the bedrock aquifer was estimated to range between 2.0x10-4 cm/s (0.57 ft/day) and 4.6x10-4 cm/s (1.30 ft/day) based on slug tests performed as part of GWRI activities. These values exhibit hydraulic conductivity similar to those cited in Freeze and Cherry (1979) for consolidated material, i.e., sandstone and shale (Stone & Webster 2000).

As part of GWRI activities, pressure packer tests have been initiated and results from seven boreholes indicate that hydraulic conductivities for seven bedrock borings range from 3.9x10-4 cm/s (1.1 ft/day) to 1.1x10-3 cm/s (3.2 ft/day). The results of these tests including the procedures used to perform the tests will be presented in the Groundwater Remedial Investigation Report. The average linear groundwater velocity in the bedrock aquifer was estimated to range from 0.017 ft/day to 0.4 ft/day based on the findings of Phase I GWRI activities.

Based on the synoptic gauging rounds, information regarding the vertical component of groundwater flow may be inferred. As depicted in Table 9, thirteen well clusters were used to determine if a horizontal or vertical gradient (either upward or downward) exists between overburden and bedrock wells. Of the nine well clusters located within the MISS/Stepan property, the overburden well depicted a greater hydraulic head than the well completed in bedrock at seven clusters. The data contained in Table 9 principally indicates that the MISS/Stepan property represents a recharge area for the unconsolidated/overburden aquifer. The exception to this statement are well clusters B38W24S/24D and B38W25S/25D. At these two well clusters, 3 of the 5 gauging rounds, and 4 of 5 gauging rounds indicated a vertically upward component of groundwater flow, respectively.

As indicated in the Remedial Investigation report (DOE 1992), in the vicinity of B38W25S/25D, fracture zones orientated approximately 90 degrees apart have resulted in the gouging of the bedrock surface. The bedrock surface has been filled with unconsolidated material. Based on hydraulic heads measured in March 1992 (DOE 1992), the presence of sand, silt, and clay overlying the weathered bedrock surface may act as a confining layer, and the hydraulic head in the vicinity of this well cluster, and in the vicinity of B38W24S/24D may be under confining conditions, and thereby responds with an upward gradient during different times of the year.

With respect to monitoring well clusters located off-site, water levels measured in gauging year 2000 indicate that for well clusters B38W12A/12B, B38W14S/14D, and B38W15S/15D, the hydraulic heads in the bedrock aquifer are greater than that in the overburden aquifer, thereby depicting an upward component of groundwater flow from the bedrock to the overburden. These wells are located in proximity to a drainage swale/Lodi Brook (B38W12A/12B), and the Saddle River (B38W14S/14D and B38W15S/15D). The other off-site well cluster, B38W17A/17B, predominantly displayed a horizontal component of groundwater flow, whereby the groundwater flow system is in transition between a recharge and discharge regime.

5.6.2 GROUNDWATER QUALITY

5.6.2.1 Field Parameters

Table 10 presents a summary of field parameters measured during annual sampling activities at the MISS. Field parameters include: temperature, pH, oxidation/reduction potential (Eh), turbidity, specific conductance, and dissolved oxygen. These parameters are monitored during the purging of the wells to determine when to commence sample collection. Field procedures require these parameters to reach a

stable condition prior to sampling. Measurements are taken systematically during the purging procedure and are recorded in field logbooks.

5.6.2.2 Water Quality Parameters

Groundwater quality at the MISS has been evaluated historically for the standard parameters carbonate, bicarbonate, chloride, nitrate, sulfate, and total dissolved solids (TDS). Analyses for these parameters were discontinued after 1996.

5.6.3 GROUNDWATER - RADIOACTIVE CONSTITUENTS

Groundwater samples collected from monitoring wells both onsite and offsite (Figure 2) between June 2000 and July 2000 were analyzed for radioactive constituents. Eleven shallow wells and twelve deep wells are included in the monitoring plan to be sampled for radionuclides, metals, and VOCs. The location of these wells with respect to the MISS are:

- Upgradient wells: B38W-01S, 02D
- On-site Wells:

MISS-1AA, 1B, 2A, 2B, 5A, 5B, 6A, 7B B38W-19S, 19D, 18D, 24S, 24D, 25S, 25D

• Downgradient Wells:

B38W-14S, 14D, 15S, 15D, 17A, 17B

Three wells were not sampled during the 2000 Environmental Monitoring Program, which was conducted during June and July. At well B38W01S the peristaltic sampling tube was dropped into the well and recovery attempts were unsuccessful. Well B38W19S and MISS05A were dry. These three wells were sampled in November 2000 as part of the Groundwater Remedial Investigation and the data obtained is reported herein for evaluation of groundwater quality. Although groundwater at the site is not used as a source of potable water, Federal and State drinking water standards are used as a conservative basis for evaluation of the results. Results are provided in Table 11 and discussed below.

- On site and downgradient gross alpha results exceeded the Federal and State drinking water standard in 6 wells. The concentrations of gross alpha in these six wells ranged from a minimum of 18.9 pCi/L at well B38W17B to a maximum of 230 pCi/L at B38W18D.
- Gross beta results exceeded the Federal and State standard in seven wells. The concentrations in these seven wells ranged from a minimum of 65.6 pCi/L at B38W25S to a maximum of 365 pCi/L and 886 pCi/L at B38W19D and MISS05B respectively.
- Onsite and downgradient radium-226 results ranged from non-detect at 0.03 pCi/L (MISS01B) and 0.08 pCi/L (MISS02A) to 2.87 pCi/L (B38W18D) near Building 76. Consistent with historical results, detected radium-226 concentrations are significantly less than the State and Federal drinking water standard of 5 pCi/L (for combined Radium-226 and Radium-228), except at B38W18D. The detected concentration of radium-226 at this location was 2.87 pCi/L and the combined radium concentration was 19.4 pCi/L. This was the only location which exceeded the radium standard. Although the SDWA does not apply because groundwater at the MISS is not used as a source of drinking water, combined radium-226 and 228 concentrations are used for evaluation of groundwater quality.

- Radium-228 was detected in five groundwater samples. The reported detected concentrations of radium-228 ranged from 0.74 pCi/L at B38W25D to a maximum of 16.53 pCi/L at B38W18D. The concentration at B38W18D exceeded the Federal and State drinking water for combined radium standard of 5 pCi/L. Thorium-230 was detected in almost all of the groundwater samples. Where it was detected, it ranged from 0.11 pCi/L (B38W14S) to 2.45 pCi/L (MISS05A).
- Thorium-232 was only detected at B38W18D with a concentration of 7.53 pCi/L.
- Total uranium concentrations in groundwater were much less than the SDWA standards with one exception. Total uranium was detected in the MISS05A at a concentration of 73.48 pCi/L. MISS05A is an overburden monitoring well located on-site near former retention ponds and areas of contaminated soils. This result is above the State and Federal drinking water standard of 30 µg/L (27 pCi/L). This result is consistent with historical results and is less than results for 1996 through 1999. Monitoring well B38W18D (bedrock well) located near Building 76 contained 3.08 pCi/L of total uranium. The maximum offsite concentration reported was 7.38 pCi/L from monitoring well B38W15D southwest and downgradient of the site.

5.6.4 GROUNDWATER - METALS

Although groundwater at the MISS is not used as a source for public drinking water, the SDWA MCLs and the New Jersey Groundwater Quality Standards for Class IIA aquifers were used as a basis for comparison for metal analytical data at the MISS. Metals detected in groundwater are reported in Table 12.

Common metals that occur in abundance at the background locations (B38W01S and B38W02D) and in most of the monitoring wells include iron, manganese, aluminum, and sodium. These metals often exceed New Jersey Groundwater Quality Standards for Class IIA aquifers. Results for other metals are discussed below.

In 2000, arsenic concentrations in groundwater exceeded the SDWA MCL (50 μ g/L) in three onsite wells MISS02A (3520 μ g/L), B38W19D (70.3 μ g/L), and MISS07B (52.6 μ g/L). Five other wells: MISS05B (20.5 μ g/L), B38W19S (31.8 μ g/L), B38W25S (13.4 μ g/L), B38W15D, (11.1 μ g/L), and B38W18D (8.2 μ g/L) exceeded the State water quality limit (0.02 μ g/L) with a practical quantitation limit of (8 μ g/L). These wells have historically exhibited comparable concentrations for the metal. Although the measured concentrations from the other wells exceeded the more stringent State groundwater quality criteria, all but those discussed above were less than the practical quantitation limit (PQL), which is published by the State as that concentration that can reasonably be quantified by standard analytical methods. In such cases, where the PQL is higher than the groundwater quality criterion, the New Jersey regulations do not consider a discharge to be causing a contravention of that constituent standard as long as the concentration of the constituent in the affected groundwater is less than the relevant PQL (NJAC 7:9-6.9). Therefore, only at wells mentioned above, was the State limit exceeded.

- Antimony was detected in one well, with a maximum concentration of 37.6 μg/L (B38W17A). All other detected concentrations were less than the Federal drinking water limit (6 μg/L) and the State PQL (20 μg/L) which is higher than the GWQC.
- The maximum beryllium concentration reported was detected at well B38W01S (2.4 μ g/L) in 2000. All reported beryllium concentrations (B38W24D, B38W18D, and MISS02B) were less than the Federal limit of 4 μ g/L. All reported concentrations from the wells ranged from 0.52 to 2.4 μ g/L which exceed the State GWQC (0.008 μ g/L), however, all results were well below the PQL (20 μ g/L) and therefore do not constitute a "contravention of that constituent standard" according to the State regulations.

- Cadmium was detected in various wells with a maximum concentration of 2.9 μg/L at offsite well (B38W14D) and 1.5 g/L at onsite well (MISS06A). All detected concentrations were less than the State standard of 4 μg/L and Federal standard of 5 μg/L.
- Chromium was detected in most of the wells, however only one well had an exceedance of the SDWA standard, 1590 µg/L at B38W17A. All other concentrations were below the State and Federal limits (100 µg/L).
- Lead was detected in 4 wells (B38W01S, B38W17A, MISS02A and MISS06A) with concentrations ranging from 5.8 μg/L (B38W01S) to 13 μg/L (MISS02A). Only one well (B38W02A) exceeded the State PQL of 10 μg/L, but less than the Federal drinking water limit (15 μg/L).
- As in the previous seven years, the highest concentration of nickel was detected in well B38W17A (114 μ g/L). This result is consistent with historical data and represents the only result that exceeds the State water quality limit (100 μ g/L).

5.6.5 GROUNDWATER - ORGANIC COMPOUNDS

Groundwater samples were also analyzed for volatile organic compounds (VOCs). The pattern of groundwater contamination with VOCs in 2000 (Table 13) is consistent with historical results Table (A-4).

The prevalent organic constituents in groundwater at the MISS are tetrachloroethene and its degradation products: trichloroethene, dichloroethenes, and vinyl chloride. As seen historically, at offsite wells B38W14D and B38W14S, and B38W15D some or all of these compounds were detected in concentrations that exceeded the state groundwater quality standards for class IIA waters and Federal drinking water limits. The denser compounds were all detected in higher concentrations in the deep wells.

- Historically tetrachloroethene, trichloroethene, and dichloroethenes were also identified in onsite deep wells MISS01B, and MISS07B, but not in their shallow counterparts.
- Chloroform was identified in wells B38W14D (2 μ g/L) and B38W14S (6 μ g/L) at a concentration above the State groundwater limit of 1 μ g/L but not above the PQL of 6 μ g/L.
- Benzene was identified in three shallow wells with concentrations between $0.1 \,\mu g/L$ to $0.2 \,\mu g/L$. In the deep wells, benzene was identified in many wells with estimated concentrations between $0.2 \,\mu g/L$ to $1.0 \,\mu g/l$ and exceptionally high concentration at well MISS05B (3500 $\mu g/L$).
6.0 CONCLUSIONS

6.1 EXTERNAL GAMMA RADIATION

The 2000, monitors for gamma radiation (TETLD's) were collected at 14 site locations and 1 offsite background location (Figure 2). Site results, corrected for background, exposure duration, and attenuation, ranged from a minimum equal to background (location 32 and 33) to a maximum of 674.6 mrem/yr (above background) at location 21 (Table 2). At 7 of the 14 locations, measured external gamma radiation exceeded the 100 mrem annual dose limit specified by the U.S. Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC).

At Stepan property locations 30 and 31, south of the lawn, external gamma results were 75.9 and 109.7 mrem/yr, respectively. North of the lawn at locations 32 and 33, results were lower than background. These 4 locations are closest to potential receptors, and when time and distance are factored any doses would likely be less than regulatory limits. The doses measured at these locations represent the potential dose a person could receive if he or she spent the entire year at that location. This scenario is highly implausible; any received doses would be considerably lower than these measured results because the potential receptors would spend much less time at these locations.

Calculated dose from direct gamma exposure at the MISS to a hypothetical maximally-exposed individual residing 50 ft north of the fenceline at station 21 was 7.15 mrem/yr (Calc. 08575-0207-002). Results of gamma radiation monitors are consistent with historical data and all locations will continue to be monitored during 2001.

6.2 RADON-220 AND RADON-222

Cumulative radon measurements were collected at 14 site locations and 1 offsite background location (Figure 2, and Table 3). Measured radon-222 concentrations ranged from non-detect to 0.6 pCi/L and were therefore well below the 4 pCi/L action level identified by EPA (EPA 1992d).

Radon-220 concentrations ranged from non-detect to a maximum of 3.84 pCi/L (location 24). While there is undoubtedly a probability that the population of values represented by the 3.84 pCi/L value exceed the action level of 4 pCi/L, this value is the highest of 15 values. The next highest values are 2.44 and 1.82 pCi/L. Results of radon monitoring are consistent with last year results and all locations will continue to be monitored during 2001.

6.3 RADON-222 FLUX

Radon flux measurements obtained at MISS are presented at Table 3-A; measurement locations are shown in Figure 5. Measurements of radon flux ranged from non-detect to a maximum of 0.54 pCi/m²/s. All results are well below the 20 pCi/m²/s radon flux standard specified in 40 CFR part 61, Subpart Q. for 2000, radon flux measurements were taken from stock piled material onsite. In the future, radon flux measurements will only be taken when there is long term stockpiling.

6.4 AIRBORNE PARTICULATE DOSE

The airborne particulate dose to the hypothetical maximally exposed individual in 2000 was an individual with 100 percent occupancy time located 35 m south-southwest of the Ballod Property. The 2000 airborne particulate dose to that individual, considering all site contributions throughout the year, was 0.084 mrem/yr, which is well below the 10 mrem/yr standard specified in 40 CFR, Part 61, Subpart H.

The hypothetical airborne particulate collective dose to the population within 80 km of the site was 0.021 person rem/yr.

The maximum annual effective doses are almost entirely the result of the internal doses from the inhalation of dust particles and the ingestion of plant borne dust. The air immersion in the dust plume and ground surface irradiation from dust deposition pathways contribute a negligible amount to the total dose. The dominant pathway is inhalation as discussed in Appendix C.

6.5 CUMULATIVE DOSE FROM EXTERNAL GAMMA RADIATION AND AIRBORNE PARTICULATE

The location of the maximally exposed individual from direct gamma radiation and the location of the maximally exposed individual from airborne particulates are different. The calculated maximally exposed individual from direct gamma radiation emitted at MISS occurred 50 feet from location 21 which is located on the southern perimeter of the site. The calculated cumulative dose from the external gamma radiation at the above location was 7.15 mrem/yr (see Section 5.1).

The location of the maximally exposed individual as determined by the dispersion modeling performed for the annual NESHAP's compliance report occurred at a facility located adjacent to the remediated portion of the Ballod Property (see Appendix C). The calculated annual effective dose to the maximally exposed resident was 8.42×10^{-2} mrem/yr. The maximum annual effective dose is almost entirely the result of the internal doses received from the inhalation of dust particles with a small contribution from the ingestion of plant borne dust.

Thus, the calculated cumulative dose from external gamma radiation and airborne particulates to a hypothetical maximally exposed individual is essentially the external gamma radiation dose. The calculated cumulative dose from external gamma radiation and airborne particulates of 7.15 mrem/yr is well below the NRC standard of 100 mrem/yr (from all sources, excluding radon).

6.6 SURFACE WATER

Surface water samples in 2000 were collected and analyzed for radioactive constituents (Tables 4, 4-A) and metals (Tables 5, 5-A). Surface water samples collected in October 2000 (Figures 4-A, 4-B) exceeded the Federal and State Standards for either radium-228 or the combined concentrations of radium-226 and radium-228 (Table 4-A) at locationsin Lodi Brook and Westerly Brook. Radium-228 concentrations ranged from 4.75 pCi/L (WBSW-1) to 8.23 pCi/l (LBSW-5). The maximum concentration for combined radium-226 and radium-228 was 9.25 pCi/L (LBSW-5). All other radioactive constituents were below the Federal and State standards. Historically, surface water has not exhibited above-background concentrations of radionuclides during past environmental sampling rounds. Metal concentrations of iron, manganese, and sodium exceeded the State criteria at almost every location. At SWSD007 (Table 5), arsenic (21.7 μ g/L), chromium (156 μ g/l), lead (162 μ g/L) and aluminum (3950 μ g/L) exceeded the State criteria for surface water. Surface water will continue to be monitored during 2001.

6.7 SEDIMENT

Radionuclide concentrations in sediment samples collected in Westerly Brook were within the background concentration and below the State cleanup criteria. In 2000 the concentrations in samples collected upstream at the eastern tributary of Lodi Brook (LBSED-1) exceeded the DOE soil limits for

radium-226, radium-228, and thorium-232. At LBSED-1, the measured concentrations of radium-226 (10.41 pCi/g), thorium-228 (23.58 pCi/g) and thorium-232 (21.48 pCi/g) are the highest measured at the site in 2000. Further downstream at LBSED-3, and LBSED-4, detected concentrations of all radionuclides were above background but below the soil cleanup criteria for radium-226, radium-228, and thorium-232. Further downstream at LBSED-6, LBSED-7, and LBSED-8 detected concentrations of radium-226 were above background but below the soil cleanup criteria. Results for 2000 confirm the presence of localized contamination in the streambed sediment of the eastern tributary of Lodi Brook. Various metal concentrations exceeded the SEL at three locations, LBSED-1, LBSED-7 and WBSED-4 (Table 6-B). Sediment will continue to be monitored during 2001.

6.8 GROUNDWATER

Concentrations of gross alpha and gross beta in groundwater exceeded the Federal and State drinking water in many wells. Concentrations of all other radionuclides sampled in groundwater in 2000 (radium-226, radium-228, thorium-230, thorium-232, and total uranium) were well below (except for well MISS05A, and B38W18D) the Federal and State drinking water standards. Total uranium was detected in MISS05A with concentration of 73.48 pCi/L. Radium 228, thorium-228, and thorium-232 were identified in well B38W18D with concentrations of 16.53 pCi/L, 6.89 pCi/l and 7.53 pCi/L respectively. Consistent with historical results, the highest concentration of total uranium was detected in well MISS05A.

Although groundwater at the MISS is not a source of drinking water, State and Federal drinking water standards are used for evaluating groundwater data. Radium concentrations (except well B38W18D) in groundwater were well below the SDWA MCL of 5 pCi/L for combined radium-226 and radium-228.

The presence of arsenic at concentrations above Federal SDWA drinking water standards was identified in three onsite wells; MISS02A ($3520 \mu g/L$), B38W19D ($70.3 \mu g/L$) and MISS07B ($52.6 \mu g/L$). Five other locations exceeded the State limit (PQL). All detected concentrations of beryllium were less than the State PQL and Federal limit. Cadmium was reported in various wells, but all detected concentrations were less than the State and Federal standard. Chromium was detected in most wells, but only one exceeded State and Federal limits. Lead was detected in 4 wells. All detected concentrations were less than the Federal standard but one was above the State standard. Nickel was present above State standards in one off-site well where it has been reported consistently in the past.

Tetrachloroethene and its degradation products were present in monitoring wells both onsite and offsite at concentrations exceeding New Jersey Groundwater Quality standards for Class IIA aquifers and SDWA MCLs. Results for VOCs are within the historical range, no significant increase or decrease in contaminant concentration is observed.

7.0 REFERENCES

S&W CDQMP, 2000. Groundwater Level Measurements, SW-MWD-410-0, (February 2000).

S&W CDQMP, 2000. Surface Water Sampling, SW-MWD-302-0, (February 2000).

S&W CDQMP, 2000. Sediment Sampling, SW-MWD-301-0, (February 2000).

S&W CDQMP, 2000. Groundwater Sampling Activities, SW-MWD-304-0, (February 2000).

S&W CDQMP, 2000. *Decontamination of Field sampling Equipment at FUSRAP Sites*, (February 2000).

- BNI, 1993b. Instruction Guide for Radon/Thoron and TETLD Exchange, 191-IG-028, Rev. 0 (August 27).
- BNI, 1995a. *Normal Uranium Specific Activity*, FUSRAP committed calculation 191-CV-005, Rev. 2 (April 18).
- BNI, 1996a. *Environmental Surveillance Plan*, Appendix B1 (Maywood Interim Storage Site), 191-ESP, Rev. 0, Oak Ridge, Tenn. (March 7).
- BNI, 1997a. Calculation of Average Background Concentrations for Environmental Surveillance Data (Radioactive Parameters), FUSRAP committed calculation 191-CV-031, Rev. 0, Oak Ridge, Tenn (January).
- BNI, 1997b. Calculation of the Average Radon-220 Concentration from Environmental Surveillance with Radtrack[®] Radon Type F and M Detectors for MISS, WISS, and MSP in 1996, FUSRAP committed calculation 191-CV-034 (February).
- BNI, 1987. Characterization Report for the Maywood Interim Storage Site, Maywood, New Jersey, DOE/OR/20722-139, Oak Ridge, TN, June 1987.
- DOE, 1992. *Remedial Investigation Report for the Maywood Site, New Jersey*, DOE/OR/21949-337, Oak Ridge, Tenn. (December).
- DOE, 1994a. *DOE/EPA Soil Cleanup Criteria for the Maywood Site, New Jersey, BNI PDCC* No. 115499 (April).
- DOE, 1994b. Uranium Guidelines for the Maywood Site, New Jersey, BNI PDCC No. 115863 (April).

- DOE, 1996. Status of Radon Flux Monitoring (NESHAPs Subpart Q) at Three Department of Energy Sites in EPA Region II, BNI PDCC No. 143772 (July).
- EPA, 1985. Rapid Assessment Exposure to Particulate Emissions from Surface Contamination Sites, EPA/600/8-85/002 (February).
- EPA, 1987. A Compendium of Superfund Field Operations Methods, EPA/540/P-87/001 (August).
- EPA, 1992a. Users Guide for Version 1.0, CAP88-PC, EPA 402-B-92-001 (March).
- EPA, 1992b. *RCRA Groundwater Monitoring: Draft Technical Guidance*, EPA/530/R-93/001, Office of Solid Waste (November).
- EPA, 1992c. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846 (September).
- EPA, 1992d. Technical Support Document for the 1992 Citizen's Guide to Radon, EPA-400-R-92-001.
- NJDEP, 1992. *New Jersey Proposed Cleanup Standards for Contaminated* Sites, NJAC 7:26 (24 NJR 373, as last revised as guidance 4/12/99).
- NJDEP, 1998. Guidance For Sediment Quality Evaluations, (November)
- EPA, 1995. Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, 5th Edition, AP-42
- Shlein, 1992. The Health Physics and Radiological Health Handbook, Revised Edition, Scinta, Inc., Silver Springs, MD 1992

TABLE OF CONTENTS

Sect	ion	Page	
EXE	CUTIV	E SUMMARY	
1.0	INT	RODUCTION	
	1.1	Measured Parameters	
	1.2	Unit Conversions.	
2.0	FV/		
2.0		Enternal Community Participants and a second s	
	2.1	External Gamma Radiation and Air (Radon Gas and Airborne Particulates)	
	2.2	Sediment, Surface Water and Groundwater-Radioactive Constituents	
	2.5	Sediment – Chemical Parameters	
	2.4	Groundwater and Surface water – Chemical Parameters	
3.0	SAN	IPLING LOCATIONS AND RATIONALE	
4.0	METHODOLOGY		
-			
5.0	ANA	LYTICAL DATA AND INTERPRETATION OF RESULTS	
	5.1	External Gamma Radiation	
	5.2	Radon-220 and Radon-222	
	5.3	Radon-222 Flux	
	5.4	Airborne Particulate Dose	
	5.5	Surface Water and Sediment	
	5.6	Groundwater	
6.0	CON	ICLUSIONS	
	6.1	External Gamma Radiation	
	6.2	Radon-220 and Radon-222	
	6.3	Radon-222 Flux	
	6.4	Airborne Particulate Dose	
	6.5	Cumulative Dose From External Gamma Radiation and Airborne Particulate	
	6.6	Surface Water	
	6.7	Sediment	
	6.8	Groundwater	
7.0	REFI	ERENCES	

LIST OF TABLES

1	2000 Environmental Monitoring Program Summary Maywood Interim Storage Site
2	2000 External Gamma Radiation Dose rates Maywood Interim Storage Site
3	2000 Radon Gas Concentrations Maywood Interim Storage Site
3-A	2000 Radon Flux Monitoring Results Maywood Interim Storage Site
4	2000 Surface Water Analytical Results – Radioactive Constituents Maywood Interim Storage Site, 2000
4-A	2000 Surface Water Analytical Results – Radioactive Constituents Maywood Interim Storage Site-October, 2000
5	2000 Surface Water Analytical Results – Metals Maywood Interim Storage Site-July, 2000
5-A	2000 Surface Water Analytical Results – Metals Maywood Interim Storage Site-October, 2000
6	2000 Sediment Analytical Results – Radioactive Constituents Maywood Interim Storage Site-July, 2000
6-A	2000 Sediment Analytical Results – radioactive Constituents Maywood Interim Storage Site-October, 2000
6-B	2000 Sediment Analytical Results – Metals Maywood Interim Storage Site
7	Depth to Groundwater and Groundwater Elevations for Overburden Monitoring Wells Maywood Interim Storage Site
8	Depth to Groundwater and Groundwater Piezometric Surface Elevations for Bedrock Monitoring Wells Maywood Interim Storage Site
9	Vertical Gradient Calculations for Monitoring Well Clusters Maywood Interim Storage Site
10	2000 Field Parameter Summary Maywood Interim Storage Site

11	2000 Groundwater Analytical Results – Radioactive Constituents Maywood Interim Storage Site
12	2000 Groundwater Analytical Results – Metals Maywood Interim Storage Site
13	2000 Groundwater analytical Results – Volatile Organic Compounds Maywood Interim Storage Site
14	2000 List of Analytes and Detection Limits for Metals and Volatile Organic Compounds Maywood Interim Storage Site

LIST OF FIGURES

1	Maywood Interim Storage Site, Site Location and Site Map
2	Maywood Interim Storage Site Environmental Monitoring Sampling Locations: External Gamma Radiation, Radon-222/Radon-220 and Groundwater
3	Surface Water and Sediment Sampling Locations (July, 2000)
4-A	Surface Water and Sediment Sample Locations (October, 2000)
4-B	Surface Water and Sediment Sample Locations (October, 2000)
5	Maywood Interim Storage Site, Radon Flux Monitoring Locations
6	Groundwater Contour Map-Jan 19, 2000 (Overburden)
7	Groundwater Contour Map-Mar 27, 2000 (Overburden)
8	Groundwater Contour Map-Jun 12, 2000 (Overburden)
9	Groundwater Contour Map-Sep 22, 2000 (Overburden)
10	Groundwater Contour Map-Nov 29, 2000 (Overburden)
11	Groundwater Contour Map-Jan 19, 2000 (Shallow & Deep Bedrock)
12	Groundwater Contour Map-Mar 27, 2000 (Shallow & Deep Bedrock)
13	Groundwater Contour Map-Jun 12, 2000 (Shallow & Deep Bedrock)
14	Groundwater Contour Map-Sep 29, 2000 (Shallow & Deep Bedrock)
15	Groundwater Contour Map-Nov 29, 2000 (Shallow & Deep Bedrock)
16	Contour Map of the Bedrock in the Maywood Area

APPENDICES

Appendix A -	Historical Results
Appendix A-1:	Historical Results for Radioactive Parameters in Sediment at MISS
Appendix A-2:	Historical Results for Radioactive Parameters in Groundwater at MISS
Appendix A-3:	Historical Results for Detected Selected Metals in Groundwater at MISS
Appendix A-4:	Historical Results for Detected Volatile Organic Compounds in Groundwater at MISS
Appendix B - Appendix C –	Water Level Measurements Annual NESHAPS Compliance Report - 2000

LIST OF ABBREVIATIONS AND ACRONYMS

AEC	Atomic Energy Commission
AL	Action Level
ANL	Argonne National Laboratory
ASTM	American Society for Testing and Materials
BEE	Baseline Ecological Evaluation
Bgs	Below Ground Surface
BNI	Bechtel National, Incorporated
Bq	Becquerel
_	•
CAA	Clean Air Act
CAP88-PC	Clean Air Act Assessment Package 1988 – Personal Computer
CFR	Code of Federal Regulations
cm	Centimeter
DOE	Department of Energy
DTW	Depth to Water
EMP	Environmental Monitoring Program
EPA	U.S. Environmental Protection Agency
0	
IT ELICE A D	Feet
FUSRAP	Formerly Utilized Sites Remedial Action Program
a	Crom
gol	Gram
gai GWOC	
UWQC	Groundwater Quality Criteria
ha	Hectore
mu	Treetare
IG	Instruction Guides
in.	Inches
kg	Kilogram
km	Kilometers
L	Liters
lb	Pound
LEL	Lowest Effect Level
LNAPL	Light, non-aqueous phase Liquid
	C , prince Liquid
m	Meters
m3	Cubic meters

mg/l	Milligrams per liter		
mi	Miles		
MCL	Maximum Contaminant Level		
MCW	Maywood Chemical Works		
MDA	Minimum Detectable Activity		
MISS	Maywood Interim Storage Site		
ml	Milliliter		
mSv	Millisievert		
mrem	Millirem		
mrem/yr	Millirem per vear		
MSL	Mean Sea Level		
NT/ A			
IN/A	Not Applicable		
NJAC	New Jersey Administrative Code		
NJDEP	New Jersey Department of Environmental Protection		
NE	Not Established		
NESHAPS	Nation Emission Standards for Hazardous Air Pollutants		
NKC	Nuclear Regulatory Commission		
OZ	Ounces		
pCi	Picocurie		
pCi/g	Picocuries per gram		
pCi/l	Picocuries per liter		
ppm	Parts per million		
PQL	Practical Quantitation Limit		
RCRA	Resource Conservation and Recovery Act		
SCC	Soil Cleanup Criteria		
SEL	Severe Effects Level		
SDWA	Safe Drinking Water Act		
SD	Sediment		
SMCL	Secondary Maximum Contaminant Level		
SOR	Sum of Ratios		
SQL	Sample Quantitation Limit		
SW	Surface Water		
TBD	To Be Determined		
TCRA	Time Critical Removal Action		
TETU	Tissue-equivalent Thorma luminascent Desired		
TOR	Top of Riser		
uq	Micrograms		
USACE	U. S. Army Corps of Engineers		
VOC	Volatile Organic Compound		
VP	Vicinity Property		
	- · ·		

WL Working Level

yd3 Cubic yard

.

EXECUTIVE SUMMARY

This report presents and interprets analytical results and measurements obtained from the 2000 Environmental Monitoring Program (EMP) for the Maywood Interim Storage Site (MISS) under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The FY 1998 Energy and Water Appropriations Bill, signed into law on October 13, 1997, transferred management of FUSRAP from the U.S. Department of Energy (DOE) to the U.S. Army Corps of Engineers (USACE). Consistent with USACE policy, U.S. Nuclear Regulatory Commission (NRC) and U. S. Environmental Protection Agency (EPA) criteria for radionuclides have been used to evaluate analytical results. DOE criteria for radionuclides have been retained when the criteria are either agreed to by EPA, are site specific, or are not available from the EPA or NRC.

In the early history of the site (i.e., from 1916 to 1959), Maywood Chemical Works (MCW) extracted radioactive thorium from monazite sand resulting in contamination of the property with low levels of thorium and lower levels of uranium and radium. The EMP for the site includes sampling of air, water, and streambed sediment to aid in the evaluation of potential hazards to the offsite population presented by these materials. This report compares the results taken in the year 2000 of external gamma radiation measurements, radon gas measurements, and samples of environmental media to the historical background conditions and to regulatory and other criteria.

Federal and State regulations and other criteria are used to evaluate concentrations of radioactive constituents and doses at the site. The calculated dose to the maximally exposed individual from direct gamma radiation at the MISS in 2000, based on the measured TETLD results, is 7.15 mrem; which is well below the NRC standard of 100 mrem. Based on TETLD measurements from 1/00 to 1/01, the maximum gamma radiation value obtained (corrected for background, exposure duration, and attenuation) was 674.6 mrem/yr. Measured radon-222 concentrations for 2000 ranged from non-detectable to 0.6 pCi/l, which is well below the 4 pCi/l EPA action level. Radon-220 concentrations ranged from non-detect to a maximum of 3.84 pCi/l, which is also below the EPA action level.

The airborne particulate dose to the hypothetically maximally exposed individual in 2000 was 0.085 mrem/year which is well below the 10 mrem/year standard specified in 40 CFR, Part 61, Subpart H. No radiological parameter exceeded relevant criteria, except as discussed below.

- Sediment samples (collected in October 2000) from one location in the eastern tributary of Lodi Brook (LBSED-1) exceeded the DOE/EPA soil cleanup criteria for radium-226, thorium-228 and thorium-232. The measured concentrations (10.41 pCi/g radium-226, 23.58 pCi/g thorium-228, and 21.48 pCi/g thorium-232) were the highest concentrations measured at the site in 2000. In the absence of regulatory criteria for sediment, the limits established by the DOE/EPA agreement are used to evaluate concentrations of radioactive constituents in shallow streambed sediment. Further downstream at LBSED-6, LBSED-7, and LBSED-8 along Lodi Brook, detected concentrations of all analyzed radionuclides were below the soil cleanup criteria. All sediment samples collected in July 2000 in Lodi Brook had radionuclide concentrations below soil cleanup criteria. All analyzed radionuclides were below the soil cleanup criteria for sediment samples collected in Westerly Brook in both July 2000 and October 2000. Results for 2000 are within the historical range for these radionuclides and confirm the presence of localized contamination in the streambed sediment of the eastern tributary of Lodi Brook.
- Conservative Federal and State drinking water Standards for radiological contaminants were used as criteria to evaluate monitoring results for surface water. Surface water samples collected in October 2000 from the western tributary of Lodi Brook (LBSW-2) and from two locations below Essex Street on Lodi Brook (LBSW-5 and LBSW-7) exceeded criteria for combined radium-226

and radium-228. The measured concentrations ranged from 5.75 pCi/L to 9.25 pCi/L at these locations. Two downstream locations on Westerly Brook (WBSW-1 and WBSW-2) also exceeded the radium criteria. The measured concentrations were 5.1 pCi/L and 5.58 pCi/L, respectively. No surface water samples collected in July 2000 exceeded any radiological criteria on Lodi Brook or on Westerly Brook.

• The same conservative Federal and State drinking water Standards for radiological contaminants were used as criteria to evaluate monitoring results for groundwater. There was one exceedance of the combined radium criteria for groundwater samples collected in 2000. Monitoring well B38W18D, collected near Building 76 had a measured concentration of 19.4 pCi/L for combined radium. There was also one exceedance of the uranium criteria with a measured uranium concentration of 73.48 pCi/L for monitoring well MISS05A. There were six exceedances of the gross alpha criteria with the highest measured concentration of 230 pCi/L for monitoring well B38W18D. All other gross alpha exceedances ranged from 18.9 to 27.0 pCi/L. There were also seven exceedances of the gross beta with the highest measured concentration of 886 pCi/L for monitoring well MISS05B. Results for 2000 are within the historical range for radium, thorium and uranium (gross alpha and gross beta have not been monitored previously).

Conservative Federal and State standards for chemical contamination in soil and water were used as criteria to evaluate monitoring results for streambed sediments, surface water, and groundwater. Some metals exceeded proposed New Jersey Soil cleanup criteria in sediment samples. Some metals exceeded Federal and State standards in surface water. Some metals and volatile organic compounds (VOCs) in groundwater samples exceeded the State and Federal standards:

- Lodi Brook sediment concentrations of arsenic (LBSED-1) and lead (LBSED-7) were above the State proposed soil cleanup criteria at one location each. Arsenic and lead in 1999, were elevated but did not exceed State Criteria. There were no exceedances of the State proposed soil cleanup criteria in Westerly Brook. There were several exceedances of the Lower Effects Level (LEL) for lead, copper, zinc, chromium and nickel in both Lodi Brook and Westerly Brook. Elevated concentration of metals is expected given the generally industrialized nature of the area surrounding the site. Offsite contributors of these metals are likely. Concentrations of heavy metals at upstream and downstream environmental monitoring locations have frequently exceeded the proposed New Jersey soil cleanup criteria. The somewhat sporadic nature of the fluctuations in metal concentrations implies that the contamination is present in localized areas that are distributed during heavy runoff.
- Federal Safe Drinking Water Act (SDWA) maximum contaminant levels (MCLs) and New Jersey Groundwater Quality Standards for Class II A aquifers were used as conservative criteria to evaluate monitoring results for chemical contaminants in surface water. Metals that exceeded both the Federal and State standards in Lodi Brook, include aluminum, chromium and lead. Aluminum also exceeded Federal and State standards in Westerly Brook. Arsenic exceeded State standards in both Lodi Brook and Westerly Brook.
- Metals which exceeded either the SDWA MCLs or New Jersey Groundwater Quality Standards for Class IIA aquifers in at least one groundwater sample include arsenic, chromium, lead, and nickel. These metals were detected in both onsite and offsite wells. These same metals exceeded standards in 1999. Although groundwater at the MISS is not used as a public drinking water supply, State groundwater quality limits and Federal drinking water standards were used as a conservative basis of comparison for chemical concentrations in groundwater.
- The detection of VOCs in groundwater in 2000 is consistent with historical results. The detected VOCs in groundwater at the MISS are tetrachloroethene and its degradation products: trichloroethene, dichloroethenes, and vinyl chloride. VOCs are present in both onsite (primarily in bedrock) and offsite (shallow and bedrock) groundwater. The presence of VOCs in

downgradient monitoring wells B38W14D, B38W14S, B38W15D, MISS01B and MISS07B is due to either groundwater movement or infiltration from Westerly Brook to these wells.

The results described above are comparable to results reported in previous years. No significant changes were observed.

1.0 INTRODUCTION

The Maywood Interim Storage Site (MISS) is located in Bergen County, New Jersey, approximately 20 km (12 mi) northwest of New York City and 21 km (13 mi) northeast of Newark, New Jersey (Figure 1). The Maywood site includes the 4.7-ha (11.7 acres) federally-owned the MISS and over 85 vicinity properties (VPs) in Maywood, Lodi, and Rochelle Park. The site is bordered to the west by State Route 17, to the north by the New York Susquehanna and Western Railroad line, and to the south and east by commercial and industrial properties.

The Maywood Chemical Works (MCW) site was constructed in 1895. During the years 1916 to 1959, MCW extracted radioactive thorium and rare earth metals from monazite sand for production of mantles for gas lanterns. The waste materials generated during this process contained thorium-232 and associated decay products, with lesser amounts of radionuclides in the uranium-238 decay series. Slurry containing waste from these operations was pumped into two earthen-diked retention ponds west of the plant. These ponds were subsequently capped. Some process waste sands were combined with tea and coca leaves from other MCW operations, and then removed from the site and used as mulch and fill material on nearby properties. Additional waste was transported offsite by the Lodi Brook that ran southward along the facility property line and into the Borough of Lodi. Thorium residues in the brook settled onto adjacent properties where buildings and residences were subsequently built. In 1959, the MCW facility was sold to the Stepan Company. The Stepan Company has never processed radioactive material (DOE 1992).

In 1961, the Atomic Energy Commission (AEC) issued a radioactive material license to the Stepan Company for radioactive material storage and remediation of the facility. Between 1966 to 1968, contaminated material was removed from the property west of New Jersey Route 17 and buried in three pits on the Stepan Company site.

In 1983, the Environmental Protection Agency (EPA) added the Maywood site to the National Priorities List and, the following year, cleanup of radioactive contamination at the Maywood Site was assigned to DOE by Congress. To expedite remediation of the Maywood site and its VPs, DOE purchased a 4.7-ha (11.7 acre) portion of the Stepan Company property for use as an interim storage facility for radioactively-contaminated materials (DOE 1992). This property was referred to as the MISS. On October 13, 1997, the FY 1998 Energy and Water Appropriations Bill transferred management of FUSRAP from DOE to USACE. The USACE became a successor to the DOE as of March 17, 1999. FUSRAP activities presently continue with USACE.

1.1 Measured Parameters

The key elements of the 2000 EMP program at the MISS were:

- measurement of external gamma radiation;
- measurement of radon gas concentrations in air (from radon-220 and radon-222);
- measurement of radon flux;
- sampling and analysis of streambed sediment for radioactive constituents and metals;
- sampling and analysis of surface water for radioactive constituents and metals; and
- sampling and analysis of groundwater for radioactive constituents, metals, and volatile organic compounds (VOCs).

1.2 Unit Conversions

The following tables list the units of measurement and appropriate abbreviations used in this document. Conventional units for radioactivity are used because the regulatory guidelines are generally provided in these terms; Système Internationale (SI) units of measurement are used in the discussion of all other parameters. Unit conversions are provided in the text for water level information only.

			- induction inty
Parameter	Conventional Units	SI Units	Conversion Factor
Dose	millirem (mrem)	MilliSievert (mSv)	1 mrem = 0.01 mSv
Activity	picocurie (pCi)	Becquerel (Bq)	1 pCi = 0.037 Bq

Units of Measurement and Conversion Factors - Radioactivity

Units of Measurement and Conversion Factors - Mass, Length, Area, and Volume

Parameter	SI Units	English Units	Conversion Factor
Mass	gram (g)	ounce (oz)	1 g = 0.035 oz
	kilogram (kg)	pound (lb)	1 kg = 2.2046 lb
Length	centimeter (cm)	inch (in.)	1 cm = 0.394 in.
	meter (m)	foot (ft)	1 m = 3.281 ft
	kilometer (km)	mile (mi)	1 km = 0.621 mi
Area	hectare (ha)	Acre	1 ha = 2.47 acres
Volume	Milliliter (mL)	fluid ounce (fl. oz.)	1 mL = 0.0338 fl. oz.
	liter (L)	gallon (gal)	1 L = 0.264 gal
	cubic meter (m ³)	cubic yard (yd ³)	$1 \text{ m}^3 = 1.307 \text{ yd}^3$

2.0 EVALUATION CRITERIA

Regulatory and other criteria used to evaluate the results of the 2000 EMP program at the MISS are summarized below, categorized by media and parameters.

2.1 External Gamma Radiation and Air (Radon Gas and Airborne Particulates)

Criteria for evaluating calculated maximum doses from external gamma radiation and inhalation of radioactive particulates, and measured concentrations of radon gas are as follows:

• Title 10 Code of Federal Regulations Part 20

Dose limits for members of the public are presented in this NRC standard. The primary dose limit is expressed as a total effective dose equivalent. The limit of 100-mrem total effective dose equivalent above background from all sources for a period of a year is specified in this standard. External gamma radiation dose and the calculated doses from all releases are included in the calculation of the total effective dose equivalent. The 100-mrem total effective dose equivalent above background specified in this standard includes all pathways.

• Title 40 Code of Federal Regulations Part 192

The applicable limit for radon in air is provided in this standard as 0.02 Working Levels (WLs), including background. The WL of 0.02 is applied to buildings only, where ventilation and other effective methods could be provided to maintain this limit. EPA guidance documents related to radon in homes refer to an Action Level (AL) of 4pCi/L. Radon concentrations that exceed the AL of 4 pCi/L require mitigation (EPA 1992d).

• Title 40 Code of Federal Regulations Part 61, Subparts H and Q

Section 112 of the Clean Air Act authorized EPA to promulgate the National Emission Standards for Hazardous Air Pollutants (NESHAPs), which is applicable at the MISS under Subpart H (i.e., for non-radon, radioactive constituents) and Subpart Q (for radon emissions). Compliance with Subpart H is verified by applying the EPA-approved Clean Air Act Assessment Package 1988-Personal Computer (CAP88-PC) model-version 2 (EPA 1992a). Until the storage pile was removed in 1996, compliance with subpart Q was verified by semi-annual monitoring for radon-222 flux. Radon flux monitoring was resumed in 2000 for the storage pile generated as a result of remediation and restoration of the Ballod property and operation of the pilot facility.

C:\My Documents\MonReport\ER June 20.doc

Summary of Radiological Criteria Used External Gamma Radiation and Air

Parameter	NRC Standard	EPA Standard or Guideline
Radon-222		4 pCi/L ^a
Radon-220		b
Radon Flux		20 pCi/m ² /s ^g
Radionuclide Emissions	10 mrem/yr. ^c	10 mrem/yr. ^d
(airborne particulates and radioactive gases)		
Total Effective Dose Equivalent	100 mrem/yr. ^f	
(total contribution from all sources ^e)		

^a EPA standard from 40 CFR 192.

^bProvisions applicable to radon-222 shall apply to radon-220 (40CFR192.41, provisions).

^cNRC standard from 10 CFR 20 for particulate and radon-220 emissions only; excludes radon-222.

^d EPA standard from 40 CFR Part 61, Subpart H, for particulate emissions only; excludes radon-222 and radon-220.

^e Contributing sources at the MISS consist of external gamma radiation exposure, radionuclide emissions listed above, and ingested radionuclides in water and soil/sediment.

^fNRC standard from 10 CFR 20; background is excluded in the calculation of dose.

^gEPA standard 40 CFR Part 61, Subpart Q.

2.2 Sediment, Surface Water and Groundwater - Radioactive Constituents

Criteria for evaluating the measured concentrations of radionuclides in sediment, surface water, and groundwater at the MISS are:

• Soil Cleanup Criteria for the Maywood Site

The criteria for radionuclides in soil were agreed to by DOE and EPA in 1994 (DOE 1994a). The radiological soil cleanup criteria for radium and thorium are 5 pCi/g above background regardless of depth at Phase I properties. The EMP does not include analysis of onsite soils; however, because there are no standards for sediment, the soil cleanup criteria are used as a basis for evaluating the analytical results for sediment.

The MISS site-specific soil cleanup criterion for total uranium, developed at Argonne National Laboratory (ANL) for DOE, is 100 pCi/g above background (DOE 1994b). For mixtures of radionuclides, the data are evaluated by the sum-of-ratios method. By this method, the above-background concentration of each of the radioisotopes (radium-226 or thorium-230, whichever is greater; thorium-232 or radium-228, whichever is greater; and total uranium) is divided by its respective criterion values, and the ratios are summed. If the result is greater than 1, the mixture of radionuclides fails the sum-of-ratios (SOR) test and is thereby considered to exceed the soil guidelines. This SOR calculation is used for the purpose of this report and is a conservative approach.

• Title 40 Code of Federal Regulations Part 141

The regulations in 40 CFR Part 141 set maximum permissible levels of organic, inorganic, radiological and microbial contaminants in drinking water by specifying the maximum

contaminant level (MCL) for each. MCLs have been promulgated for total uranium, combined concentrations of radium-226 and radium-228, and gross alpha. Although groundwater at the MISS is not a public drinking water supply, the MCLs for drinking water are considered relevant and appropriate and are used as a conservative basis for evaluating analytical results. New Jersey drinking water regulations [New Jersey Administrative Code (NJAC) 7:10] incorporate, by reference, all the Federal drinking water standards unless a more stringent State standard for a hazardous contaminant has been promulgated. MCLs for drinking water were also used to conservatively evaluate surface water. Sampling was performed for specific radiological contaminants known to exist at the MISS (Gross alpha, Gross Beta, Rad-226/228, Th-230/232, Total Uranium). With respect to Th-230/232, comparisons will be made to the gross alpha MCL of 15 pCi/L. For total uranium, comparisons will be made to the Federal/State MCL (N.J.A.C. 7:9-6) of 30 ug/L (27pCi/L).

New Jersey EPA Drinking Groundwater Parameter Water Sediment Criteria Quality Standard **Standards** Gross Alpha 15 pCi/L 15 pCi/LGross Beta 50 pCi/L^{e} 5 pCi/L^a Radium-226 5 pCi/L^a 5 pCi/g^c 5 pCi/L^a 5 pCi/L^a Radium-228 5 pCi/g^c $15 \text{ pCi/L}^{\text{b}}$ Thorium-230 5 pCi/g 15 pCi/L^{b} Thorium-232 5 pCi/g Total 30 ug/L 30 ug/L $100 \text{ pCi/g}^{\circ}$ Uranium

Summary of Radiological Criteria Used Water and Sediment

^aCurrent SDWA, MCL for the combined concentration of radium-226 and radium-228 in drinking water.

^bComparisons are made to the Gross Alpha criteria of 15 pCi/L.

^cSoil cleanup criteria established by DOE and EPA are used as a basis for evaluating analytical results for sediment. If a mixture of radionuclides is present, then the sum-of--ratios of the concentration of each isotope (radium-226 or thorium-230, whichever is greater; radium-228 or thorium-232, whichever is greater; and uranium) to the allowable limit must be less than one.

^dSite-specific soil cleanup criteria developed by ANL for DOE.

^eIf the gross beta particle activity exceed 50 pCi/L, an analysis of the sample must be performed to identify the major radioactive constituents present and the appropriate organ and total body doses shall be calculated (40 CFR 141.26).

2.3 Sediment - Chemical Parameters

Criteria for evaluating the detected concentrations of chemical parameters in sediment at the MISS are as follows:

• New Jersey Proposed Cleanup Standards for Contaminated Sites

These standards are currently being provided as guidance by the New Jersey Department of Environmental Protection (NJDEP). Because there are no standards for sediment, the New Jersey proposed cleanup standards for residential and nonresidential properties were used as a conservative basis for evaluating results of analyses for metals in sediment (NJDEP 1992).

• Sediment Screening Values for use in the Baseline Ecological Evaluation (BEE) (NJDEP 1998).

To aid in the identification of contaminants of potential ecological concern, site-related sediment data are compared to established screening level criteria in the Baseline Ecological Evaluation (BEE). An exceedance above the Lowest effect Level (LEL) in the BEE indicates a potential risk (not cleanup) to the benthic community and a need for further investigation.

2.4 Groundwater and Surface Water - Chemical Parameters

Although the groundwater at the MISS is not used as a public drinking water supply, Federal standards for drinking water and State groundwater standards are used in this document as a conservative basis for comparison of chemical analytical results.

• Title 40 Code of Federal Regulations Part 141

As noted above, the SDWA is the primary Federal law applicable to the operation of a public water system and the development of drinking water quality standards. The regulations establish MCLs for organic, inorganic and microbial contaminants in drinking water. In some cases, secondary maximum contaminant levels (SMCLs), which are not Federally enforceable (40 CFR 143), are provided as guidelines for the various states. MCLs for drinking water were used to conservatively evaluate groundwater and surface water monitoring results.

• New Jersey Groundwater Quality Criteria - Class IIA

Groundwater in New Jersey is classified according to its hydrogeological characteristics and uses. The primary designated use for Class IIA groundwater is as a potable water supply, although Class IIA uses also include agricultural and industrial water. NJAC 7:9-6 lists groundwater quality criteria (GWQC) and practical quantitation limits (PQLs).

3.0 SAMPLING LOCATIONS AND RATIONALE

Contamination at the MISS is present in the former retention ponds, on the ground surface and in onsite structures. Exposure to members of the public by this radioactively-contaminated material at the MISS is unlikely because of site access restrictions (e.g., fences) and engineering controls (e.g., pile covers). Potential pathways include direct exposure to external gamma radiation; inhalation of radon or radioactively-contaminated particulates in air; and contact with or ingestion of contaminated streambed sediments, surface water, or groundwater. The EMP at the MISS has been developed in order to evaluate and monitor these potential exposure routes through periodic sampling and analysis for radioactive and chemical constituents. Figures 2, 3, 4-A, and 4-B show the EMP sampling locations at the MISS, and indicate the type of media sampled at each location. Table 1 summarizes the 2000 monitoring program at the MISS for external gamma radiation, radon gas, surface water, sediment, and groundwater.

Measurements of external gamma radiation are taken along fenceline locations surrounding the MISS in order to assess potential exposure levels to the public and site workers (Figure 2).

Atmospheric monitoring of radon gas is conducted onsite both in known areas of contamination and at fenceline locations (Figure 2).

Radon flux data was collected for the storage pile at locations shown in Figure 5.

Surface water and sediment sampling includes the analysis for radioactive constituents and metals along Westerly Brook and Lodi Brook (Figure 3, 4-A, and 4-B). Sampling locations along Lodi and Westerly Brook are used to assess both upstream and downstream conditions. Because Lodi Brook receives drainage from areas of known contamination, sampling is also conducted along the eastern and western tributaries of this stream.

Water level measurements and groundwater samples from monitoring wells enable the assessment of groundwater flow patterns and are used to evaluate groundwater quality upgradient and downgradient of the site, in the source area and at the MISS/Stepan Company boundary (Figure 2). Groundwater in both the surficial unconsolidated sediments and bedrock is monitored at the MISS.

4.0 MONITORING METHODOLOGY

Under the MISS EMP conducted in 2000, standard analytical methods approved and published by EPA and the American Society for Testing and Materials (ASTM) were used for chemical (i.e., all non-radiological) analyses. The laboratories conducting the radiological analyses adhere to EPA-approved methods and procedures developed by the Environmental Measurements Laboratory (EML) and ASTM. All laboratories analyzing FUSRAP chemical samples are certified by NJDEP. A detailed listing of the specific procedures and the data quality objectives for the monitoring conducted in 2000 program is provided in the FUSRAP Chemical Data Quality Management Plan (CDQMP).

Environmental monitoring activities at the MISS in 2000 were conducted in accordance with the Chemical Data Quality Management Plan (CDQMP) listed in the following table. The monitoring activities are based on guidelines provided in *RCRA Ground Water Monitoring: Draft Technical Guidance* (EPA 1992b); *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods,* SW-846 (EPA 1992c); and *A Compendium of Superfund Field Operations Methods (EPA 1987).* Groundwater samples were collected using the USEPA Region II memo dated March 20, 1988 titled *Final USEPA Region II Low Stress (Low Flow) Groundwater Sampling Standard Operating Procedure.*

Document Number	Document Title	
SW-MWD-410-0	Groundwater Level Measurements (CDQMP,1999)	
SW-MWD-506-0	SW-MWD-506-0 Decontamination of Field Sampling Equipment at FUSRAP Sites (CDQMP, 1999)	
SW-MWD-302-0 Surface Water Sampling (CDQMP, 1999)		
SW-MWD-301-0 Sediment sampling (CDQMP, 1999)		
191-IG-029	Radon/Thoron and TETLD Exchange (BNI 1993b)	
SW-MWD-304-0	Groundwater Sampling Activities (CDQMP,1999)	

FUSRAP Instruction Guides Used	or Environmental Monitoring Activities
--------------------------------	--

5.0 ANALYTICAL DATA AND INTERPRETATION OF RESULTS

This section presents the data and interpretation of results for the 2000 EMP at the MISS. Data for 2000 are presented in Tables 2 through 13.

In data tables containing results of analyses for radioactive constituents, some results may be expressed as negative numbers. This phenomenon occurs if the average background activity of the laboratory counting instrument exceeds the measured sample activity. In such cases, when this instrumental background activity is subtracted from the sample activity, a negative number results. For the purposes of interpretation, all values below the baseline minimum detectable activity (MDA) are interpreted as having an unknown value between zero and the MDA. Such a value is referred to as a "non-detect."

The most precise analytical method for analysis of total uranium yields results in values expressed as μ g/L and μ g/g for water and sediment samples, respectively. To allow direct comparison of results to relevant standards and the DOE/EPA soil cleanup criteria, the data must be converted to pCi/L and pCi/g units, as appropriate. Correspondence from the NJDEP states that the generic conversion factor for total uranium from μ g/L to pCi/L is 0.9. On this basis, since the new MCL for uranium is expressed as 30 μ g/L, it should also be listed as 27 pCi/L. Only the converted data are provided in the tables and text of this document. The following discussions compare results to historic data presented in Appendices A-1, A-2, A-3, and A-4.

5.1 External Gamma Radiation

External gamma radiation dose rates are measured using tissue-equivalent thermoluminescent dosimeters (TETLDs) in place at the MISS continuously throughout the year. Location of TETLDs are shown on Figure 2. Each TETLD measures a cumulative dose over the period of exposure (approximately one year). When corrected for shelter/absorption and background, and normalized to exactly one year's exposure, these detectors provide a measurement of the annual external gamma radiation dose at that location. TETLD results for the 2000 external gamma radiation dose (i.e., both raw and corrected data) are summarized in Table 2.

The corrected data are used to calculate the external gamma radiation dose to a hypothetical maximally exposed individual. Identification of this hypothetical individual is a function of the fenceline dose, the distance of the individual from the fenceline, and the amount of time that the individual spends at the specific location. The data from the side of the site displaying the highest radiation readings (i.e., location 21) are averaged, and the external gamma dose rate at the distance to individuals at the nearest commercial/industrial facility or residence is then determined. The calculated maximally exposed individual from direct gamma radiation at the MISS in 2000 was 7.15 mrem/yr (Calc. 08575-0207-002).

5.2 Radon-220 and Radon-222

Results of the 2000 monitoring for radon gas (radon-220 and 222) are presented in Table 3; detector locations are shown on Figure 2. At each location, two types of detectors are exposed. One detector type, the RadTrack®, allows both isotopes of radon to enter. The other detector type, the RadTrack®-modified, contains a membrane that specifically excludes radon-220. Radon-222 results are reported as received from the laboratory (i.e., the data are obtained directly from the RadTrack®-modified detectors). Radon-220 concentrations are calculated using the RadTrack® and RadTrack®-modified data.

Radon-222 concentrations for 2000 ranged from non-detect to 0.6 pCi/L; below the EPA AL of 4 pCi/L. Radon-220 concentrations ranged from non-detect to a maximum of 3.84 pCi/L (location 24). While there is undoubtedly a probability that the population of values represented by the 3.84 pCi/l value exceed the action level of 4 pCi/L, this value is the highest of 15 values. The next highest values are 2.44 and 1.82 pCi/L.

As with most low concentrations of gases in an open, unconfined area, the radon emitted from this area dissipates quickly and does not significantly affect the general population, located offsite. The closest residential inhabitants live to the northeast. Locations 32 and 33 (Figure 2) were installed in 1996 in order to examine radon gas concentrations in this area. Radon-220 results at these two locations were well below the EPA AL and were significantly lower than the concentrations detected onsite.

5.3 Radon-222 Flux

Radon flux data was obtained for the storage pile on the MISS to verify compliance with 40 CFR Part 61, Subpart Q. To determine radon flux from a storage pile, charcoal canisters were placed on the pile at 25 ft intervals; the canisters remained on the pile for 24 hours. Radon flux measurements for 2000 are presented in Table 3-A; measurement locations are shown in Figure 5.

Analytical results from measurements obtained at the MISS in January 2001 ranged from non-detect to a maximum of 0.54 pCi/m2/s. All results are well below the 20 pCi/m2/s radon flux standard specified in 40 CFR part 61, Subpart Q.

5.4 Airborne Particulate Dose

To determine the annual effective dose from airborne emissions of radioactive particulates generated during the year 2000 at the MISS and adjacent properties, multiple potential sources were considered including in situ wind erosion at the MISS; the Time Critical Removal Action (TCRA) performed for the swale; the remediation and restoration of the Ballod property; operation of the pilot demonstration facility; and operation of the exhaust system for the soil sample preparation laboratory. The particulate release rates from the in situ wind erosion at the MISS and the soil excavations and transfers associated with the TCRA for the swale, Ballod property remediation, and operation of the pilot facility were calculated using the methodology contained in the "Industrial Wind Erosion" section of EPA's AP-42 (EPA 1995). The emissions of particulate matter from the exhaust system for the soil sample preparation laboratory was determined based on the number of soil samples prepared, the average quantity of particulate emissions resulting from the grinding of the samples, and the removal efficiency of the High Efficiency Particulate Air (HEPA) filter.

The radionuclide emission rates were based on the particulate release rates and the average radionuclide source concentrations obtained from soil measurements for each of the above operations. Specifically, the source concentrations for isotopes of uranium (U-238), radium (Ra-226) and thorium (Th-232) were based on the average values obtained from the measurements of these radionuclides in surface soil samples for the in situ soil (BNI 1987); and average values measured in soil samples for the excavated soils associated with the TCRA for the swale, Ballod property remediation, operation of the pilot demonstration facility, and operation of the exhaust system for the soil sample preparation laboratory. Unknown radionuclide source concentrations were based on the known source concentrations assuming secular equilibrium in the decay chains (Shlein 1992).

Although the emission of radon gas is not considered in this analysis, the daughters of radon generated by the decay of radon-226 in dust offsite is accounted for by the model in the computation of the effective dose equivalents for the various internal and external exposure pathways. The radionuclide emissions for the year from each of the above sources were entered into the "Clean Air Assessment Package-1988 personal computer"(CAP88-PC) program (Version 2.0) to perform the following two calculations:

- 1. Estimation of the hypothetical doses from airborne radioactive particulates at downwind distances corresponding to individuals located at the nearest residences and nearest commercial/industrial facilities as measured from the centers of the above sources. Analyses were performed separately for the TCRA at the swale, Ballod property remediation and operation of the pilot demonstration facility given the differences in receptor locations most affected by each of these areas. The in situ wind erosion and the exhaust hood emissions were found to be negligible and thus, were not included in the modeling analyses. Where individual receptors are affected by more than one emission source, doses caused by those sources were added. The hypothetical doses were based on the CAP88-PC default assumption that the receptor occupies the location 100 percent of the time (i.e., 24 hours per day, 7 days per week, 52 weeks per year). The occupancy factor of 100 percent, although conservative, is considered to be appropriate for a resident. To estimate the dose to an employee working normal hours, an occupancy factor of 24 percent (i.e., 8 hours per day, 5 days per week, 50 weeks per year) was applied to the CAP88-PC result. The hypothetical individual receiving the highest of these calculated doses was then identified as the individual maximally-exposed to the airborne particulate dose. Since this dose is based in part on wind direction and not simply the distance from the site, this hypothetical maximally -exposed individual may not be the same as the person identified in the dose calculation for external gamma radiation (Section 5.1).
- 2. The hypothetical collective dose from airborne radioactive particulates for the population within 80 km of the site was estimated using a population file (generated from county population densities) to determine the number of people in graduated, concentric grid sections radiating outward to 80 km from the center of the site.

The CAP88-PC model determines the maximally exposed individual based on the radionuclide emissions, local meteorological data and other factors. The model can calculate the effective dose equivalent for any receptor of interest (e.g., residences, schools, workers).

The CAP88-PC program computes radionuclide concentrations in air, rates of deposition on ground surfaces, concentrations in food, and intake rates to people from ingestion of food produced in the assessment area. By coupling the output of the atmospheric transport models with terrestrial food chain models from the U.S. Nuclear Regulatory Commission Regulatory Guide 1.109 ("Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I"), the program estimates the radionuclide concentrations in produce, leafy vegetables, milk, and meat consumed by humans. The population distribution array used in the computer model was calculated from known land surrounding the site and 1990 census figures. The program calculates the effective dose equivalent by combining the inhalation and ingestion intake rates and the air and ground surface concentrations with dose conversion factors, using the weighting factors in "Recommendations of the International Commission on Radiological Protection" (ICRP publication 26, 1977). CAP-88 PC calculates dose to the gonads, breast, lungs, red marrow, thyroid, and endosteum in addition to the 50-year effective dose equivalent. Doses can be tabulated as a function of radionuclide, pathway, location, and organ as shown in the calculation presented in Appendix C.

The hypothetical maximally exposed individual in 2000 was an individual with 100 percent occupancy time located 35 m south-southwest of the Ballod Property. The 2000 airborne particulate dose to that individual, considering all site contributions throughout the year, was 0.084 mrem/yr., which is well below the 10 mrem/yr. standard specified in 40 CFR Part 61, Subpart H. The second calculation indicates that the hypothetical airborne particulate collective dose to the population within 80 km of the site was 0.021 person-rem/yr.

5.5 Surface Water and Sediment

Surface water courses and drainage near the MISS include Westerly and Lodi Brooks (Figure 3). Westerly Brook flows through a culvert after it enters the northwestern corner of the MISS. The subsurface culvert redirects Westerly Brook to the west, south and then to the west again, along the northern and western property boundaries. After leaving the MISS, the culvert remains below grade for approximately 335 m before it terminates. At this point, Westerly Brook reemerges and resumes its westward course. Ultimately, Westerly Brook discharges into the Saddle River. Lodi Brook begins on the Sears property in a low marshy area that collects runoff from the Sears and Stepan properties; from there it flows southward under Route 17 remaining underground most of its course except for small sections on both sides of Interstate 80 and a small section along Route 17. From this area, the Brook flows approximately 1.8 miles downstream of the confluence of Westerly Brook and the Saddle River before joining the Saddle River.

Surface water and sediment samples in 2000 were collected in July and October. In July, samples (Tables 4, 5,6) were collected for the EMP (Figure 3); in October, samples (Tables 4-A, 5-A, 6-A, 6-B) were collected for the Groundwater Remedial Investigation (GWRI) program. The GWRI samples were used in the EMP to aid in the evaluation of contaminant migration further downstream from the site.

5.5.1 Surface Water

Sampling locations in July 2000 (Figure 3) included location SWSD002 (downstream of the site along Westerly Brook); SWSD006 and SWSD007 (on the eastern tributary of Lodi Brook); and SWSD0005 (at the confluence of the eastern and western tributaries of Lodi Brook). The western branch of Lodi Brook drains portions of the MISS, Stepan Company, and Sears properties. Location SWSD001, which is not shown in Figure 3, was also sampled (where Lodi Brook meets the Saddle River). Background sampling was conducted in Westerly Brook, upstream (north) of the site, at SWSD003.

Sampling locations in October 2000 (Figures 4-A, 4-B) included two upstream locations (WBSW-4 and WBSW-5), three downstream locations (WBSW-1, WBSW-2, and WBSW-3) in Westerly Brook; two upstream (LBSW-1 and LBSW-2) locations and six downstream locations (LBSW-3 to LBSW-8) along Lodi Brook. At location LBSW-1, surface water sample was not taken because the water was stagnant.

Surface water samples in 2000 were collected and analyzed for metals and radioactive constituents. According to the 1992 Environmental Surveillance Report submitted by BNI, the radiological results for surface water samples were at background levels for the previous five (5) years (1986-1991). Thus, surface water sampling for radionuclides was discontinued at that time. For 2000, the sampling for radiological constituents was resumed (Tables 4, 4-A). All samples were analyzed for gross alpha, gross beta, radium, thorium, and uranium.

Radioactive Constituents

Surface water samples collected in July (Figure 3) at Westerly Brook (SWSD002) and Lodi Brook (SWSD005, SWSD006, and SWSD007) did not exhibit elevated concentrations of the analyzed radionuclides. Results for these locations are comparable to background measurements at SWSD003 (Table 4).

Surface water samples collected in October (Figures 4-A, 4-B) exceeded the State and Federal drinking water standards for either radium-228 or the combined concentrations of radium-226 and radium-228 (Table 4-A) at locations in Lodi Brook (LBSW-2, LBSW-5, LBSW-7), and Westerly Brook (WBSW-1, and WBSW-2). At these locations, radium-228 ranged from 4.75 pCi/L (WBSW-1) to 8.23 pCi/L

C:\My Documents\MonReport\ER June 20.doc

(LBSW-5). The maximum concentration of combined radium-226 and radium-228 was 9.25 pCi/L (LBSW-1). All other radioactive constituents were below the State and Federal standards.

<u>Metals</u>

Federal drinking water and New Jersey groundwater standards are used for evaluating metal concentrations in surface water. Although surface water is not used as a source of potable water, Federal and State drinking water standards are used as a conservative basis for evaluation of the results. These regulatory standards are provided in Table 5 along with detected concentrations of metals in surface water.

Monitoring results revealed elevated concentrations in surface water for iron, manganese and sodium (i.e., above Federal and State Criteria, except for sodium which has only a State Standard). All locations sampled (on Lodi Brook or Westerly Brook) had an exceedance for at least one of these metals and several locations had exceedances of all three metals.

At SWSD007, in the eastern tributary of Lodi Brook, there were exceedances for arsenic (21.7 μ g/L), lead (162 μ g/l), chromium (156 μ g/l) and aluminum (3950 μ g/L). Federal and State Criteria for aluminum (225 μ g/L) were also exceeded in Westerly Brook (WBSW-3) downstream of the MISS. State Criteria for arsenic was exceeded on Lodi Brook at LBSW-2 (9.7 μ g/L); and on Westerly Brook at WBSW-1 (12 μ g/L), WBSW-2 (18.5 μ g/L) and WBSW-3 (48.7 μ g/L).

5.5.2 Sediment

The sediment sampling program was extended in 2000 to include more sample locations downstream of both Westerly and Lodi Brook, to identify the pattern of contaminant migration downstream from MISS. In addition to samples collected in July (Figure 3), sediment samples (Figure 4-A, 4-B) were also collected in October; samples were collected at two upstream locations and two downstream locations in Westerly Brook, and one location upstream and five downstream locations in Lodi Brook. Sediment samples could not be collected (unavailable sediment due to significant flow) at locations LBSED-2 and LBSED-005 in Lodi Brook and WBSED-3 in Westerly Brook.

Radioactive Constituents

- For the sediment samples collected in July 2000 (Figure 3), results for sample locations collected in Westerly Brook (SWSD001, SWSD002) were below soil cleanup. In the eastern tributary of Lodi Brook (SWSD005, SWSD006, SWSD007), results of sample analyses were elevated above background but below the soil cleanup criteria. Sediment sample collected at location SWSD004 was rejected for mishandling.
- For the sediment samples collected in October 2000 (Figure 4-A, 4-B), results for all locations (WBSED-1, WBSED-2, WBSED-5) were below soil cleanup criteria and comparable to background measurements at WBSED-4 (Table 6-A). Detected concentrations of radium-226 were above background at WBSED-2 (2.83 pCi/l), and WBSED-5 (1.74 pCi/L) but below the soil cleanup criteria.
- In the eastern tributary of Lodi Brook (Figure 4-A) results of sample analyses exceeded the soil cleanup criteria for radium-226, thorium-228 and thorium-232 (Table 6A). The highest concentrations (10.41 pCi/g radium-226, 23.58 radium-228, and 21.48 pCi/g thorium-232) were detected at the upstream location (LBSED-1). Further downstream, at location LBSED-3 and LBSED-4, detected concentrations of all radionuclides were above background, but below the soil cleanup criteria for all radionuclide parameters and the sum-of-ratios criterion for mixtures.

• Further downstream at LBSED-6, LBSED-7, and LBSED-8 (Figure 4-B) in Lodi Brook, detected concentrations of all analyzed radionuclides were below the soil cleanup criteria. Detected concentrations of radium-226 at LBSED-7 (2.35 pCi/L), and LBSED-8 (2.51 pCi/L) were above background but below the soil cleanup criteria.

Results for 2000 confirm the presence of localized contamination in the streambed sediment of the eastern tributary of Lodi Brook. Variation of sediment concentrations from one year to another is typical and due to factors, such as local disturbances during and prior to sampling, and the time since the last rainfall event.

<u>Metals</u>

Metals concentrations in sediment are compared to the proposed New Jersey Soil Cleanup Criteria (SCC), and to the Sediment Screening Values in the BEE (NJDEP 1998).

The New Jersey residential, and less stringent nonresidential, proposed soil cleanup standards provide a basis for evaluating metal concentrations in sediment for the mixed land use area around MISS (NJDEP 1992). These proposed standards, as appropriate for the zoning of a given sampling location, are provided in Table 6-B along with the detected concentrations of metals in sediment. Sampling locations WBSED-4 (background), WBSED-5, LBSED-1, LBSED-3, and LBSED-4 are in areas zoned as light industrial (nonresidential), while sampling locations WBSED-1, WBSED-2, LBSED-6, LBSED-7, and LBSED-8 are in areas zoned for residential use.

Only the concentrations of arsenic at location LBSED-1 and lead at location LBSED-7 exceeded the proposed New Jersey Soil Cleanup Criteria. There were no exceedances of the soil cleanup criteria in Westerly Brook. The sampling results for 2000 are summarized below for each sampling location.

- At WBSED-4 and WBSED-5, the nonresidential upstream locations along Westerly Brook, no metal Concentrations exceeded the soil cleanup criteria.
- At WBSED-1 and WBSED-2, the residential downstream locations along Westerly Brook, no metal concentrations exceeded the soil cleanup criteria.
- In the eastern tributary of Lodi Brook at LBSED-1, results of sample analyses exceeded the soil cleanup criteria for arsenic (30.5 mg/kg). The elevated concentration of lead above background was reported but below the soil cleanup criteria. All other metals were below the proposed residential or nonresidential soil cleanup criteria at LBSED-1. Although the upstream location is in an area zoned for nonresidential use, two downstream sampling locations are zoned for residential use; therefore, it is prudent to evaluate upstream data against residential cleanup standards as well.
- At LBSED-3, at the confluence of the eastern and western tributaries of Lodi Brook, no metal concentrations exceeded the proposed residential or non-residential soil guidelines.
- At LBSED-4 and LBSED-6, the downstream locations along Lodi Brook, an elevated concentrations of lead were reported above background but below the soil cleanup criteria. No other metal concentrations exceeded either the proposed residential or nonresidential soil guidelines.
- At LBSED-7, downstream location along Lodi Brook, elevated concentration of lead was reported at 427 mg/kg. Upstream of this sampling location and downstream from MISS, there are multiple potential industrial sources for this metal.
- At LBSED-8 further downstream along Lodi Brook, no metal concentrations exceeded either the proposed residential or nonresidential soil cleanup criteria.

Sediment Screening Values in the Baseline Ecological Evaluation.

To aid in the identification of contaminants of potential ecological concern, site related metal concentrations in sediment are compared to the Lowest Effects Level (LEL) and Severe Effects Level (SEL) concentrations listed in the screening level criteria presented in the "Guidance for Sediment Quality Evaluations" (NJDEP 1998).

Various metal concentrations exceeded the LEL used in the Baseline Ecological Evaluation (BEE) at every sampling location. There were exceedances for lead, copper, zinc, chromium, and nickel in both Lodi Brook and Westerly Brook. However, metal concentrations exceeded SEL concentrations at only three locations, LBSED-1, LBSED-7 and WBSED-4 (Figure 4-A, 4-B).

- At WBSED-4 and WBSED-5 the nonresidential upstream locations along Westerly Brook, copper, lead, and zinc exceeded the LEL. Only copper (210 mg/kg) exceeded SEL at WBSED-4.
- At WBSED-1 and WBSED-2 the residential downstream locations along Westerly Brook, copper, lead, nickel and zinc exceeded the LEL. Non of the metals exceeded SEL.
- At LBSED-1, in the eastern tributary of Lodi Brook upstream of Lodi Brook, all metals (except nickel) exceeded the LEL. Only chromium and lead exceeded the SEL with concentrations of 191 mg/kg and 354 mg/kg, respectively.
- At LBSED-3, at the confluence of the eastern and western tributaries of Lodi Brook, only copper and lead exceeded the LEL with concentrations of 70.9 mg/kg and 33.8 mg/kg, respectively.
- At LBSED-4, LBSED-6, and LBSED-8 downstream locations along Lodi Brook, various metal concentrations exceeded the LEL. However, non-of the metal concentrations exceeded the SEL.
- At LBSED-7, the residential downstream locations along Lodi Brook, nickel exceeded the LEL and the concentrations of copper, lead, and zinc exceeded both the LEL and the SEL.

5.6 Groundwater

The locations of groundwater monitoring wells at the MISS are shown in Figure 2. Background information, descriptions of activities performed under the groundwater monitoring program and monitoring results are discussed below.

5.6.1 Groundwater Flow System

Natural System

Groundwater in the Maywood area occurs in both the bedrock and the overlying unconsolidated sediments. Bedrock is composed of fractured sandstone and shale belonging to the Passaic Formation. Unconsolidated sediments are composed of interbedded sand and clay of glacial origin. Although there is no continuous confining layer present across the Maywood Site, the Remedial Investigation report for the Maywood Site (DOE 1992), indicated that the unconsolidated overburden deposits may be divided into three units that interfinger with the underlying and overlying unit. The lower lithostratigraphic unit is characterized as consisting of stratified, moderately well sorted to well sorted fine grained sands and silts, with varying amounts of organic material. The middle lithostratigraphic unit consists of layers of clayey silt and silty clay with clayey to clean sand. The upper lithostratigraphic unit consists of undifferentiated deposits of sand, silt and gravel. These deposits are poorly to moderately sorted.

Although the fine grained sediments present in the middle lithostratigraphic unit are not continuous across the site, the presence of silts and clays overlying bedrock may be one cause for the higher potentiometric

C:\My Documents\MonReport\ER June 20.doc

surface encountered in the northeastern portion of the site in the vicinity of the bedrock monitoring well B38W05B. Bulk groundwater flow is predominantly horizontal, however, hydraulic head elevations obtained within the Maywood Site indicates that there is a downward component to groundwater flow within the MISS/Stepan property, and an apparent upward component of groundwater flow near groundwater discharge points such as the Saddle River and Lodi Brook. This information is further described in the following sections.

Water Level Measurements

Water level measurements were obtained from 35 monitoring wells (Figure 2) during 2000. Of these 35 monitoring wells, 15 are completed in unconsolidated overburden deposits, while 20 are completed in bedrock. During the synoptic gauging year 2000, five rounds of water levels were obtained. Four of these rounds (January, June, September and November) were associated with the Environmental Monitoring Program, and one round was associated with the Groundwater Remedial Investigation (GWRI). The GWRI gauging round was obtained in March 2000. Water Level Record Sheets for the five synoptic water level gauging rounds are provided in Appendix B. Water levels fluctuate in response to short and long term seasonal changes in precipitation and evapo-transpiration. In the unconsolidated deposits, groundwater levels measured during the five gauging rounds ranged as follows:

Minimum and Maximum Water Level Elevations in Overburden Monitoring Wells Synoptic Gauging Year 2000

	January 19, 2000	March 27, 2000	June 12, 2000	September 29, 2000	November 29, 2000
Minimum GW. Elv. (ft. MSL)	44.32	44.77	39.44	39.00	39.52
Maximum GW. Elv. (ft. MSL)	54.86	55.21	55.06	54.52	54.49
Well Depicting Minimum GW. Elv.	B38W12A	B38W12A	B38W14S	B38W14S	B38W15S
Well Depicting Maximum GW. Elv.	B38W01S	B38W01S	B38W01S	B38W01S	B38W01S

Table 7 presents information regarding the ground surface, top of riser, and the water table elevations for the 15 monitoring wells completed in the unconsolidated deposits. As depicted in Table 7, well B38W14S and the MISS-4A showed the minimum and maximum water level fluctuations that occurred throughout the course of the year 2000 synoptic gauging program. Well B38W14S varied by 0.44 feet, whereas, well MISS-4A varied by 3.65 feet. The maximum and minimum groundwater elevations in the upgradient monitoring well B38W01S occurred in March 2000 and September 2000, respectively.

In the bedrock aquifer, groundwater levels measured during the five gauging rounds ranged as follows:

Minimum and Maximum Water Level Elevations in Bedrock Monitoring Wells Synoptic Gauging Year 2000

C:\My Documents\MonReport\ER June 20.doc

	January 19, 2000	March 27, 2000	June 12, 2000	September 29, 2000	November 29, 2000
Minimum GW. Elv. (ft. MSL)	44.40	44.96	39.79	40.11	40.53
Maximum GW. Elv. (ft. MSL)	59.58	61.32	60.85	58.3	55.94
Well Depicting Minimum GW. Elv.	B38W19S	B38W12B	B38W14D	B38W14D	B38W15D
Well Depicting Maximum GW. Elv.	B38W05B	B38W05B	B38W05B	B38W05B	B38W05B

Table 8 presents information regarding the ground surface, top of riser, and the piezometric surface elevations for the 20 bedrock monitoring wells. As depicted in Table 8, well B38W14D and B38W05B showed the minimum and maximum water level fluctuations that occurred through out the course of the year 2000 synoptic gauging program. Well B38W14D varied by 0.32 feet, whereas, well B38W05B varied by 5.38 feet, respectively. The maximum and minimum groundwater elevations in the upgradient monitoring well B38W05B occurred in March 2000 and November 2000, respectively.

Groundwater Flow System

Potentiometric surface maps for the unconsolidated and bedrock groundwater flow systems during the five synoptic gauging rounds are presented in Figure 6 through 15. Figures 6 through 10 present the groundwater flow for wells completed in the overburden soils, whereas, Figures 11 through 15 presents the potentiometric surface maps for the wells completed in bedrock. Lateral groundwater flow at the MISS is strongly controlled by the morphology of the bedrock surface. The bedrock slopes westward across the site, flattens, and then rises to a subtle ridge along the Saddle River (DOE, 1992). Horizontal hydraulic gradients reflect this configuration and flatten offsite, to the west. A figure depicting the contours of the bedrock surface excerpted from the Remedial Investigation report (DOE, 1992), are presented in Figure 16. Bedrock highs exist in the northeast portion of the site within the Stepan property, these bedrock highs form a local groundwater divide, and control the direction of groundwater flow in the overburden and bedrock aquifers.

During the year 2000 synoptic gauging rounds, the horizontal hydraulic gradient varied spatially but typically ranged from approximately 0.007 ft/ft to 0.015 ft/ft in the unconsolidated overburden aquifer. The direction of groundwater flow in the overburden aquifer is predominantly to the west-southwest as depicted in Figures 6 through 10. As depicted in these figures, the highest hydraulic head was present in upgradient monitoring well B38W01S. This well is located west of the bedrock high.

The hydraulic conductivity of the overburden material was estimated to be between 8.8×10^{-5} cm/s (0.25 ft/day) to 1.4×10^{-4} cm/s (0.4 ft/day). These values exhibit hydraulic conductivity similar to those cited in Freeze and Cherry (1979) for silt to silty sands. Results reported from previous hydraulic conductivity tests conducted on Stepan monitoring wells in 1994 (Stepan, 1994) yielded similar results. The average linear groundwater velocity in the overburden was estimated to range from 0.0125 ft/day to 0.02 ft/day (Stone & Webster, 2000).

The direction of groundwater flow in bedrock is presented in Figures 11 through 15. As depicted in these figures, groundwater flow is dictated by the presence of a groundwater high, which roughly coincides with a bedrock high located in the northeast corner of the site in the vicinity of the Stepan property, as

shown on Figure 16. Figures 11 through 15 depict the groundwater divide, with groundwater flowing predominantly to the west-southwest, with a component of groundwater flow to the northwest.

In the bedrock aquifer, the horizontal hydraulic gradients ranged between 0.010 ft/ft to 0.020 ft/ft during the year 2000 synoptic gauging program. The hydraulic conductivity of the bedrock aquifer was estimated to range between 2.0x10-4 cm/s (0.57 ft/day) and 4.6x10-4 cm/s (1.30 ft/day) based on slug tests performed as part of GWRI activities. These values exhibit hydraulic conductivity similar to those cited in Freeze and Cherry (1979) for consolidated material, i.e., sandstone and shale (Stone & Webster 2000).

As part of GWRI activities, pressure packer tests have been initiated and results from seven boreholes indicate that hydraulic conductivities for seven bedrock borings range from 3.9x10-4 cm/s (1.1 ft/day) to 1.1x10-3 cm/s (3.2 ft/day). The results of these tests including the procedures used to perform the tests will be presented in the Groundwater Remedial Investigation Report. The average linear groundwater velocity in the bedrock aquifer was estimated to range from 0.017 ft/day to 0.4 ft/day based on the findings of Phase I GWRI activities.

Based on the synoptic gauging rounds, information regarding the vertical component of groundwater flow may be inferred. As depicted in Table 9, thirteen well clusters were used to determine if a horizontal or vertical gradient (either upward or downward) exists between overburden and bedrock wells. Of the nine well clusters located within the MISS/Stepan property, the overburden well depicted a greater hydraulic head than the well completed in bedrock at seven clusters. The data contained in Table 9 principally indicates that the MISS/Stepan property represents a recharge area for the unconsolidated/overburden aquifer. The exception to this statement are well clusters B38W24S/24D and B38W25S/25D. At these two well clusters, 3 of the 5 gauging rounds, and 4 of 5 gauging rounds indicated a vertically upward component of groundwater flow, respectively.

As indicated in the Remedial Investigation report (DOE 1992), in the vicinity of B38W25S/25D, fracture zones orientated approximately 90 degrees apart have resulted in the gouging of the bedrock surface. The bedrock surface has been filled with unconsolidated material. Based on hydraulic heads measured in March 1992 (DOE 1992), the presence of sand, silt, and clay overlying the weathered bedrock surface may act as a confining layer, and the hydraulic head in the vicinity of this well cluster, and in the vicinity of B38W24S/24D may be under confining conditions, and thereby responds with an upward gradient during different times of the year.

With respect to monitoring well clusters located off-site, water levels measured in gauging year 2000 indicate that for well clusters B38W12A/12B, B38W14S/14D, and B38W15S/15D, the hydraulic heads in the bedrock aquifer are greater than that in the overburden aquifer, thereby depicting an upward component of groundwater flow from the bedrock to the overburden. These wells are located in proximity to a drainage swale/Lodi Brook (B38W12A/12B), and the Saddle River (B38W14S/14D and B38W15S/15D). The other off-site well cluster, B38W17A/17B, predominantly displayed a horizontal component of groundwater flow, whereby the groundwater flow system is in transition between a recharge and discharge regime.

5.6.2 Groundwater Quality

Field Parameters

Table 10 presents a summary of field parameters measured during annual sampling activities at the MISS. Field parameters include: temperature, pH, oxidation/reduction potential (Eh), turbidity, specific conductance, and dissolved oxygen. These parameters are monitored during the purging of the wells to determine when to commence sample collection. Field procedures require these parameters to reach a

stable condition prior to sampling. Measurements are taken systematically during the purging procedure and are recorded in field logbooks.

Water Quality Parameters

Groundwater quality at the MISS has been evaluated historically for the standard parameters carbonate, bicarbonate, chloride, nitrate, sulfate, and total dissolved solids (TDS). Analyses for these parameters were discontinued after 1996.

5.6.3 Groundwater - Radioactive Constituents

Groundwater samples collected from monitoring wells both onsite and offsite (Figure 2) between June 2000 and July 2000 were analyzed for radioactive constituents. Eleven shallow wells and twelve deep wells are included in the monitoring plan to be sampled for radionuclides, metals, and VOCs. The location of these wells with respect to the MISS are:

• Upgradient wells:

B38W-01S, 02D

• On-site Wells:

MISS-1AA, 1B, 2A, 2B, 5A, 5B, 6A, 7B B38W-19S, 19D, 18D, 24S, 24D, 25S, 25D

• Downgradient Wells:

B38W-14S, 14D, 15S, 15D, 17A, 17B

Three wells were not sampled during the 2000 Environmental Monitoring Program, which was conducted during June and July. At well B38W01S the peristaltic sampling tube was dropped into the well and recovery attempts were unsuccessful. Well B38W19S and MISS05A were dry. These three wells were sampled in November 2000 as part of the Groundwater Remedial Investigation and the data obtained is reported herein for evaluation of groundwater quality. Although groundwater at the site is not used as a source of potable water, Federal and State drinking water standards are used as a conservative basis for evaluation of the results. Results are provided in Table 11 and discussed below.

- On site and downgradient gross alpha results exceeded the Federal and State drinking water standard in 6 wells. The concentrations of gross alpha in these six wells ranged from a minimum of 18.9 pCi/L at well B38W17B to a maximum of 230 pCi/L at B38W18D.
- Gross beta results exceeded the Federal and State standard in seven wells. The concentrations in these seven wells ranged from a minimum of 65.6 pCi/L at B38W25S to a maximum of 365 pCi/L and 886 pCi/L at B38W19D and MISS05B respectively.
- Onsite and downgradient radium-226 results ranged from non-detect at 0.03 pCi/L (MISS01B) and 0.08 pCi/L (MISS02A) to 2.87 pCi/L (B38W18D) near Building 76. Consistent with historical results, detected radium-226 concentrations are significantly less than the State and Federal drinking water standard of 5 pCi/L (for combined Radium-226 and Radium-228), except at B38W18D. The detected concentration of radium-226 at this location was 2.87 pCi/L and the combined radium concentration was 19.4 pCi/L. This was the only location which exceeded the radium standard. Although the SDWA does not apply because groundwater at the MISS is not used as a source of drinking water, combined radium-226 and 228 concentrations are used for evaluation of groundwater quality.

- Radium-228 was detected in five groundwater samples. The reported detected concentrations of radium-228 ranged from 0.74 pCi/L at B38W25D to a maximum of 16.53 pCi/L at B38W18D. The concentration at B38W18D exceeded the Federal and State drinking water for combined radium standard of 5 pCi/L. Thorium-230 was detected in almost all of the groundwater samples. Where it was detected, it ranged from 0.11 pCi/L (B38W14S) to 2.45 pCi/L (MISS05A).
- Thorium-232 was only detected at B38W18D with a concentration of 7.53 pCi/L.
- Total uranium concentrations in groundwater were much less than the SDWA standards with one exception. Total uranium was detected in the MISS05A at a concentration of 73.48 pCi/L. MISS05A is an overburden monitoring well located on-site near former retention ponds and areas of contaminated soils. This result is above the State and Federal drinking water standard of 30 µg/L (27 pCi/L). This result is consistent with historical results and is less than results for 1996 through 1999. Monitoring well B38W18D (bedrock well) located near Building 76 contained 3.08 pCi/L of total uranium. The maximum offsite concentration reported was 7.38 pCi/L from monitoring well B38W15D southwest and downgradient of the site.

5.6.4 Groundwater - Metals

Although groundwater at the MISS is not used as a source for public drinking water, the SDWA MCLs and the New Jersey Groundwater Quality Standards for Class IIA aquifers were used as a basis for comparison for metal analytical data at the MISS. Metals detected in groundwater are reported in Table 12.

Common metals that occur in abundance at the background locations (B38W01S and B38W02D) and in most of the monitoring wells include iron, manganese, aluminum, and sodium. These metals often exceed New Jersey Groundwater Quality Standards for Class IIA aquifers. Results for other metals are discussed below.

In 2000, arsenic concentrations in groundwater exceeded the SDWA MCL (50 μ g/L) in three onsite wells MISS02A (3520 μ g/L), B38W19D (70.3 μ g/L), and MISS07B (52.6 μ g/L). Five other wells; MISS05B (20.5 μ g/L), B38W19S (31.8 μ g/L), B38W25S (13.4 μ g/L), B38W15D, (11.1 μ g/L), and B38W18D (8.2 μ g/L) exceeded the State water quality limit (0.02 μ g/L) with a practical quantitation limit of (8 μ g/L). These wells have historically exhibited comparable concentrations for the metal. Although the measured concentrations from the other wells exceeded the more stringent State groundwater quality criteria, all but those discussed above were less than the practical quantitation limit (PQL), which is published by the State as that concentration that can reasonably be quantified by standard analytical methods. In such cases, where the PQL is higher than the groundwater quality criterion, the New Jersey regulations do not consider a discharge to be causing a contravention of that constituent standard as long as the concentration of the constituent in the affected groundwater is less than the relevant PQL (NJAC 7:9-6.9). Therefore, only at wells mentioned above, was the State limit exceeded.

- Antimony was detected in one well, with a maximum concentration of 37.6 μg/L (B38W17A).
 All other detected concentrations were less than the Federal drinking water limit (6 μg/L) and the State PQL (20 μg/L) which is higher than the GWQC.
- The maximum beryllium concentration reported was detected at well B38W01S (2.4 µg/L) in 2000. All reported beryllium concentrations (B38W24D, B38W18D, and MISS02B) were less than the Federal limit of 4 µg/L. All reported concentrations from the wells ranged from 0.52 to 2.4 µg/L which exceed the State GWQC (0.008 µg/L), however, all results were well below the PQL (20 µg/L) and therefore do not constitute a "contravention of that constituent standard" according to the State regulations.
- Cadmium was detected in various wells with a maximum concentration of 2.9 μg/L at offsite well (B38W14D) and 1.5 g/L at onsite well (MISS06A). All detected concentrations were less than the State standard of 4 μg/L and Federal standard of 5 μg/L.
- Chromium was detected in most of the wells, however only one well had an exceedance of the SDWA standard; 1590 μg/L at B38W17A. All other concentrations were below the State and Federal limits (100 μg/L).
- Lead was detected in 4 wells (B38W01S, B38W17A, MISS02A and MISS06A) with concentrations ranging from 5.8 μg/L (B38W01S) to 13 μg/L (MISS02A). Only one well (B38W02A) exceeded the State PQL of 10 μg/L, but less than the Federal drinking water limit (15 μg/L).
- As in the previous seven years, the highest concentration of nickel was detected in well B38W17A (114 µg/L). This result is consistent with historical data and represents the only result that exceeds the State water quality limit (100 µg/L).

5.6.5 Groundwater - Organic Compounds

Groundwater samples were also analyzed for volatile organic compounds (VOCs). The pattern of groundwater contamination with VOCs in 2000 (Table 13) is consistent with historical results Table (A-4).

The prevalent organic constituents in groundwater at the MISS are tetrachloroethene and its degradation products: trichloroethene, dichloroethenes, and vinyl chloride. As seen historically, at offsite wells B38W14D and B38W14S, and B38W15D some or all of these compounds were detected in concentrations that exceeded the state groundwater quality standards for class IIA waters and Federal drinking water limits. The denser compounds were all detected in higher concentrations in the deep wells.

- Historically tetrachloroethene, trichloroethene, and dichloroethenes were also identified in onsite deep wells MISS01B, and MISS07B, but not in their shallow counterparts.
- Chloroform was identified in wells B38W14D (2 μ g/L) and B38W14S (6 μ g/L) at a concentration above the State groundwater limit of 1 μ g/L but not above the PQL of 6 μ g/L.
- Benzene was identified in three shallow wells with concentrations between 0.1 μg/L to 0.2 μg/L. In the deep wells, benzene was identified in many wells with estimated concentrations between 0.2 μg/L to 1.0 μg/l and exceptionally high concentration at well MISS05B (3500 μg/L).

6.0 CONCLUSIONS

6.1 External Gamma Radiation

The 2000, monitors for gamma radiation (TETLD's) were collected at 14 site locations and 1 offsite background location (Figure 2). Site results, corrected for background, exposure duration, and attenuation, ranged from a minimum equal to background (location 32 and 33) to a maximum of 674.6 mrem/yr (above background) at location 21 (Table 2). At 7 of the 14 locations, measured external gamma radiation exceeded the 100 mrem annual dose limit specified by the U.S. Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC).

At Stepan property locations 30 and 31, south of the lawn, external gamma results were 75.9 and 109.7 mrem/yr, respectively. North of the lawn at locations 32 and 33, results were lower than background. These 4 locations are closest to potential receptors, and when time and distance are factored any doses would likely be less than regulatory limits. The doses measured at these locations represent the potential dose a person could receive if he or she spent the entire year at that location. This scenario is highly implausible; any received doses would be considerably lower than these measured results because the potential receptors would spend much less time at these locations.

Calculated dose from direct gamma exposure at the MISS to a hypothetical maximally-exposed individual residing 50 ft north of the fenceline at station 21 was 7.15 mrem/yr (Calc. 08575-0207-002). Results of gamma radiation monitors are consistent with historical data and all locations will continue to be monitored during 2001.

6.2 Radon-220 and Radon-222

Cumulative radon measurements were collected at 14 site locations and 1 offsite background location (Figure 2, and Table 3). Measured radon-222 concentrations ranged from non-detect to 0.6 pCi/L and were therefore well below the 4 pCi/L action level identified by EPA (EPA 1992d).

Radon-220 concentrations ranged from non-detect to a maximum of 3.84 pCi/L (location 24). While there is undoubtedly a probability that the population of values represented by the 3.84 pCi/L value exceed the action level of 4 pCi/L, this value is the highest of 15 values. The next highest values are 2.44 and 1.82 pCi/L. Results of radon monitoring are consistent with last year results and all locations will continue to be monitored during 2001.

6.3 Radon-222 Flux

Radon flux measurements obtained at MISS are presented at Table 3-A; measurement locations are shown in Figure 5. Measurements of radon flux ranged from non-detect to a maximum of 0.54 pCi/m²/s. All results are well below the 20 pCi/m²/s radon flux standard specified in 40 CFR part 61, Subpart Q. for 2000, radon flux measurements were taken from stock piled material onsite. In the future, radon flux measurements will only be taken when there is long term stockpiling.

6.4 Airborne Particulate Dose

The airborne particulate dose to the hypothetical maximally exposed individual in 2000 was an individual with 100 percent occupancy time located 35 m south-southwest of the Ballod Property. The 2000 airborne particulate dose to that individual, considering all site contributions throughout the year, was

0.084 mrem/yr, which is well below the 10 mrem/yr standard specified in 40 CFR, Part 61, Subpart H. The hypothetical airborne particulate collective dose to the population within 80 km of the site was 0.021 person rem/yr.

The maximum annual effective doses are almost entirely the result of the internal doses from the inhalation of dust particles and the ingestion of plant borne dust. The air immersion in the dust plume and ground surface irradiation from dust deposition pathways contribute a negligible amount to the total dose. The dominant pathway is inhalation as discussed in Appendix C.

6.5 Cumulative Dose from External Gamma Radiation and Airborne Particulate

The location of the maximally exposed individual from direct gamma radiation and the location of the maximally exposed individual from airborne particulates are different. The calculated maximally exposed individual from direct gamma radiation emitted at MISS occurred 50 feet from location 21 which is located on the southern perimeter of the site. The calculated cumulative dose from the external gamma radiation at the above location was 7.15 mrem/yr (see Section 5.1).

The location of the maximally exposed individual as determined by the dispersion modeling performed for the annual NESHAP's compliance report occurred at a facility located adjacent to the remediated portion of the Ballod Property (see Appendix C). The calculated annual effective dose to the maximally exposed resident was 8.42×10^{-2} mrem/yr. The maximum annual effective dose is almost entirely the result of the internal doses received from the inhalation of dust particles with a small contribution from the ingestion of plant borne dust.

Thus, the calculated cumulative dose from external gamma radiation and airborne particulates to a hypothetical maximally exposed individual is essentially the external gamma radiation dose. The calculated cumulative dose from external gamma radiation and airborne particulates of 7.15 mrem/yr is well below the NRC standard of 100 mrem/yr (from all sources, excluding radon).

6.6 Surface Water

Surface water samples in 2000 were collected and analyzed for radioactive constituents (Tables 4, 4-A) and metals (Tables 5, 5-A). Surface water samples collected in October 2000 (Figures 4-A, 4-B) exceeded the Federal and State Standards for either radium-228 or the combined concentrations of radium-226 and radium-228 (Table 4-A) at locationsin Lodi Brook and Westerly Brook. Radium-228 concentrations ranged from 4.75 pCi/L (WBSW-1) to 8.23 pCi/l (LBSW-5). The maximum concentration for combined radium-226 and radium-228 was 9.25 pCi/L (LBSW-5). All other radioactive constituents were below the Federal and State standards. Historically, surface water has not exhibited above-background concentrations of radionuclides during past environmental sampling rounds. Metal concentrations of iron, manganese, and sodium exceeded the State criteria at almost every location. At SWSD007 (Table 5), arsenic (21.7 μ g/L), chromium (156 μ g/l), lead (162 μ g/L) and aluminum (3950 μ g/L) exceeded the State criteria for surface water. Surface water will continue to be monitored during 2001.

6.7 Sediment

Radionuclide concentrations in sediment samples collected in Westerly Brook were within the background concentration and below the State cleanup criteria. In 2000 the concentrations in samples collected upstream at the eastern tributary of Lodi Brook (LBSED-1) exceeded the DOE soil limits for

radium-226, radium-228, and thorium-232. At LBSED-1, the measured concentrations of radium-226 (10.41 pCi/g), thorium-228 (23.58 pCi/g) and thorium-232 (21.48 pCi/g) are the highest measured at the site in 2000. Further downstream at LBSED-3, and LBSED-4, detected concentrations of all radionuclides were above background but below the soil cleanup criteria for radium-226, radium-228, and thorium-232. Further downstream at LBSED-6, LBSED-7, and LBSED-8 detected concentrations of radium-226 were above background but below the soil cleanup criteria. Results for 2000 confirm the presence of localized contamination in the streambed sediment of the eastern tributary of Lodi Brook. Various metal concentrations in sediment samples collected in Westerly Brook and Lodi Brook exceeded the LEL. Some metal concentrations exceeded the SEL at three locations, LBSED-1, LBSED-7 and WBSED-4 (Table 6-B). Sediment will continue to be monitored during 2001.

6.8 Groundwater

Concentrations of gross alpha and gross beta in groundwater exceeded the Federal and State drinking water in many wells. Concentrations of all other radionuclides sampled in groundwater in 2000 (radium-226, radium-228, thorium-230, thorium-232, and total uranium) were well below (except for well MISS05A, and B38W18D) the Federal and State drinking water standards. Total uranium was detected in MISS05A with concentration of 73.48 pCi/L. Radium 228, thorium-228, and thorium-232 were identified in well B38W18D with concentrations of 16.53 pCi/L, 6.89 pCi/l and 7.53 pCi/L respectively. Consistent with historical results, the highest concentration of total uranium was detected in well MISS05A.

Although groundwater at the MISS is not a source of drinking water, State and Federal drinking water standards are used for evaluating groundwater data. Radium concentrations (except well B38W18D) in groundwater were well below the SDWA MCL of 5 pCi/L for combined radium-226 and radium-228.

The presence of arsenic at concentrations above Federal SDWA drinking water standards was identified in three onsite wells; MISS02A ($3520 \mu g/L$), B38W19D ($70.3 \mu g/L$) and MISS07B ($52.6 \mu g/L$). Five other locations exceeded the State limit (PQL). All detected concentrations of beryllium were less than the State PQL and Federal limit. Cadmium was reported in various wells, but all detected concentrations were less than the State and Federal standard. Chromium was detected in most wells, but only one exceeded State and Federal limits. Lead was detected in 4 wells. All detected concentrations were less than the Federal standard but one was above the State standard. Nickel was present above State standards in one off-site well where it has been reported consistently in the past.

Tetrachloroethene and its degradation products were present in monitoring wells both onsite and offsite at concentrations exceeding New Jersey Groundwater Quality standards for Class IIA aquifers and SDWA MCLs. Results for VOCs are within the historical range, no significant increase or decrease in contaminant concentration is observed.

7.0 REFERENCES

S&W CDOMP, 2000. Groundwater Level Measurements, SW-MWD-410-0, (February 2000).

S&W CDQMP, 2000. Surface Water Sampling, SW-MWD-302-0, (February 2000).

S&W CDQMP, 2000. Sediment Sampling, SW-MWD-301-0, (February 2000).

S&W CDQMP, 2000. Groundwater Sampling Activities, SW-MWD-304-0, (February 2000).

S&W CDQMP, 2000. Decontamination of Field sampling Equipment at FUSRAP Sites, (February 2000).

- BNI, 1993b. Instruction Guide for Radon/Thoron and TETLD Exchange, 191-IG-028, Rev. 0 (August 27).
- BNI, 1995a. Normal Uranium Specific Activity, FUSRAP committed calculation 191-CV-005, Rev. 2 (April 18).
- BNI, 1996a. *Environmental Surveillance Plan*, Appendix B1 (Maywood Interim Storage Site), 191-ESP, Rev. 0, Oak Ridge, Tenn. (March 7).
- BNI, 1997a. Calculation of Average Background Concentrations for Environmental Surveillance Data (Radioactive Parameters), FUSRAP committed calculation 191-CV-031, Rev. 0, Oak Ridge, Tenn (January).
- BNI, 1997b. Calculation of the Average Radon-220 Concentration from Environmental Surveillance with Radtrack® Radon Type F and M Detectors for MISS, WISS, and MSP in 1996, FUSRAP committed calculation 191-CV-034 (February).
- BNI, 1987. Characterization Report for the Maywood Interim Storage Site, Maywood, New Jersey, DOE/OR/20722-139, Oak Ridge, TN, June 1987.
- DOE, 1992. Remedial Investigation Report for the Maywood Site, New Jersey, DOE/OR/21949-337, Oak Ridge, Tenn. (December).
- DOE, 1994a. DOE/EPA Soil Cleanup Criteria for the Maywood Site, New Jersey, BNI PDCC No. 115499 (April).
- DOE, 1994b. Uranium Guidelines for the Maywood Site, New Jersey, BNI PDCC No. 115863 (April).
- DOE, 1996. Status of Radon Flux Monitoring (NESHAPs Subpart Q) at Three Department of Energy Sites in EPA Region II, BNI PDCC No. 143772 (July).

C:\My Documents\MonReport\ER June 20.doc

- EPA, 1985. Rapid Assessment Exposure to Particulate Emissions from Surface Contamination Sites, EPA/600/8-85/002 (February).
- EPA, 1987. A Compendium of Superfund Field Operations Methods, EPA/540/P-87/001 (August).
- EPA, 1992a. Users Guide for Version 1.0, CAP88-PC, EPA 402-B-92-001 (March).
- EPA, 1992b. RCRA Groundwater Monitoring: Draft Technical Guidance, EPA/530/R-93/001, Office of Solid Waste (November).
- EPA, 1992c. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846 (September).
- EPA, 1992d. Technical Support Document for the 1992 Citizen's Guide to Radon, EPA-400-R-92-001.
- NJDEP, 1992. New Jersey Proposed Cleanup Standards for Contaminated Sites, NJAC 7:26 (24 NJR 373, as last revised as guidance 4/12/99).
- NJDEP, 1998. Guidance For Sediment Quality Evaluations, (November)
- EPA, 1995. Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, 5th Edition, AP-42
- Shlein, 1992. The Health Physics and Radiological Health Handbook, Revised Edition, Scinta, Inc., Silver Springs, MD 1992

TABLES

Table 1
Maywood Interim Storage Site
2000 Environmental Monitoring Program Summary
External Gamma Radiation and Radon Gas

Air Monitoring												
1		Number of Analyses or Measurements										
		No. of Sample	Sample '	Ship	Contingency	Matrix	Matrix	Total				
Mangurad		Locations	Duplicate	Blank	Sample	Spike '	Spike Duplica'	Analyses				
Parameter	Station	CY Quarter	CY Quarter	CY Quarter	CY Quarter	CY Quarte	r CY Quarter	per				
ratameter	Identification	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1234	Year				
External gamma radiation (TETLDs) Radon-222/Radon-220 Radon-222	4, 5, 10, 12, 19, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33	15 15 15 15 15 15			16 16			64 32 32				

Table 1 (continued) 2000 Environmental Monitoring Program Summary Groundwater Maywood Interim Storage Site

1

		Number of Analyses or Measurements																		
		No.	No. of Sample		Rinsate	Γ	Trip		Sam	ple	Ť	N	Matr	rix	T	Ma	atrix	\neg	Total	
		L	.ocati	ions		Blank		Blank	D	upli	icate		-	Spik	te	Sp	ike [)uplicz	ate	Analyses
Measured	Station	C	Y Qu	artei	r T	CY Quarter	С	Y Ouarter	CY	YO	uarte	r	CY	í Ou	arter		TY C	buarter		ner
Parameter	Identification	1	2	3	4	1 2 3 4	1	2 3 4	1	2	3	4	1	$\frac{\sqrt{2}}{2}$	3 4	$\frac{1}{1}$	$\frac{1}{2}$	3	4	Vear
		FIE	LDN	ИÊА	SU	IREMENTS								-			1 2	5	<u> </u>	1 Cal
Chemical/Physical	MISS01AA, MISS01B, MISS02A,																			
Dissolved oxygen	MISS02B, MISS05A, MISS05B,		23	-						1		1			··			Т))
Eh ^a	MISS06A, MISS07B, MISS07A		23	···																25
Turbidity	B38W02D, B38W14S, B38W14D,		23																	23
Temperature	B38W15S, B38W15D, B38W17A,		23												-		ł			23
Specific conductivity	B38W17B, B38W18D, B38W19S.		23							-										72
pH	B38W19D, B38W24S, B38W24D,		23		••••					·								••••••••••••••••••••••••••••••••••••••		23
	B38W25S, B38W25D, B38W01S		T.T L					I	I	. I	l	I			I	I		1. 1	. I	2.5
	LA	BOR	ATC	DRY	M	EASURMENT	S													
Radiological		_																		
Total uranium			23			10				2		- -				1				35
Thorium-230/232	MISS01AA, MISS01B, MISS02A,		23			10				2							1		-	35
Radium-226/228	MISS02B, MISS05A, MISS05B,		23			10				2										35
Gross Alpha	MISS06A, MISS07B, MISS07A,		23			10				2										35
Gross Beta	B38W02D, B38W14S, B38W14D,		23			10				2										35
Chemical	B38W15S, B38W15D, B38W17A,					· · · · · · · · · · · · · · · · · · ·			,					• • • • •		1		. I	·· I =	
TAL Metals ^b	B38W17B, B38W18D, B38W19S,		23			10				2			2	2			2			39
	B38W19D, B38W24S, B38W24D,		23			10				2			2	2			2			39
Volatile organic compounds ^b	B38W255 B38W25D B38W015		22			10		10		2										10
volutile of guille compounds	B30 W 230, B30 W 23D, B30 W 015	4	23		┶	10		10		2			2				2			49

Table 1 (continued)2000 Environmental Monitoring Program SummarySurface Water and SedimentMaywood Interim Storage Site

Surface Water and Sedim	nent Monitoring	······································						
		1		Number of	A			
					Analyses or Measu	irements	.	
			Rinsate	Trip	Sample	Matrix	Matrix	Total
		Samples	Blank	Blank	Duplicate	Spike	Spike Duplicate	Analyses
Measured	Station	CY Quarter	CY Quarter	CY Quarter	CY Quarter	CY Quarter	CY Quarter	per
Parameter	Identification	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	1 2 3 4	Year
Chamical/Dhysical			FIELD MEASU	REMENTS				
Chemical/rinysical		a	······					
Dissolved oxygen	LB-001, LB-003,	10						10
Eh"	LB-004, LB-006,	10						10
Turbidity	LB-007, LB-008	10						10
Temperature	WB-001, WB-002	10						10
Specific conductivity	WB-004, WB005	10						10
pĤ		10						10
		LA	BORATORY ME	ASURMENTS	<u>han dan dan dan dan dan dan dan dan dan d</u>			
SEDIMENT						<u></u>		
Radiological								
Iso/Total uranium	LB-001, LB-003,	10	2		1			13
Thorium-230/232	LB-004, LB-006,	10	2					13
Radium-226/228	LB-007, LB-008	10	2			· · · · · · · · · · · · · · · · · ·		13
Chemical	WB-001, WB-002		l	••••••••••••••••••••••••••••••••••••••	le e :	and the state of the second	LL	
MET-TAL	WB-004, WB005	10	2		1			15
SURFACE WATER				anna altra a chian a c		and a second more a first of)	
Radiological			· · · · · · · · · · · · · · · · · · ·					
Iso/Total uranium	LB-001, LB-003,	10	2		1			13
Thorium-230/232	LB-004, LB-006,	10	2					13
Radium-226/228	LB-007, LB-008	10	2					13
Gross Alpha	WB-001, WB-002	10	2		1			13
Gross Beta	WB-004, WB005	10	2		1			13
Chemical		10	2		1			13
MET-TAL		10	2		1	1	1	15

^aOxidation/reduction potential (Eh).

١

^b See Table 14 for a comprehensive list of metals.

Table 1 (continued)2000 Environmental Monitoring Program SummarySurface Water and SedimentMaywood Interim Storage Site

Surface Water and Sedin	nent Monitoring										
	Number of Analyses or Measurements										
			Rinsate	Trin	Analyses of Meast		T				
		Sampler	Diante	Inp	Sample	Matrix	Matrix	Total			
Measured	Station	CV Quarter		Blank	Duplicate	Spike	Spike Duplicate	Analyses			
Parameter	Identification	1 2 3 4		CY Quarter	CY Quarter	CY Quarter	CY Quarter	per			
			FIELD MEASU	REMENTS	1 2 3 4		1 2 3 4	Year			
Chemical/Physical											
Dissolved oxygen	SWSD002	5			l	·····	·····				
Ehª	SWSD003	5						5			
Turbidity	SWSD005	5			••••			5			
Temperature	SWSD006	5						5			
Specific conductivity	SWSD007	5						5			
pH		5				┟╼┈╌╿╌╌╌╄╼╾╌╀╶╍╌╴		5			
		LA	BORATORY ME	ASURMENTS							
SEDIMENT											
Radiological				······································							
Iso/Total uranium	SWSD002	5	1		1						
Thorium-230/232	SWSD003	5	1	· · · · · · · · · · · · · · · · · · ·	1		·	1			
Radium-226/228	SWSD005	5	1					7			
Chemical	SWSD006	· · · · · · · · · · · · · · · · · · ·		······	······	lllll	iiii				
MET-TAL	SWSD007	5	1		1	1					
SURFACE WATER		<u>Land</u>	kk .					9			
Radiological											
Iso/Total uranium	SWSD002	5	1		· · · · · · · · · · · · · · · · · · ·						
Thorium-230/232	SWSD003	5						7			
Radium-226/228	SWSD005	5									
Gross Alpha	SWSD006	5	1								
Gross Beta	SWSD007	5	1		1						
Chemical MET TAI		5	1	erne dere metromoniker i	1						
MCI-IAL		5			1		1	9			

^aOxidation/reduction potential (Eh).

- - - A

^b See Table 14 for a comprehensive list of metals.

1/26/2	2000 t	o 7/25/2000	FETLD^a	1/26/200	0 to 1/26/2001	FETLD^a
Monitori	ing	Readings	Corrected ^c	Monitoring	Readings	Corrected ^c
Location	Ъ	(mrem)	(mrem/yr)	Location ^b	(mrem)	(mrem/yr)
MISS	4	75.6	87.6	4	148.0	85.7
Perimeter		75.8	88.0		143.6	80.9
	5	76.2	88.9	5	149.2	86.9
		72.4	80.6		144.6	82
	10	116.0	175.2	10	234.0	177.9
		120.8	185.6		238.4	182.6
	12	65.2	65.2	12	122.4	58.2
		70.8	77.2		123.2	59.1
	20	44.2	19.5	20	88.0	21.3
		50.2	32.5		93.2	26.9
	21	290.4	553.2	21	697.4	674.6
		316.4	609.6		652.2	626.2
	22	83.4	104.5	22	165.6	104.5
		92.6	124.4		157.2	95.5
	23	74.4	85.0	23	145.8	83.3
		79.8	96.7		164.6	103.5
	24	232.6	427.9	24	336.4	287.6
		187.0	329.1		341.2	292.8
	25	309.6	594.8	25	678.0	653.9
		307.2	589.6		651.6	625.5
	30	70.2	75.9	30	115.6	50.9
		70.2	75.9		115.4	50.7
	31	82.8	103.2	31	157.6	95.9
		85.8	109.7		154.6	92.7
	32	35.0	- 0.4	32	60.4	-8.3
		33.6	- 3.5		59.8	-8.9
	33	38.2	6.5	33	64.8	-3.5
		36.4	2.6		66.8	-1.4
Background	19	36.0	78.0	19	68.6	73.5
		34.4	74.6		67.6	72.5

Table 22000 External Gamma Radiation Dose RatesMaywood Interim Storage Site

^a TETLD = Tissue-equivalent thermoluminescent dosimeter. There are two TETLDs per station.

^b Monitoring locations are shown on Figure 2.

^c All TETLD readings are corrected for shelter/absorption factor (s/a = 1.075) and are normalized to exactly one year's exposure. Average corrected background is then subtracted from all other corrected readings.

Table 32000 Radon Gas ConcentrationsMaywood Interim Storage Site

		Aver Concent	age Daily ration (pCi/L)	Averag Concentra	ge Daily tion (pCi/L)
Мо	nitoring	01/26/200	0 to 07/25/2000	07/25/99 to	01/26/2001
Lo	cation ^a	Radon-220 ^b	Radon-222 ^c	Radon-220 ^b	Radon-222 ^c
MISS perimeter	r 4	0.34	0.3	2.44	0.2
	5	0.40	0.3	1.16	0.3
	10	0.33	0.2	0.56	0.2
	12	0.83	0.3	1.29	0.3
	20	0.61	0.2	0.62	0.2
	21	1.07	0.6	1.40	0.2
Duplicate ^d	21	1.89	0.2	1.60	0.2*
	22	0.05	0.2	0.00	0.2
	23	0.71	0.2	1.02	0.3
	24	1.85	0.2*	3.84	0.3
	25	0.44	0.2	1.02	0.2*
	30	0.31	0.4	0.58	0.3
	31	1.97	0.2	1.82	0.2
	32	0.2*	0.2*	0.00	0.2
	33	0.2*	0.2*	0.00	0.2
Background	19	0.2*	0.2*	0.23	0.2*

(*) Indicates detection limit is reported. Actual result is less than this value.

^a Monitoring locations are shown on Figure 2.

^b Radon-220 gas concentrations are calculated according to the method outlined in FUSRAP committed calculation 191-CV-028, Rev. 1, using data from RadTrack® and RadTack®-modified detectors.

^c The EPA Action Level for radon-222 is 4.0 pCi/L and assumes that radon 220 is present and in equilibrium, 40 CFR 192 (October 1999).

^d A quality control duplicate is collected at the same time and location, and is analyzed by the same method in order to evaluate precision in sampling and analysis.

Table 3-A
2000 Radon Flux Monitoring Results
Maywood Interim Storage site

Sample ID*	Date Collected	Date Analvzed	~ Analvte	Result pCi/m2s		Frror	MDA ^b nCi/m2s
RC-1	01/24/2001	01/25/2001	RN-222	0.049	÷	0.036	0.077
RC-10	01/24/2001	01/25/2001	RN-222	0.137	- +	0.047	0 120
RC-10-DUP	01/24/2001	01/25/2001	RN-222	0.118	+	0.025	0.041
RC-11	01/24/2001	01/25/2001	RN-222	0.055	+	0.041	0 107
RC-12	01/24/2001	01/25/2001	RN-222	0.098	+	0.055	0.147
RC-13	01/24/2001	01/25/2001	RN-222	0.061	±	0.030	0.081
RC-14	01/24/2001	01/25/2001	RN-222	0.059	±	0.045	0.001
RC-15	01/24/2001	01/25/2001	RN-222	0.073	±	0.034	0.087
RC-16	01/24/2001	01/25/2001	RN-222	0.126	±	0.057	0.150
RC-17	01/24/2001	01/25/2001	RN-222	0.034	±	0.025	0.069
RC-18	01/24/2001	01/25/2001	RN-222	0.039	±	0.042	0.106
RC-19	01/24/2001	01/25/2001	RN-222	0.085	±	0.039	0.095
RC-2	01/24/2001	01/25/2001	RN-222	0.103	±	0.046	0 109
RC-20	01/24/2001	01/25/2001	RN-222	0.519	±	0.078	0.055
RC-20-DUP	01/24/2001	01/25/2001	RN-222	0.541	±	0.079	0.092
RC-21	01/24/2001	01/25/2001	RN-222	0.085	±	0.041	0.094
RC-22	01/24/2001	01/25/2001	RN-222	0.075	±	0.046	0.123
RC-23	01/24/2001	01/25/2001	RN-222	0.063	±	0.030	0.078
RC-24	01/24/2001	01/25/2001	RN-222	0.063	±	0.048	0.130
RC-25	01/24/2001	01/25/2001	RN-222	0.082	±	0.049	0.096
RC-26	01/24/2001	01/25/2001	RN-222	0.105	±	0.069	0.154
RC-27	01/24/2001	01/25/2001	RN-222	0.051	±	0.031	0.074
RC-28	01/24/2001	01/25/2001	RN-222	0.040	±	0.034	0.096
RC-29	01/24/2001	01/25/2001	RN-222	-0.003	±	0.029	0.057
RC-3	01/24/2001	01/25/2001	RN-222	0.080	±	0.050	0.133
RC-30	01/24/2001	01/25/2001	RN-222	0.045	±	0.036	0.101
RC-30-DUP	01/24/2001	01/25/2001	RN-222	0.061	±	0.044	0.117
RC-31	01/24/2001	01/25/2001	RN-222	0.084	±	0.040	0.097
RC-4	01/24/2001	01/25/2001	RN-222	0.115	±	0.050	0.113
RC-5	01/24/2001	01/25/2001	RN-222	0.083	±	0.048	0.129
RC-6	01/24/2001	01/25/2001	RN-222	0.111	±	0.048	0.111
RC-7	01/24/2001	01/25/2001	RN-222	0.061	±	0.043	0.116
RC-8	01/24/2001	01/25/2001	RN-222	0.142	±	0.028	0.049
RC-9	01/24/2001	01/25/2001	RN-222	0.083	±	0.048	0.122

^aAll monitoring locations for the storage pile are shown in figure 5. ^bMinimum detectable Activity (MDA).

2000 Radon Flux Results.xls06/25/2001

1

ī

								State/Federal ^a
Sampling	Date	Analyte	Result ^a		Error	S&W	MDA ^c	Standards
Location	Collected		(pCi/L)			Flag ^b	(pCi/L)	(pCi/L)
SWSD001	24-Jul-00	Gross Alpha	-2.2	±	4.4	U	9.2	15
	24-Jul-00	Gross Beta	8.7	±	6.5	U	11	50
	24-Jul-00	Radium 226	0.01	±	0.08	U	0.15	5
	24-Jul-00	Radium 228	0.15	±	0.35	U	0.6	5
	24-Jul-00	Thorium 228	-0.01	±	0.06	U	0.21	
	24-Jul-00	Thorium 230	0.07	±	0.11	U	0.2	
	24-Jul-00	Thorium 232	0.02	±	0.05	U	0.15	
	24-Jul-00	Total Thorium	0.08					15
	24-Jul-00	Uranium 234	0.54	±	0.24	J	0.05	
	24-Jul-00	Uranium 235	0	±	0.01	U	0.12	
	24-Jul-00	Uranium 238	0.4	±	0.2	J	0.1	
	24-Jul-00	Total uranium						27
SWSD002	24-Jul-00	Gross Alpha	1	±	3.4	U	6.3	15
	24-Jul-00	Gross Beta	16.7	±	5		7.1	50
	24-Jul-00	Radium 226		±	0.73	R	0.14	5
	24-Jul-00	Radium 228	0.66	±	0.4	J	0.64	5
	24-Jul-00	Thorium 228	0.03	±	0.1	U	0.23	
	24-Jul-00	Thorium 230	0.13	±	0.13	J	0.09	
	24-Jul-00	Thorium 232	0.04	±	0.09	U	0.22	
	24-Jul-00	Total Thorium	0.2					15
	24-Jul-00	Uranium 234	0.6	±	0.26	J	0.1	
	24-Jul-00	Uranium 235	0.04	±	0.08	U	0.15	
	24-Jul-00	Uranium 238	0.24	±	0.16	J	0.14	
	24-Jul-00	Total uranium	0.88					27
SWSD003	20-Jul-00	Gross Alpha	3	±	2		2.6	15
	20-Jul-00	Gross Beta	4.7	±	3.6	U	5.8	50
	20-Jul-00	Radium 226	0.02	±	0.1	U	0.19	5
	20-Jul-00	Radium 228	0.03	±	0.31	U	0.54	5
	20-Jul-00	Thorium 228	-0.05	±	0.1	U	0.36	
	20-Jul-00	Thorium 230	0.12	±	0.13	J	0.08	
	20-Jul-00	Thorium 232	-0.02	±	0.02	U	0.2	
	20-Jul-00	Total Thorium	0.05					15
	20-Jul-00	Uranium 234	0.28	±	0.19	J	0.16	
	20-Jul-00	Uranium 235	0.07	±	0.1	UJ	0.1	
	20-Jul-00	Uranium 238	0.28	±	0.19	J	0.14	
	20-Jul-00	Total uranium	0.63					27

Table 42000 Surface water Analytical Results - Radioactive ConstituentsMaywood Interim Storage Site-July 2000

								State/Federal ^a
Sampling	Date	Analyte	Result ^a		Error	S&W	MDA ^c	Standards
Location	Collected		(pCi/L)			Flag ^b	(pCi/L)	(pCi/L)
SWSD005	20-Jul-00	Gross Alpha	3.1	±	3	U	4.8	15
	20-Jul-00	Gross Beta	8.7	±	4.2		6.5	50
	20-Jul-00	Radium 226	0.09	±	0.11	U	0.18	5
	20-Jul-00	Radium 228	0.11	±	0.38	U	0.66	5
	20-Jul-00	Thorium 228	0.09	±	0.22	U	0.49	
	20-Jul-00	Thorium 230	0.3	±	0.25	J	0.26	
	20-Jul-00	Thorium 232	0	±	0	U	0.1	
	20-Jul-00	Total Thorium	0.39					15
	20-Jul-00	Uranium 234	0.35	±	0.19	J	0.06	
	20-Jul-00	Uranium 235	0	±	0	U	0.07	
	20-Jul-00	Uranium 238	0.15	±	0.12	J	0.06	
	20-Jul-00	Total uranium	0.5					27
SWSD006	20-Jul-00	Gross Alpha	11.7	±	4.2		4.5	15
	20-Jul-00	Gross Beta	7.5	±	5	U	8	50
	20-Jul-00	Radium 226	-1.25	±	0.26	R	0.2	5
	20-Jul-00	Radium 228	1.14	±	0.4		0.58	5
	20-Jul-00	Thorium 228	0.86	±	0.4	J	0.34	
	20-Jul-00	Thorium 230	0.55	±	0.29	J	0.18	
	20-Jul-00	Thorium 232	1	±	0.42		0.08	
	20-Jul-00	Total Thorium	2.41					15
	20-Jul-00	Uranium 234	0.81	±	0.35	J	0.18	
	20-Jul-00	Uranium 235	0.04	±	0.07	UJ	0.1	
	20-Jul-00	Uranium 238	0.99	±	0.39	J	0.14	
	20-Jul-00	Total uranium	1.84					27
SWSD007	20-Jul-00	Gross Alpha	9.3	±	4		4.6	15
	20-Jul-00	Gross Beta	12	±	5.1		7.7	50
	20-Jul-00	Radium 226	-0.71	±	0.2	R	0.12	5
	20-Jul-00	Radium 228	0.6	±	0.34	J	0.54	5
	20-Jul-00	Thorium 228	0.51	±	0.32	J	0.33	
	20-Jul-00	Thorium 230	0.55	±	0.32	J	0.23	
	20-Jul-00	Thorium 232	0.28	±	0.21	J	0.17	
	20-Jul-00	Total Thorium	1.34					15
	20-Jul-00	Uranium 234	0.83	±	0.35	J	0.07	
	20-Jul-00	Uranium 235	0.03	±	0.07	UJ	0.09	
	20-Jul-00	Uranium 238	0.88	±	0.36	J	0.07	
	20-Jul-00 (Total uranium	1.74					27

Table 42000 Surface water Analytical Results - Radioactive ConstituentsMaywood Interim Storage Site-July 2000

Table 42000 Surface water Analytical Results - Radioactive ConstituentsMaywood Interim Storage Site-July 2000

							State/Federal ^d
Sampling	Date	Analyte	Result ^a	Error	S&W	MDA ^c	Standards
Location	Collected		(pCi/L)		Flag ^b	(pCi/L)	(pCi/L)

^aResults reported with ± radiological error equal at 2 sigma (95% confidence level),

Shaded results indicate reported value exceeds criteria.

^b Stone & Webster data qualifier flags:

U = The analyte was not detected.

J = Reported as an estimated value.

R= Rejected by validation.

^c Minimum Detectable Activity (MDA)

^d New Jersey Groundwater Standards (NJAC 7:9-6).

	2000 5	Maywood I	Interim Sto	rage Site-	adioactive C October 200	onstituent: 0	S
Sampling Location	Date Collected	Analyte	Result ^a pCi/L	Error	Qualifier S&W⁵	MDA ^c pCi/L	State/Federal ^d Standards pCi/L
Surface wa	iter samples c	ollected in Lod	li Brook:			•	
LBSW-2	19-Oct-00	Radium-226	0.96	0.51	J	0.71	5
		Radium-228	2.85	1.60	J	1.68	5
		Thorium-228	1.58	0.61		0.32	
		Thorium-230	0.84	0.42	J	0.25	
		Thorium-232	0.16	0.19	U	0.32	
		Total thorium	2.58				15
		Uranium-234	0.8	0.65	.1	0 92	

Table 4-A
2000 Surface Water Analytical Results - Radioactive Constituents
Maywood Interim Storage Site-October 2000

Radium-228 2.85 1.60 J 1.68 5 Thorium-228 1.58 0.61 0.32 Thorium-230 0.84 0.42 J 0.25 Thorium-232 0.16 0.19 U 0.32 Total thorium 2.58 15 15 Uranium-234 0.8 0.65 J 0.92 Uranium-235 0.23 0.41 U 0.85 Uranium-238 0.69 0.58 J 0.78				0.01	v	0.71	5
Thorium-228 1.58 0.61 0.32 Thorium-230 0.84 0.42 J 0.25 Thorium-232 0.16 0.19 U 0.32 Total thorium 2.58 15 Uranium-234 0.8 0.65 J 0.92 Uranium-235 0.23 0.41 U 0.85 Uranium-238 0.69 0.58 J 0.78		Radium-228	2.85	1.60	J	1.68	5
Thorium-230 0.84 0.42 J 0.25 Thorium-232 0.16 0.19 U 0.32 Total thorium 2.58 15 Uranium-234 0.8 0.65 J 0.92 Uranium-235 0.23 0.41 U 0.85 Uranium-238 0.69 0.58 J 0.78		Thorium-228	1.58	0.61		0.32	°,
Thorium-232 0.16 0.19 U 0.32 Total thorium 2.58 15 Uranium-234 0.8 0.65 J 0.92 Uranium-235 0.23 0.41 U 0.85 Uranium-238 0.69 0.58 J 0.78		Thorium-230	0.84	0.42	J	0.25	
Total thorium 2.58 15 Uranium-234 0.8 0.65 J 0.92 Uranium-235 0.23 0.41 U 0.85 Uranium-238 0.69 0.58 J 0.78 Total uranium 1.72 0.78 0.7		Thorium-232	0.16	0.19	Ŭ	0.32	
Uranium-234 0.8 0.65 J 0.92 Uranium-235 0.23 0.41 U 0.85 Uranium-238 0.69 0.58 J 0.78 Total uranium 1.72		Total thorium	2.58				15
Uranium-235 0.23 0.41 U 0.85 Uranium-238 0.69 0.58 J 0.78 Total uranium 1.72		Uranium-234	0.8	0.65	J	0.92	
Uranium-238 0.69 0.58 J 0.78		Uranium-235	0.23	0.41	Ū	0.85	
Total uranium 172		Uranium-238	0.69	0.58	J	0.78	
		Total uranium	1.72				27
LBSW-2 23-Oct-00 Radium-226 0.51 0.71 5	LBSW-2 23-Oct-0	0 Radium-226	, 0.96	0.51		0.71	5
Duplicate ^e Radium-228 4,79 1.92 J 1.95 5	Duplicate ^e	Radium-228	4.79	1.92	J	1.95	5
Thorium-228 1.58 0.61 0.32		Thorium-228	1.58	0.61		0.32	-
Thorium-230 0.84 0.42 0.25		Thorium-230	0.84	0.42		0.25	
Thorium-232 0.16 0.19 0.32		Thorium-232	0.16	0.19		0.32	
Total thorium 2.58 15		Total thorium	2.58				15
Uranium-234 0.8 0.65 0.92		Uranium-234	0.8	0.65		0.92	
Uranium-235 0.23 0.41 0.85		Uranium-235	0.23	0.41		0.85	
Uranium-238 0.69 0.58 0.78		Uranium-238	0.69	0.58		0.78	
Total uranium 1.72 27		Total uranium	1.72				27
LBSW-3 23-Oct-00 Radium-226 0.7 0.5 J 1.02 5	LBSW-3 23-Oct-0	0 Radium-226	0.7	0.5	J	1.02	5
Radium-228 4.8 J 1.92		Radium-228	4.8		J	1.92	
Thorium-228 0.0 0.2 U 0.46 5		Thorium-228	0.0	0.2	U	0.46	5
Thorium-230 2.1 0.8 J 0.42		Thorium-230	2.1	0.8	J	0.42	
Thorium-232 0.3 0.3 J 0.5		Thorium-232	0.3	0.3	J	0.5	
Total thorium 2.45 15		Total thorium	2.45				15
Uranium-234 1.2 0.5 J 0.4		Uranium-234	1.2	0.5	J	0.4	
Uranium-235 0.1 0.1 U 0.35		Uranium-235	0.1	0.1	U	0.35	
Uranium-238 0.4 0.3 J 0.31		Uranium-238	0.4	0.3	J	0.31	
Total uranium 1.68 27		Total uranium	1.68				27
LBSW-4 19-Oct-00 Radium-226 1.76 0.69 J 0.69 5	LBSW-4 19-Oct-0	0 Radium-226	1.76	0.69	J	0.69	5
Radium-228 3.04 1.33 J 1.36 5		Radium-228	3.04	1.33	J	1.36	5
Thorium-228 0.24 0.32 U 0.61		Thorium-228	0.24	0.32	U	0.61	
Thorium-230 0.51 0.44 J 0.69		Thorium-230	0.51	0.44	J	0.69	
Thorium-232 0.41 0.34 0.4		Thorium-232	0.41	0.34		0.4	
Total thorium 1.16 15		Total thorium	1.16				15
Uranium-234 2.08 1.15 J 0.68		Uranium-234	2.08	1.15	J	0.68	
Uranium-235 0.72 0.71 J 0.83		Uranium-235	0.72	0.71	J	0.83	
Uranium-238 0.49 0.58 U 0.92		Uranium-238	0.49	0.58	U	0.92	
Total uranium 3.29 27		Total uranium	3.29				27

							State/Federal ^d
Sampling	Date	Analyte	Result ^a	Error	Qualifier	MDA ^c	Standards
Location	Collected		pCi/L		S&W ^b	pCi/L	pCi/L
LBSW-4	19-Oct-00	Radium-226	0.84	0.53		0.76	5
Duplicate ^e		Radium-228	1.52	1.65	U	1.77	5
		Thorium-228	0.18	0.24	J	0.4	-
		Thorium-230	0.83	0.51	U	0.58	
		Thorium-232	0.23	0.29		0.53	
		Total thorium	1.24		J		15
		Uranium-234	0.83	0.46	U	0.53	
		Uranium-235	0.04	0.12	J	0.3	
		Uranium-238	0.29	0.25		0.3	
		Total uranium	1.16				27
LBSW-5	19-Oct-00	Radium-226	1.02	0.51	J	0.58	5
		Radium-228	8.23	2.31		2.28	5
		Thorium-228	0.12	0.22	U	0.45	
		Thorium-230	0.23	0.29	U	0.52	
		Thorium-232	0.19	0.24	U	0.42	
		Total thorium	0.54				15
		Uranium-234	1	0.49	J	0.43	
		Uranium-235	0.32	0.30	U	0.4	
		Uranium-238	0.3	0.26	J	0.34	
		Total uranium	1.62				27
LBSW-6	19-Oct-00	Radium-226	1.08	0.62	J	1.09	5
		Radium-228	2.91	1.60	J	1.67	5
		Thorium-228	0.14	0.23	U	0.46	
		Thorium-230	0.87	0.49	J	0.49	
		Thorium-232	0.09	0.25	U	0.61	
		Total thorium	1.1				15
		Uranium-234	0.73	0.39	J	0.36	
		Uranium-235	0.04	0.11	U	0.24	
		Uranium-238	0.36	0.26		0.23	
		Total uranium	<u> </u>				27
LBSW-7	19-Oct-00	Radium-226	0.32	0.28	J	0.5	5
		Radium-228	5.74	1.91	J	1.88	5
		Thorium-228	0.33	0.30	J	0.37	
		Thorium-230	0.36	0.33	J	0.51	
		Thorium-232	0.24	0.24	UJ	0.32	
		Total thorium	0.93				15
		Uranium-234	0.59	0.34	J	0.29	
		Uranium-235	0.24	0.02	U	0.24	
		Uranium-238	0.35	0.26		0.25	
		Total uranium	1.18				27

Table 4-A2000 Surface Water Analytical Results - Radioactive ConstituentsMaywood Interim Storage Site-October 2000

Table 4-A
2000 Surface Water Analytical Results - Radioactive Constituents
Maywood Interim Storage Site-October 2000

		2		0			State/Federal ^d
Sampling	Date	Analyte	Result ^a	Error	Qualifier	MDAc	Standards
Location	Collected	, mary to	nCi/l	2.1.01	S&W ^b	nCi/l	nCi/l
		Bodium 226		0.50			pow_
LB2M-9	19-Oct-00	Radium-220	0.00	1.27	J	0.85	5
		Therium 220	2.2	1.27	J	1.32	5
		Thorium 220	0.12	0.10	0	0.33	
		Thorium-230	0.69	0.40	J	0.51	
		Thorium-232	0.17	0.23	U	0.45	4.5
			1.18	0.00		0.00	15
		Uranium-234	0.41	0.29	J	0.33	
		Uranium-235	0.18	0.20	01	0.26	
		Uranium-238	0.16	0.18	U	0.29	
0.6		I otal uranium	0.75				2/
Surrace was	ter collected li	n westerly Bro	OK:				
WBSW-1	23-Oct-00	Radium-226	0.35	0.37	U	0.8	5
		Radium-228	4.75	1.65	Ĵ	1.65	5
		Thorium-228	0.12	0.19	Ū	0.34	
		Thorium230	0.71	0.44	Ĵ	0.5	
		Thorium-232	-0.07	0.17	Ŭ	0.58	
		Total thorium	0.76				15
		Uranium-234	1.4	0.58	J	0.25	
		Uranium-235	0.28	0.27		0.27	
		Uranium-238	0.73	0.40	J	0.28	
		Total uranium	2.41				27
WBSW-2	23-Oct-00	Radium-226	0.78	0.45		0.71	5
		Radium-228	4.8	1.29	J	1.24	5
		Thorium-228	0.07	0.13	U	0.24	
		Thorium230	0.83	0.46	J	0.56	
		Thorium-232	0.2	0.23	U	0.38	
		Total thorium	1.1				15
		Uranium-234	1.26	0.55	j	0.38	
		Uranium-235	0.04	0.11	U	0.3	
		Uranium-238	0.48	0.32	J	0.33	
		Total uranium	1.78				27
WBSW-3	26-Oct-00	Radium-226	0.92	0.35	J	0.26	5
		Radium-228	0.78	0.73	J	0.79	5
		Thorium-228	0.49	0.32		0.28	
		Thorium230	0.46	0.32	J	0.34	
		Thorium-232	0.23	0.23	UJ	0.34	15
		Total thorium	1.18				27
		Total uranium	1.2	0.02		0.04	5

-

							State/Federal ^o
Sampling	Date	Analyte	Result ^a	Error	Qualifier	MDA ^c	Standards
Location	Collected		pCi/L		S&W ^b	pCi/L	pCi/L
WBSW-4	23-Oct-00	Radium-226	0.44	0.33	J	0.6	5
		Radium-228	3.58	1.48	J	1.51	
		Thorium-228	0.01	0.11		0.36	
		Thorium230	0.37	0.34	J	0.53	
		Thorium-232	0.41	0.11	U	0.41	15
		Total thorium	0.79				
		Uranium-234	1.3	0.60	J	0.5	
		Uranium-235	0	0.14	U	0.47	
		Uranium-238	0.28	0.28	UJ	0.43	27
		Total uranium	1.58				
WBSW-5	24-Oct-00	Radium-226	0.67	0.46	J	0.74	5
		Radium-228	0.14	1.34	UJ	1.48	5
		Thorium-228	0.04	0.16	U	0.41	
		Thorium230	0.68	0.42	J	0.41	
		Thorium-232	0.02	0.16	U	0.46	
		Total thorium	0.74				15
		Uranium-234	1.18	0.51	J	0.38	
		Uranium-235	0.34	0.28	J	0.31	
		Uranium-238	0.56	0.34	J	0.37	
		Total uranium	1.2				27

Table 4-A 2000 Surface Water Analytical Results - Radioactive Constituents Maywood Interim Storage Site-October 2000

^aResults reported with ± radiological error equal at 2 sigma (95% confidence level), Shaded results indicate reported value exceeds criteria.

^b S&W data qualifier flags:

U = The analyte was not detected.

J = Reported as an estimated value.

^c Minimum Detectable Activity (MDA)

^d New Jersey and EPA MCL (N.J.A.C. 7:9-6).

^e A quality control duplicate is collected at the same time and location and is analyzed by the same method in order to evaluate precision in sampling and analysis.

				Data	Reporting	Related R	egulations
Sampling	Date	Detected	Result:	Qualifier	Limits	Federal ^c	State ^d
Location	Collected	Analyte"	(ug/L)	S&W [®]	(ug/L)	(ug/L)	(ug/L)
	24-Jul-00	Aluminum, Total	121.00	J		200	200
SWSD001	24-Jul-00	Antimony, Total	2.10	U	2.7	6	2/20
	24-Jul-00	Arsenic, Total	7.00	U	4.7	50	0.02/8
	24-Jul-00	Barium, Total	98.10		1.5	2000	2000
	24-Jul-00	Beryllium, Total	0.20	U	0.04	4	0.008/20
	24-Jul-00	Cadmium, Total	0.20	U	0.1	5	4
	24-Jul-00	Calcium, Total	70900.00		325		
	24-Jul-00	Chromium, Total	0.66	J	2.2	100	100
	24-Jul-00	Cobalt, Total	0.3	U	0.45		
	24-Jul-00	Iron, Total	369		22	300	300
	24-Jul-00	Lead, Total	1.3	U	1.9	15	5
	24-Jul-00	Magnesium, Total	19100		23		
	24-Jul-00	Manganese, Total	86.6		1.3	50	50
	24-Jul-00	Mercury, Total	0.78		0.02	2	2
	24-Jul-00	Nickel, Total	2.2		1.6		100
	24-Jul-00	Potassium, Total	7330		120		
	24-Jul-00	Selenium, Total	1.5	UJ	5.6	50	50
	24-Jul-00	Silver, Total	0.3	U	0.94	1007	
	24-Jul-00	Sodium, Total	75400		150		50000
	24-Jul-00	Thallium, total	5.3	U	2.7	2	0.5
	24-Jul-00	Vanadium, Total	0.58	J	1.3		
	24-Jul-00	Zinc, Total	12.5		18	500	5000
SWSD002	24-Jul-00	Aluminum, Total	35.5	U		200	200
	24-Jul-00	Antimony, Total	2.1	U	2.7	6	2/20
	24-Jul-00	Arsenic, Total	14.9	U	4.7	50	0.02/8
	24-Jul-00	Barium, Total	107		1.5	2000	2000
	24-Jul-00	Beryllium, Total	0.2	U	0.04	4	0.008/20
	24-Jul-00	Cadmium, Total	0.2	U	0.1	5	4
	24-Jul-00	Calcium, Total	84800		325		
	24-Jul-00	Chromium, Total	0.3	U	2.2	100	100
	24-Jul-00	Cobalt, Total	0.3	U	0.45		
	24-Jul-00	Iron, Total	689		22	300	300
	24-Jul-00	Lead, Total	1.3	U	1.9	15	5/10
	24-Jul-00	Magnesium, Total	12100		23		
	24-Jul-00	Manganese, Total	410		1.3	50	50
	24-Jul-00	Mercury, Total	1.3		0.02	2	2
	24-Jul-00	Nickel, Total	3		1.6		100

Table 52000 Surface Water Analytical Results - MetalsMaywood Interim Storage Site - July 2000

tableM2000.xls06/21/2001

1

				Data	Reporting	Related R	egulations
Sampling	Date	Detected	Result:	Qualifier	Limits	Federal ^c	State ^d
Location	Collected	Analyte"	(ug/L)	S&W [®]	(ug/L)	(ug/L)	(ug/L)
SWSD002	24-Jul-00	Potassium, Total	18000		120		
	24-Jul-00	Selenium, Total	1.5	UJ	5.6	50	50
	24-Jul-00	Silver, Total	0.3	U	0.94	1007	
	24-Jul-00	Sodium, Total	62600		150		50000
	24-Jul-00	Thallium, total	5.3	U	2.7	2	0.5/10
	24-Jul-00	Vanadium, Total	0.3	U	1.3		
	24-Jul-00	Zinc, Total	12.1		18	500	5000
SWSD003	20-Jul-00	Aluminum, Total	121	J		200	200
	20-Jul-00	Antimony, Total	2.1	U	2.7	6	2/20
	20-Jul-00	Arsenic, Total	5.2	U	4.7	50	0.02/8
	20-Jul-00	Barium, Total	128		1.5	2000	2000
	20-Jul-00	Beryllium, Total	0.2	U	0.04	4	0.008/20
	20-Jul-00	Cadmium, Total	0.4	U	0.1	5	4
	20-Jul-00	Calcium, Total	57200		325		
	20-Jul-00	Chromium, Total	1.1	J	2.2	100	100
	20-Jul-00	Cobalt, Total	0.53	J	0.45		
	20-Jul-00	Iron, Total	1440		22	300	300
	20-Jul-00	Lead, Total	4.2	U	1.9	15	5/10
	20-Jul-00	Magnesium, Total	6770		23		
	20-Jul-00	Manganese, Total	180		1.3	50	50
	20-Jul-00	Mercury, Total	0.1	U	0.02	2	2
	20-Jul-00	Nickel, Total	3.8		1.6		100
	20-Jul-00	Potassium, Total	2730		120		
	20-Jul-00	Selenium, Total	3.4	UJ	5.6	50	50
	20-Jul-00	Silver, Total	1	U	0.94	1007	
	20-Jul-00	Sodium, Total	32000		150		50000
	20-Jul-00	Thallium, total	3.8	U	2.7	2	0.5/10
	20-Jul-00	Vanadium, Total	1.8	J	1.3		
	20-Jul-00	Zinc, Total	38.3	U	18	500	5000
SWSD005	20-Jul-00	Aluminum, Total	97	J		200	200
	20-Jul-00	Antimony, Total	2.6	U	2.7	6	2/20
	20-Jul-00	Arsenic, Total	3.4	U	4.7	50	0.02/8
	20-Jul-00	Barium, Total	85.6		1.5	2000	2000
	20-Jul-00	Beryllium, Total	0.2	U	0.04	4	0.008/20
	20-Jul-00	Cadmium, Total	0.4	U	0.1	5	4
	20-Jul-00	Calcium, Total	50500		325		

Table 52000 Surface Water Analytical Results - Metals
Maywood Interim Storage Site - July 2000

				Data	Reporting	Related R	egulations
Sampling	Date	Detected	Result:	Qualifier	Limits	Federal ^c	State ^d
Location	Collected	Analyte ^a	(ug/L)	S&W"	(ug/L)	(ug/L)	(ug/L)
	20-Jul-00	Chromium, Total	1.3	J	2.2	100	100
	20-Jul-00	Cobalt, Total	0.81	J	0.45		
	20-Jul-00	Iron, Total	397		22	300	300
	20-Jul-00	Lead, Total	1.8	U	1.9	15	5/10
	20-Jul-00	Magnesium, Total	13600		23		
	20-Jul-00	Manganese, Total	155		1.3	50	50
	20-Jul-00	Mercury, Total	0.78	U	0.02	2	2
	20-Jul-00	Nickel, Total	2.7	J	1.6		100
	20-Jul-00	Potassium, Total	5520		120		
	20-Jul-00	Selenium, Total	3.4	UJ	5.6	50	50
	20-Jul-00	Silver, Total	1.4	J	0.94	1007	
	20-Jul-00	Sodium, Total	54600		150		50000
	20-Jul-00	Thallium, total	4.1	J	2.7	2	0.5/10
	20-Jul-00	Vanadium, Total	1.7	J	1.3		
	20-Jul-00	Zinc, Total	23.6	U	18	500	5000
SWSD006	20-Jul-00	Aluminum, Total	31.2	U		200	200
	20-Jul-00	Antimony, Total	3.6	U	2.7	6	2/20
	20-Jul-00	Arsenic, Total	4.2	U	4.7	50	0.02/8
	20-Jul-00	Barium, Total	40.5		1.5	2000	2000
	20-Jul-00	Beryllium, Total	0.2	U	0.04	4	0.008/20
	20-Jul-00	Cadmium, Total	0.4	U	0.1	5	4
	20-Jul-00	Calcium, Total	94600		325		
	20-Jul-00	Chromium, Total	1.5	J	2.2	100	100
	20-Jul-00	Cobalt, Total	0.53	J	0.45		
	20-Jul-00	Iron, Total	342		22	300	300
	20-Jul-00	Lead, Total	1.3	U	1.9	15	5/10
	20-Jul-00	Magnesium, Total	7390		23		
SWSD006	20-Jul-00	Manganese, Total	293		1.3	50	50
	20-Jul-00	Mercury, Total	0.62	U	0.02	2	2
	20-Jul-00	Nickel, Total	1.8	J	1.6		100
	20-Jul-00	Potassium, Total	2450		120		
	20-Jul-00	Selenium, Total	3.4	UJ	5.6	50	50
	20-Jul-00	Silver, Total	1 .	U	0.94	1007	
	20-Jul-00	Sodium, Total	44300		150		50000
	20-Jul-00	Thallium, total	3.8	U	2.7	2	0.5/10
	20-Jul-00	Vanadium, Total	2.6	J	1.3		
	20-Jul-00	Zinc, Total	10.8	U	18	500	5000

Table 52000 Surface Water Analytical Results - MetalsMaywood Interim Storage Site - July 2000

-

.....

				Data	Reporting	Related R	egulations
Sampling	Date	Detected	Result:	Qualifier	Limits	Federal ^c	State ^d
Location	Collected	Analyte ^a	(ug/L)	S&W ^o	(ug/L)	(ug/L)	(ug/L)
SWSD007	20-Jul-00	Aluminum, Total	3950			200	200
	20-Jul-00	Antimony, Total	3.4	U	2.7	6	2/20
	20-Jul-00	Arsenic, Total	21.7		4.7	50	0.02/8
	20-Jul-00	Barium, Total	182		1.5	2000	2000
	20-Jul-00	Beryllium, Total	0.27	J	0.04	4	0.008/20
	20-Jul-00	Cadmium, Total	2.2		0.1	5	4
	20-Jul-00	Calcium, Total	104000		325		
	20-Jul-00	Chromium, Total	. 156		2.2	100	100
	20-Jul-00	Cobalt, Total	4		0.45		
	20-Jul-00	Iron, Total	11500		22	300	300
	20-Jul-00	Lead, Total	- 162		1.9	15	5/10
	20-Jul-00	Magnesium, Total	8720		23		
	20-Jul-00	Manganese, Total	763		1.3	50	50
	20-Jul-00	Mercury, Total	0.32	U	0.02	2	2
	20-Jul-00	Nickel, Total	14.4		1.6		100
	20-Jul-00	Potassium, Total	2880		120		
	20-Jul-00	Selenium, Total	3.4	UJ	5.6	50	50
	20-Jul-00	Silver, Total	1	U	0.94	1007	
	20-Jul-00	Sodium, Total	43400		150		50000
	20-Jul-00	Thallium, total	5.4	J	2.7	2	0.5/10
	20-Jul-00	Vanadium, Total	17.7		1.3		
	20-Jul-00	Zinc, Total	451		18	500	5000

Table 52000 Surface Water Analytical Results - MetalsMaywood Interim Storage Site - July 2000

^aOnly the analytes that were detected are reported. Shaded result indicates value exceeds criteria.

^b Stone & Webster qualifier flags: J = Reported as an estimated value, U= analyte was not detected.

^e Federal SDWA MCLs, 40 CFR 141. Regulations pertain to drinking water

quality and are listed for comparison purposes only. Not established (NE).

^d New Jersey Class IIA Groundwater Quality Standards NJAC 7:9-6. Analytes

for which the PQL is greater than the GWQC are noted as such: GWQC/PQL.

^e Monitoring well SWSD003 is the background location for surface water locations.

Table 5-A	
2000 Surface Water Analytical Results - Meta	ls
Maywood Interim Storage Site - October 200	0

					Reporting	Related F	Regulations
Sampling	Date	Analyte	Result ^a	Qualifier	Limit	Federal ^c	State ^d
Location	Collected		(ug/L)	S&W⁵	(ug/L)	(ug/L)	(ug/L)
Surface wate	er samples co	ollected in Lodi Bro	ok:				
LBSW-2	19-Oct-00	Aluminum, Total	97.3		10.6	200	200
	19-Oct-00	Antimony, Total	2.3	U	2.3	6	2/20
	19-Oct-00	Arsenic, Total	9.7		3.4	50	0.02/8
	19-Oct-00	Barium, Total	56.6		0.20	2000	2000
	19-Oct-00	Beryllium, Total	0.1	U	0.10	4	0.008/20
	19-Oct-00	Boron, Total	53.6	J	2.1		
	19-Oct-00	Cadmium, Total	0.3	U	0.30	5	4
	19-Oct-00	Calcium, Total	84700		8.9		
	19-Oct-00	Chromium, Total	1.8	J	0.90	100	100
	19-Oct-00	Cobalt, Total	1.1		0.9		
	19-Oct-00	Copper, Total	3.5		0.80	1300	1000
	19-Oct-00	Iron, Total	1160		16.4	300	300
	19-Oct-00	Lead, Total	7.7		2.1	15	5/10
	19-Oct-00	Lithium, Total	94.6		0.20		
	19-Oct-00	Magnesium, Total	7610		7.8		
	19-Oct-00	Manganese, Total	434		0.20	50	50
	19-Oct-00	Mercury, Total	0.1	U	0.10	2	2
	19-Oct-00	Nickel, Total	2.8		1.2		100
	19-Oct-00	Potassium, Total	4560		29.9		
	19-Oct-00	Selenium, Total	3.3	U	3.3	50	50
	19-Oct-00	Silver, Total	1.1	υ	1.1	1007	
	19-Oct-00	Sodium, Total	42300		3.8		50000
	19-Oct-00	Thallium, Total	4	U	4	2	0.5/10
	19-Oct-00	Vanadium, Total	3		0.90		
	19-Oct-00	Zinc, Total	18.9	J	0.40	500	5000
LBSW-3	23-Oct-00	Aluminum, Total	91.9		10.6	200	200
	23-Oct-00	Antimony, Total	2.3	U	2.1	6	2/20
	23-Oct-00	Arsenic, Total	2.4	U	3.4	50	0.02/8
	23-Oct-00	Barium, Total	104		0.2	2000	2000
	23-Oct-00	Beryllium, Total	0.1	U	0.1	4	0.008/20
	23-Oct-00	Boron, Lotal	152		2.1	_	
	23-Oct-00	Cadmium, Total	0.3	U	0.3	5	4
	23-Oct-00	Calcium, Total	58400		8.9	400	400
	23-001-00	Coholt Total	1.1		0.9	100	100
	23-00-00 23-0ct-00	Conner Total	0.9	U	U.Ö	1200	1000
	23-0ct-00	Iron Total	12.J 320		0.0 16.4	200	200
	23-Oct-00	Lead Total	26		10.4 2.1	300	500
	23-Oct-00	Lithium Total	11 5		4.1 0.2	15	5/10
	23-Oct-00	Magnesium Total	16900		7 8		
	23-Oct-00	Manganese. Total	103		0.2	50	50
	23-Oct-00	Mercury, Total	0.1	U	0.1	2	2
	· - · - •			-		-	-

Table 5-A
2000 Surface Water Analytical Results - Metals
Maywood Interim Storage Site - October 2000

					Reporting	Related F	Regulations
Sampling	Date	Analyte	Result ^a	Qualifier	Limit	Federal ^c	State ^d
Location	Collected		(ug/L)	S&W⁵	(ug/L)	(ug/L)	(ug/L)
	23-Oct-00	Nickel, Total	2.6		1.2		100
	23-Oct-00	Potassium, Total	6410		29.9		
	23-Oct-00	Selenium, Total	3.3	U	4.3	50	50
	23-Oct-00	Silver, Total	1.1	U	1.1	1007	
	23-Oct-00	Sodium, Total	53000		3.8		50000
	23-Oct-00	Thallium, Total	4	U	3.6	2	0.5/10
	23-Oct-00	Vanadium, Total	0.95		0.9		
	23-Oct-00	Zinc, Total	24.6		0.4	500	5000
I BSM	19_Oct-00	Aluminum Total	81 3		10.6	200	200
LD311-4	19-Oct-00	Antimony Total	23		22	200	200
	19-001-00	Animony, Total	2.5	0	2.5	50	2/20
	19-00t-00	Barium Total	0.0		0.4	2000	0.02/0
	19-Oct-00	Bendlium Total	90. 4 0.1	11	0.2	2000	2000
	19-0ct-00	Boron Total	166	0	0.1	4	0.000/20
	19-001-00	Cadmium Total	03	5	0.3	5	4
	19-001-00	Calcium Total	51800	0	0.3	5	4
	19-000-00	Chromium Total	21000	1	0.9	100	100
	19-0ct-00	Cobalt Total	2	J	0.9	100	100
	19-001-00	Copper Total	23.8		0.9	1200	1000
	19-001-00	Iron Total	23.0		16.4	200	1000
	19-00-00	t and Total	36		2.1	15	5/10
	19-Oct-00	Lithium Total	14.2		0.2	15	5/10
	19-Oct-00	Magnesium Total	15400		0.2		
	19-0ct-00	Magnesium, Total	108		7.0	50	50
	19-0ct-00	Mercury Total	0.1		0.2	30	50
	19-Oct-00	Nickel Total	22	0	1.2	2	100
	19-0ct-00	Potassium Total	10600		20.0		100
	19-0ct-00	Selenium Total	33		29.9	50	50
	19-Oct-00	Silver Total	1 1	Ц	J.J 1 1	1007	50
	19-00-00	Sodium Total	10300	0	2.9	1007	50000
	19-00-00	Thallium Total	43300		3.0	2	0.5/10
	19-Oct-00	Vanadium Total	+ 1 /	0	4	2	0.5/10
	19-Oct-00	Zinc, Total	33.8		0.9	500	5000
			<u> </u>				
LBSW-5	19-Oct-00	Aluminum, Total	92		10.6	200	200
	19-Oct-00	Antimony, Total	2.3	U	2.3	6	2/20
	19-Oct-00	Arsenic, Total	4		3.4	50	0.02/8
	19-Oct-00	Barium, Total	94.9		0.2	2000	2000
	19-Oct-00	Beryllium, Total	0.1	U	0.1	4	0.008/20
	19-Oct-00	Boron, Total	168	J	2.1	_	
	19-Oct-00	Cadmium, Total	0.3	U	0.3	5	4
	19-Oct-00	Calcium, Total	51500		8.9		
	19-Oct-00	Chromium, Total	2.2	J	0.9	100	100
	19-Oct-00	Cobalt, Total	0.9	U	0.9		
	19-Oct-00	Copper, Total	14.1		0.8	1300	1000
	19-Oct-00	Iron, Total	393		16.4	300	300

Table 5-A
2000 Surface Water Analytical Results - Metals
Maywood Interim Storage Site - October 2000

					Reporting	Related R	Regulations
Sampling	Date	Analyte	Result ^a	Qualifier	Limit	Federal ^c	State ^d
Location	Collected		(ug/L)	S&W ^b	(ua/L)	(ua/L)	(ua/L)
Location	10. Oct 00	Lead Total	2.8		21	15	5/10
	19-0ct-00	Lithium Total	2.0		0.2	15	5/10
	19-0ct-00	Magnocium Total	15000		7.8		
	19-0ct-00	Magnesium, Total	110		0.2	50	50
	19-001-00	Marguny Total	0.1	11	0.2	20	20
	19-0ct-00	Nickol Total	2.4	0	1.2	4	100
	19-001-00	Potassium Total	7050		20.0		100
	19-0ct-00	Selenium Total	33		23.3	50	50
	19-0ct-00	Selenium, Total	13	0	0.0 1 1	1007	50
	19-0ct-00	Sodium Total	40800		1.1	1001	50000
	19-001-00	Thallium Total	49000		3.0	2	0.5/10
	19-Oct-00	Venedium Tetel	4.3		3.0	2	0.5/10
	19-Oct-00		1.4		0.9	500	5000
	19-Oct-00		39.5	J	0.4	500	5000
I BSW-6	19-0ct-00	Aluminum Total	65.9			200	200
LDOW-0	19-Oct-00	Antimony Total	2.3	U	27	6	2/20
	19-Oct-00	Arsenic Total	3.9	U	47	50	0.02/8
	19-Oct-00	Barium Total	91.2		1.5	2000	2000
	19-001-00	Bendlium Total	0.1	11	0.04	4	0.008/20
	19-001-00	Boron Total	162	1	13	7	0.000/20
	19-001-00	Cadmium Total	03	ŭ	0.1	5	Δ
	19-00-00	Calcium Total	50900	0	325	0	7
	19-00-00	Chromium Total	1 7	1	220	100	100
	19-001-00	Cobalt Total	0.0		0.45	100	100
	19-001-00	Copper Total	12.1	0	17	1300	1000
	19-001-00	Irop Total	225		22	300	300
	19-001-00	Lood Total	21		10	15	5/10
	19-001-00	Lithium Total	2.1	0	1.5	15	5/10
	19-001-00	Magnasium Total	23		1.0		
	19-00t-00	Magnesium, Total	14500		23	50	50
	19-00-00	Manyanese, Total	0.1	11	1.3	50	50
	19-Oct-00	Niekol Totol	0.1	U	0.02	Z	100
	19-Oct-00	Nickel, Total	2.1		1.0		100
	19-001-00	Polassium, Total	0000		120	50	50
	19-Oct-00	Selement, Total	3.3	Ų	5.0	1007	50
	19-Oct-00	Silver, Total	1.1		0.94	1007	50000
	19-Oct-00	Sodium, Total	46200		150	2	50000
	19-Oct-00		4	U	2.1	2	0.5/10
	19-Oct-00	Vanadium, Total	1.7		1.3	500	5000
	19-Oct-00	Zinc, I otal	30.7	J	18	500	5000
IBSW 7	10-Oct-00	Aluminum Total	69.7		10.6	200	200
EDOW-1	19-00-00 19-0ct-00	Antimony Total	23	Ц	23	6	2/20
	10-Oct-00	Arsenic Total	4	5	34	50	0.02/8
	10 0 01 00	Barium Total			0.7	2000	2000
	10 0 00	Bendlium Total	0.1	11	0.1	1	0 008/20
	10.001.00	Boron Total	160	1	21	7	0.000/20
	19-00-00	Codmium Total	108	J	<u>د.</u> ،	F	A
	19-001-00	Caomium, rotal	0.3	0	0.5	J	4

Table 5-A
2000 Surface Water Analytical Results - Metals
Maywood Interim Storage Site - October 2000

					Reporting	Related F	legulations
Sampling	Date	Analyte	Result ^a	Qualifier	Limit	Federal ^c	Stated
Location	Collected		(ug/L)	S&W ^b	(ug/L)	(ug/L)	(ug/L)
	19-Oct-00	Calcium, Total	52300		8.9		
	19-Oct-00	Chromium, Total	1.5	J	0.9	100	100
	19-Oct-00	Cobalt, Total	0.9	U	0.9		
	19-Oct-00	Copper, Total	12.3		0.8	1300	1000
	19-Oct-00	Iron, Total	327		16.4	300	300
	19-Oct-00	Lead, Total	2.1	U	2.1	15	5/10
	19-Oct-00	Lithium, Total	27.3		0.2		
	19-Oct-00	Magnesium, Total	15000		7.8		
	19-Oct-00	Manganese, Total	101		0.2	50	50
	19-Oct-00	Mercury, Total	0.1	U	0.1	2	2
	19-Oct-00	Nickel, Total	2.5		1.2		100
	19-Oct-00	Potassium, Total	6900		29.9		
	19-Oct-00	Selenium, Total	3.3	U	3.3	50	50
	19-Oct-00	Silver, Total	1.1	U	1.1	1007	
	19-Oct-00	Sodium, Total	49300		3.8		50000
	19-Oct-00	Thallium, Total	4	U	4	2	0.5/10
	19-Oct-00	Vanadium, Total	1.5		0.9	_	
	19-Oct-00	Zinc, Total	31.8	J	0.4	500	5000
	10.0+00	Aluminum Total	07		40.0		
-B2AA-0	19-Oct-00	Aluminum, Total	87		10.6	200	200
	19-Oct-00	Antimony, Total	2.3	U	2.3	6	2/20
	19-Oct-00	Arsenic, Total	4.0		3.4	50	0.02/8
	19-Oct-00	Barium, Total	92.5		0.2	2000	2000
	19-Oct-00	Beryillum, Total	0.1	Ů	0.1	4	0.008/20
	19-Oct-00	Boron, Total	176	J	2.1	_	
	19-Oct-00	Cadmium, Total	0.3	U	0.3	5	4
	19-Oct-00	Calcium, Total	54100		8.9		
	19-Oct-00	Chromium, Total	1.7	J	0.9	100	100
	19-Oct-00	Cobalt, Total	1.6		0.9		
	19-Oct-00	Copper, Total	11.7		0.8	1300	1000
	19-Oct-00	Iron, I otal	332		16.4	300	300
	19-Oct-00	Lead, Iotal	2.1	U	2.1	15	5/10
	19-Oct-00	Lithium, I otal	31.4		0.2		
	19-Oct-00	Magnesium, Total	15000		7.8		
	19-Oct-00	Manganese, Total	102		0.2	50	50
	19-Oct-00	Mercury, Total	0.1	U	0.1	2	2
	19-Oct-00	Nickel, Total	3.2		1.2		100
	19-Oct-00	Potassium, Total	6680		29.9		
	19-Oct-00	Selenium, Total	3.3	U	3.3	50	50
	19-Oct-00	Silver, Total	1.1		1.1	1007	
	19-Oct-00	Sodium, Total	49300		3.8		50000
	19-Oct-00	Thallium, Total	4	U	4	2	0.5/10
	19-Oct-00	Vanadium, Total	1.4		0.9		
	19-Oct-00	Zinc, Total	31.8	J	0.4	500	5000

Table 5-A2000 Surface Water Analytical Results - MetalsMaywood Interim Storage Site - October 2000

					Reporting	Related F	Regulations
Sampling	Date	Analyte	Result ^a	Qualifier	Limit	Federal	State ^d
Location	Collected	-	(ug/L)	S&W ^b	(ug/L)	(ug/L)	(ua/L)
	· · · · · · ·						
Surface wate	r samples co	ollected in Westerly	/ Brook:				
WBSW-1	23-Oct-00	Aluminum, Total	22.7		10.6	200	200
	23-Oct-00	Antimony, Total	2.3	υ	2.1	6	2/20
	23-Oct-00	Arsenic, Total			3.4	50	0.02/8
	23-Oct-00	Barium, Total	114		0.2	2000	2000
	23-Oct-00	Beryllium, Total	0.1	U	0.1	4	0.008/20
	23-Oct-00	Boron, Total	218		2.1		
	23-Oct-00	Cadmium, Total	0.3	U	0.3	5	4
	23-Oct-00	Calcium, Total	116000	-	8.9	•	•
	23-Oct-00	Cerium, Total	35.3	U	35.3		
	23-Oct-00	Chromium VI	0.02	ŭ	0.02		
	23-Oct-00	Chromium, Total	4.9	U	0.9	100	100
	23-Oct-00	Cobalt. Total	0.9	U	0.8	100	100
	23-Oct-00	Conner Total	16	Ū	0.0	1300	1000
	23-Oct-00	Dysprosium Total	3.1	11	3.1	1000	1000
	23-Oct-00	Iron Total	0.1	Ų	16 /	300	200
	23-Oct-00	Lanthanum Total	33.8	11	33.8	500	300
	23-Oct-00	Lead Total	2 1	U U	21	15	5/10
	23-Oct-00	Lithium Total	642	0	0.2	15	5/10
	23-Oct-00	Mannesium Total	16000		7.8		
	23-Oct-00	Magnesium, Total	487		0.2	50	50
	23-00t-00	Marganese, Total	0.12		0.2	50	50
	23-001-00	Neodymium Total	13.2	11	12.0	2	2
	23-001-00	Nickel Total	2 1	U	10.2		100
	23-001-00	Potassium Total	22200		1.2		100
	23-001-00	Solonium Total	32200	11	29.9	50	50
	23-001-00	Selenium, Total	J.J 1 1	0	4.5	50	50
	23-001-00	Soliver, rolar Sodium Total	75900	U	1.1	1007	50000
	23-001-00	Soulum, Total	c 1		3.8	•	50000
	23-00-00	Venedium Tetel	0.1		3.0	Z	0.5/10
	23-Oct-00	Vanadium, Total	0.84		0.9		
	23-Oct-00		1.9	U	1.9		
	23-Oct-00	Zinc, I otal	14.8		0.4	500	5000
WBSW-2	23-0ct-00	Aluminum Total	23.1		10.6	200	200
110011-2	23-0ct-00	Antimony Total	20.1	11	2.1	200	2/20
	23-0ct-00	Arsonic Total	2.5 19 5	0	2.1	50	2/20
	23-001-00	Barium Total	112		0.4	2000	0.02/6
	23-001-00	Banullium Total	0.1		0.2	2000	2000
	23-001-00	Boron Total	0.1	0	0.1	4	0.008/20
	23-001-00	Codmium Total	213		2.1	E	
	23-001-00	Califium, Total	112000	0	0.3	5	4
	23-001-00	Calcium, Total	113000		0.9		
	23-UCI-UU	Cenum, Total	30.3	0	35.3		
	23-UCI-UU		0.02	0	0.02	400	400
	23-UCT-UU	Chromium, Iotal	0.6	0	0.9	100	100
	23-Uct-00		0.9	U	0.8		
	23-Oct-00	Copper, Total	1.7		0.8	1300	1000
	23-Oct-00	Dysprosium, Total	3.1	U	3.1		
	23-Oct-00	Iron, Total	1090		16.4	300	300
	23-Oct-00	Lanthanum, Total	33.8	U	33.8		
	23-Oct-00	Lead, Total	2.1	U	2.1	15	5/10
	23-Oct-00	Lithium, Total	634		0.2		

Table 5-A
2000 Surface Water Analytical Results - Metals
Maywood Interim Storage Site - October 2000

Sampling Location Date Analyte (ug/L) Result* (ug/L) Qualifier (ug/L) Limit (ug/L) Federal* (ug/L) State* 23-Oct-00 Magnesium, Total 16300 7.8 0.2 50 50 23-Oct-00 Marganesier, Total 733 0.2 50 50 23-Oct-00 Nickel, Total 3.1 1.2 100 2 2 23-Oct-00 Nickel, Total 3.1 1.2 100 2 2 23-Oct-00 Silver, Total 1.1 U 1.1 100 1 2 0.5/10 23-Oct-00 Silver, Total 1.1 U 1.1 100 0 500 23-Oct-00 Silver, Total 1.8 0.4 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 1.8 0.4 3.6 2000 2000 23-Oct-00 Aluminum, Total 1.8 0.4 200 2000 2000 2000 2000 2000 2000 2000						Reporting	Related F	Regulations
Location Collected (ug/L) S&W ⁶ (ug/L) (ug/L) (ug/L) 23-Oct-00 Maganese, Total 733 0.2 50 50 23-Oct-00 Mercury, Total 0.1 U 0.1 2 2 23-Oct-00 Needymium, Total 3.1 1.2 100 23-Oct-00 Needymium, Total 3.3 U 4.3 50 50 23-Oct-00 Selenium, Total 3.3 U 4.3 50 50 23-Oct-00 Selenium, Total 1.4 U 3.6 500000 23-Oct-00 Solum, Total 4 U 3.6 500000 23-Oct-00 Solum, Total 1.9 U 1.9 2.0 2.0 5000 23-Oct-00 Vitrium, Total 1.9 U 1.9 2.3 6 2.20 2.00 23-Oct-00 Antimory, Total 2.3 U 2.3 6 2.200 2.00 26-Oct-00 Antimory, Total 2.3	Sampling	Date	Analyte	Result ^a	Qualifier	Limit	Federal ^c	State ^d
23-Oct-00 Manganese, Total 733 0.2 50 23-Oct-00 Mercury, Total 0.1 U 0.1 2 2 23-Oct-00 Necdymium, Total 0.1 U 0.1 2 2 23-Oct-00 Nickel, Total 3.1 1.2 100 23-Oct-00 Selenium, Total 3.1 1.07 100 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 23-Oct-00 Solum, Total 1.4 U 3.6 2 0.5/10 23-Oct-00 Solum, Total 1.4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.88 U 0.9 200 200 23-Oct-00 Zinc, Total 1.8 0.4 500 5000 200 26-Oct-00 Auminum, Total 2.3 U 2.3 6 2/20 26-Oct-00 Barjum, Total 2.3 U 2.3 6 2/20 2000 2000 2000	Location	Collected		(ug/L)	S&W⁵	(ug/L)	(ug/L)	(ug/L)
23-0ct-00 Marganese, Total 733 0.2 50 50 23-0ct-00 Mercury, Total 0.1 U 0.1 2 2 23-0ct-00 Nickel, Total 3.1 1.2 100 23-0ct-00 Selenium, Total 3.1900 29.9 100 23-0ct-00 Selenium, Total 3.3 U 4.3 50 50 23-0ct-00 Selenium, Total 1 U 1.1 1007 100 23-0ct-00 Soldium, Total 4 U 3.6 20000 20-50 50000 23-0ct-00 Vanadium, Total 1.9 U 1.9 20-50 5000 5000 23-0ct-00 Zinc, Total 1.8 0.4 500 5000 23-0ct-00 Aluminum, Total 2.3 U 2.3 6 2/20 26-0ct-00 Antimory, Total 2.3 U 2.3 6 2/20 26-0ct-00 Bardim, Total 2.3 U 2.3<		23-Oct-00	Magnesium, Total	16300		7.8		
23-Oct-00 Mercury, Total 0.1 U 0.1 2 2 23-Oct-00 Nicodymium, Total 13.2 U 13.2 100 23-Oct-00 Potassium, Total 3.1 1.2 100 23-Oct-00 Selenium, Total 3.1 1.1 100 50 23-Oct-00 Solum, Total 1.1 U 1.1 1007 50000 23-Oct-00 Solum, Total 1.4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.88 U 0.9 5000 5000 23-Oct-00 Vitrium, Total 0.88 U 0.9 5000 5000 23-Oct-00 Vitrium, Total 1.8 0.4 500 5000 23-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Antimony, Total 2.3 U 2.3 4 0.002/8 26-Oct-00 Berylium, Total 0.54 0.3 5		23-Oct-00	Manganese, Total	733		0.2	50	50
23-Oct-00 Neddymium, Total 13.2 U 13.2 23-Oct-00 Potassium, Total 3.1 1.2 100 23-Oct-00 Selenium, Total 3.3 U 4.3 50 50 23-Oct-00 Selenium, Total 3.3 U 4.3 50 50 23-Oct-00 Solum, Total 1.1 U 1.1 1007 23-Oct-00 Solum, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vanadum, Total 1.9 U 1.9 2 0.00 2 23-Oct-00 Vanadum, Total 1.9 U 1.9 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 2 0.00 2 0.00 2 0.00 2 0.00 2 2 0.00 2 0.00 2 2 0.00 2 0.00 2 0.00 2 2 0.00 2 0.00 2 <td></td> <td>23-Oct-00</td> <td>Mercury, Total</td> <td>0.1</td> <td>U</td> <td>0.1</td> <td>2</td> <td>2</td>		23-Oct-00	Mercury, Total	0.1	U	0.1	2	2
22-Oct-00 Nicket, Total 3.1 1.2 100 23-Oct-00 Selenium, Total 3.3 U 4.3 50 50 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 50000 23-Oct-00 Sodium, Total 1.4 U 3.6 2 0.5/10 23-Oct-00 Vanadum, Total 0.88 U 0.9 2 0.5/10 23-Oct-00 Vanadum, Total 1.9 U 1.9 2 0.4 500 5000 23-Oct-00 Antimony, Total 1.9 U 1.9 2.3 6 2/20 200 200 200 200 200 200 200 200 200 200 200 200 200 26		23-Oct-00	Neodymium, Total	13.2	U	13.2		
23-Oct-00 Potassium, Total 31900 29.9 23-Oct-00 Selenium, Total 3.3 U 4.3 50 50 23-Oct-00 Silver, Total 1.1 U 1.1 1007 23-Oct-00 Sodum, Total 1.4 U 3.6 2 0.5/10 23-Oct-00 Thallium, Total 0.88 U 0.9 2 0.5/10 23-Oct-00 Vitrium, Total 1.9 U 1.9 2 0.0 5000 23-Oct-00 Aluminum, Total 1.9 U 1.9 2.3 0 2.3 6 2/20 26-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 2000 2000 26-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000		23-Oct-00	Nickel, Total	3.1		1.2		100
23-Oct-00 Selenium, Total 3.3 U 4.3 50 50 23-Oct-00 Sodiur, Total 1.1 U 1.1 1007 23-Oct-00 Sodium, Total 74200 3.8 50000 23-Oct-00 Vanadium, Total 0.88 U 0.9 23-Oct-00 Yttrium, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 1.8 0.4 500 5000 28-Oct-00 Atimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Arsenic, Total 1.4 0.02/8 2/20 2000 2000 26-Oct-00 Barium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Baronium, Total 0.54 0.3 5 4 26-Oct-00 Cadmium, Total 199000 19.2 2 2 26-Oct-00 Coronium VI 0.02 U		23-Oct-00	Potassium, Total	31900		29.9		
23-Oct-00 Silver, Total 1.1 U 1.1 1007 23-Oct-00 Sodium, Total 74200 3.8 50000 23-Oct-00 Vanadium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.88 U 0.9 2 0.5/10 23-Oct-00 Zinc, Total 1.9 U 1.9 0 9 23-Oct-00 Zinc, Total 1.8 0.4 500 5000 26-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Berylium, Total 2.4 50 0.02/8 2/20 26-Oct-00 Cadmium, Total 2.03 2.7 2/20 2/20 2/20 26-Oct-00 Cadmium, Total 0.54 0.3 5 4 2/20 2/2 2/20 2/2 2/2 0/2 0/2 2/2		23-Oct-00	Selenium, Total	3.3	U	4.3	50	50
23-Oct-00 Solium, Total 74200 3.8 50000 23-Oct-00 Thallium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vitrium, Total 1.9 U 1.9 0.8 0.9 23-Oct-00 Zine, Total 1.9 U 1.9 0.4 500 5000 23-Oct-00 Aluminum, Total 1.8.8 0.4 500 5000 26-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Arsenic, Total 242 0.2 2000 2000 2000 26-Oct-00 Barium, Total 242 0.2 2000 2000 260-Oct-00 Boron, Total 203 2.7 26-Oct-00 Cadmium, Total 0.54 0.3 5 4 26-Oct-00 Calmium, Total 109000 19.2 26-Oct-00 Calmium, Total 1.8 0.9 100 100 26-Oct-00 Calmium, Total 3.8 26-Oct-00 Calmium, Total 3.8		23-Oct-00	Silver, Total	1.1	U	1.1	1007	
23-Oct-00 Thallium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.88 U 0.9 19 23-Oct-00 Yttrium, Total 1.9 U 1.9 5000 23-Oct-00 Zinc, Total 18.8 0.4 500 5000 WBSW-3 26-Oct-00 Aluminum, Total 2.3 U 2.3 6 2/20 26-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Barium, Total 2.4 50 0.02/8 0.02/8 26-Oct-00 Barium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Calcium, Total 109000 19.2 2 2 2 26-Oct-00 Calcium, Total 1.8 0.9 100 2 2 26-Oct-00 Chormum, Total 1 0.6 100 100 2 26-Oct-00 Chormium, Total 3.1 1 <td></td> <td>23-Oct-00</td> <td>Sodium, Total</td> <td>74200</td> <td></td> <td>3.8</td> <td></td> <td>50000</td>		23-Oct-00	Sodium, Total	74200		3.8		50000
23-Oct-00 Vanadium, Total 0.88 U 0.9 23-Oct-00 Zitrum, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 1.8 0.4 500 5000 26-Oct-00 Aluminum, Total 25 22.7 200 200 26-Oct-00 Arsenic, Total 2.3 6 2/20 2000 26-Oct-00 Arsenic, Total 2.4 50 0.02/8 2000 2000 26-Oct-00 Barium, Total 2.42 0.2 2000 2000 2000 26-Oct-00 Barium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Calcium, Total 0.54 0.3 5 4 26-Oct-00 Calcium, Total 109000 19.2 26-Oct-00 Calcium, Total 10.0 100 26-Oct-00 Calcium, Total 1 0.6 100 100 26-Oct-00 Calcium, Total 3.1 U 3.1 26-Oct-00 Calcuium, Total <		23-Oct-00	Thallium, Total	4	U	3.6	2	0.5/10
23-Oct-00 Yttrium, Total 1.9 U 1.9 0.4 500 5000 WBSW-3 26-Oct-00 Aluminum, Total 2.3 U 2.3 6 2/20 26-Oct-00 Artimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Arsenic, Total 487 2.4 50 0.02/8 26-Oct-00 Barium, Total 2.4 0.2 2000 2000 26-Oct-00 Barium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Born, Total 203 2.7 2 2000 2000 26-Oct-00 Cadnium, Total 0.54 0.3 5 4 2 26-Oct-00 Calcium, Total 109000 19.2 2 2 6-Oct-00 Chromium, Total 1.8 0.9 1300 1000 26-Oct-00 Chromium, Total 1.8 0.9 1300 1000 2 6 2 2 2 2 <td< td=""><td></td><td>23-Oct-00</td><td>Vanadium, Total</td><td>0.88</td><td>U</td><td>0.9</td><td></td><td></td></td<>		23-Oct-00	Vanadium, Total	0.88	U	0.9		
23-Oct-00 Zinc, Total 18.8 0.4 500 5000 WBSW-3 26-Oct-00 Aluminum, Total 2.3 U 2.3 6 2/20 26-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Barium, Total 242 0.2 2000 2000 26-Oct-00 Beryllum, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Beryllum, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Cadmium, Total 0.54 0.3 5 4 26-Oct-00 Calmium, Total 35.3 U 35.3 2 26-Oct-00 Chromium, Total 1 0.6 100 100 26-Oct-00 Chromium, Total 1.8 0.9 1300 1000 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Isanthanum, Total 33.8 U 33.8 2		23-Oct-00	Yttrium, Total	1.9	U	1.9		
WBSW-3 26-Oct-00 Aluminum, Total 225 22.7 200 200 26-Oct-00 Ansmony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Assenic, Total 48.7 2.4 50 0.02/8 26-Oct-00 Barium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Cadmium, Total 0.54 0.3 5 4 26-Oct-00 Caluim, Total 109000 19.2 2 2 26-Oct-00 Chromium VI 0.02 U 0.02 2 2 26-Oct-00 Chromium Total 1 0.6 100 100 2 26-Oct-00 Copper, Total 1.8 0.9 1300 1000 26-Oct-00 Lanthanum, Total 3.1 U 3.1 2 2 26-Oct-00 Lanthanum, Total 5.4 2.1 1		23-Oct-00	Zinc, Total	18.8		0.4	500	5000
WBSW-3 26-Oct-00 Aluminum, Total 255 22.7 200 200 26-Oct-00 Antimony, Total 2.3 U 2.3 6 220 26-Oct-00 Antimony, Total 2.3 U 2.3 6 220 26-Oct-00 Barium, Total 242 0.2 2000 2000 26-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Boron, Total 203 2.7 2000 2000 26-Oct-00 Calmium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Calmium, Total 109000 19.2 2 <td>••••</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	••••							
26-Oct-00 Antimony, Total 2.3 U 2.3 6 2/20 26-Oct-00 Arsenic, Total 487 2.4 50 0.02/8 26-Oct-00 Barium, Total 242 0.2 2000 2000 26-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Boron, Total 203 2.7 26 26 26 0.2 2000 2000 26-Oct-00 Cadium, Total 0.54 0.3 5 4 26 26-Oct-00 Calcium, Total 109000 19.2 26 26 26 0.00 26 26 0.00 100 26 26-Oct-00 Chromium, Total 1.8 0.9 1300 1000 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Leadt, Total 3.1 U 3.8 26 26 26 26 5 5 1 26-Oct-00 Leadt, Total 5.4 2.1 15 5/10 26 26	WBSW-3	26-Oct-00	Aluminum, Total	255		22.7	200	200
26-Oct-00 Arsenic, Total 242 50 0.02/8 26-Oct-00 Barjum, Total 242 0.2 2000 2000 26-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Boron, Total 203 2.7 26 26 26 26 26-Oct-00 Cadmium, Total 109000 19.2 4 26 26 26 26 26 0.02 26 26 0.002 26 26 0.00 26 0 Chromium, Total 109000 19.2 1000 100 26-Oct-00 Cerium, Total 1 0.6 100 100 26 100 100 26 26 0 2000 2000 2000 2000 2000 26 2000 2000 1000 26 26 26 2000<		26-Oct-00	Antimony, Total	2.3	U	2.3	6	2/20
26-Oct-00 Barium, Total 242 0.2 2000 2000 26-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Boron, Total 203 2.7 2.7 2.6 2.7 26-Oct-00 Cadmium, Total 109000 19.2 2.7 2.6 2.6 26-Oct-00 Calcium, Total 109000 19.2 2.6 2.6 2.6 2.6 0.02 2.6 26-Oct-00 Chromium VI 0.02 U 0.02 2.6 0.6 100 100 26-Oct-00 Cobalt, Total 1.8 0.9 1300 1000 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 2.1 15 5/10 26-Oct-00 Lanthanum, Total 5.4 2.1 15 5/10 26-Oct-00 Lanthanum, Total 5.4 2.1 15 5/10 26-Oct-00 Magnesium, Total 3.730 0.2 50 50		26-Oct-00	Arsenic, Total	48.7		2.4	50	0.02/8
26-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 26-Oct-00 Cadmium, Total 203 2.7 2.7 26-Oct-00 Cadmium, Total 0.54 0.3 5 4 26-Oct-00 Calcium, Total 109000 19.2 2 26-Oct-00 Cerium, Total 35.3 U 35.3 2 26-Oct-00 Chromium, Total 1 0.6 100 100 26-Oct-00 Chromium, Total 1.8 0.9 1000 100 26-Oct-00 Cobalt, Total 1.8 0.9 1300 1000 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Lanthanum, Total 3.1 U 3.1 5/10 5/10 26-Oct-00 Lead, Total 5.4 2.1 15 5/10 26-Oct-00 Lathanum, Total 13700 6.7 2 2 26-Oct-00 Magnesium, Total 13.2 U 13.2 2 2 26-Oct-00 Mecury, Total		26-Oct-00	Barium, Total	242		0.2	2000	2000
26-Oct-00 Boron, Total 203 2.7 26-Oct-00 Cadmium, Total 0.54 0.3 5 4 26-Oct-00 Calcium, Total 109000 19.2 2 26-Oct-00 Calcium, Total 35.3 U 35.3 2 26-Oct-00 Chromium VI 0.02 U 0.02 2 26-Oct-00 Cobalt, Total 1.8 0.9 100 100 26-Oct-00 Cobalt, Total 1.8 0.9 1300 1000 26-Oct-00 Cobalt, Total 3.1 U 3.1 1 21.8 300 300 26-Oct-00 Iron, Total 3460 21.8 300 300 26 26-Oct-00 Iron, Total 546 0.2 2 26 5/10 26-Oct-00 Lathanum, Total 546 0.2 2 2 2 2 26-Oct-00 Lithium, Total 546 0.2 2 2 50 50 2 2 2 2 2 2 2 2 2 2		26-Oct-00	Beryllium, Total	0.1	U	0.1	4	0.008/20
26-Oct-00 Cadmium, Total 0.54 0.3 5 4 26-Oct-00 Calcium, Total 109000 19.2 19.2 19.2 26-Oct-00 Cerium, Total 35.3 U 35.3 100 26-Oct-00 Chromium VI 0.02 0.02 100 100 26-Oct-00 Chromium, Total 1.8 0.9 100 100 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 1000 26-Oct-00 Iron, Total 3460 21.8 300 300 26-Oct-00 Iron, Total 33.8 0 33.8 0 26-Oct-00 Lanthanum, Total 546 0.2 50 50 26-Oct-00 Magnesium, Total 13700 6.7 2 2 26-Oct-00 Magnesium, Total 3730 0.2 50 50 26-Oct-00 Magnesium, Total 3.3 U 3.3 50 50 26-Oct-00 Mecury, Total		26-Oct-00	Boron, Total	203		2.7		
26-Oct-00 Calcium, Total 109000 19.2 26-Oct-00 Cerium, Total 35.3 U 35.3 26-Oct-00 Chromium VI 0.02 U 0.02 26-Oct-00 Chromium, Total 1 0.6 100 100 26-Oct-00 Cobalt, Total 1.8 0.9 1300 1000 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 21.8 300 300 26-Oct-00 Lanthanum, Total 5.4 2.1 15 5/10 26-Oct-00 Lanthanum, Total 5.4 2.1 15 5/10 26-Oct-00 Lithium, Total 5.4 2.1 15 5/10 26-Oct-00 Magnesium, Total 13700 6.7 2 2 26-Oct-00 Magnese, Total 0.11 0.1 2 2 26-Oct-00 Magnese, Total 7.9 0.9 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-		26-Oct-00	Cadmium, Total	0.54		0.3	5	4
26-Oct-00 Cerium, Total 35.3 U 35.3 26-Oct-00 Chromium VI 0.02 U 0.02 26-Oct-00 Chromium, Total 1 0.6 100 100 26-Oct-00 Cobalt, Total 1.8 0.9 1300 1000 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 26-Oct-00 100 26-Oct-00 Lanthanum, Total 33.8 U 33.8 300 300 26-Oct-00 Lanthanum, Total 5.4 2.1 15 5/10 26-Oct-00 Lanthanum, Total 546 0.2 50 50 26-Oct-00 Magnesium, Total 13700 6.7 26 26 26-Oct-00 Marganese, Total 0.11 0.1 2 2 26-Oct-00 Marganese, Total 7.9 0.9 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Selenium, Total 3.3 50		26-Oct-00	Calcium, Total	109000		19.2		
26-Oct-00 Chromium VI 0.02 U 0.02 26-Oct-00 Chromium, Total 1 0.6 100 100 26-Oct-00 Cobalt, Total 1.8 0.9 1300 1000 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 300 300 26-Oct-00 Iron, Total 3460 21.8 300 300 26-Oct-00 Lanthanum, Total 5.4 2.1 15 5/10 26-Oct-00 Lead, Total 5.4 2.1 15 5/10 26-Oct-00 Lithium, Total 546 0.2 50 50 26-Oct-00 Magnesium, Total 13700 6.7 22 26 26-Oct-00 Mercury, Total 0.11 0.1 2 2 2 26-Oct-00 Necdymium, Total 13.2 U 13.2 100 26 26-Oct-00 Neckel, Total 7.9 0.9 100 26 26 50 50 2		26-Oct-00	Cerium, Total	35.3	U	35.3		
26-Oct-00 Chromium, Total 1 0.6 100 100 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 0.9 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 0.9 1000 26-Oct-00 Iron, Total 3460 21.8 300 300 26-Oct-00 Lanthanum, Total 33.8 U 33.8 0 26-Oct-00 Lanthanum, Total 54 2.1 15 5/10 26-Oct-00 Lathanum, Total 546 0.2 0.2 50 50 26-Oct-00 Magnesium, Total 13700 6.7 0.2 50 50 26-Oct-00 Magnese, Total 0.11 0.1 2 2 2 26-Oct-00 Nickel, Total 7.9 0.9 100 0 0 0 26-Oct-00 Nickel, Total 27.400 40.9 50000 2 50 50 50 50 50 50 <		26-Oct-00	Chromium VI	0.02	U	0.02		
26-Oct-00 Cobalt, Total 1.8 0.9 26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 21.8 300 300 26-Oct-00 Lanthanum, Total 33.8 U 33.8 21.8 300 300 26-Oct-00 Lanthanum, Total 5.4 2.1 15 5/10 26-Oct-00 Lead, Total 5.4 2.1 15 5/10 26-Oct-00 Lithium, Total 546 0.2 50 50 26-Oct-00 Magnesium, Total 13700 6.7 26 22 26-Oct-00 Magnese, Total 0.11 0.1 2 2 26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00		26-Oct-00	Chromium, Total	1		0.6	100	100
26-Oct-00 Copper, Total 4.9 0.9 1300 1000 26-Oct-00 Dysprosium, Total 3.1 U 3.1 21.8 300 300 26-Oct-00 Lanthanum, Total 33.8 U 33.8 21.8 300 300 26-Oct-00 Lanthanum, Total 33.8 U 33.8 300 300 26-Oct-00 Lead, Total 5.4 2.1 15 5/10 26-Oct-00 Lead, Total 546 0.2 5/10 26-Oct-00 26-Oct-00 Magnesium, Total 13700 6.7 2 2 26-Oct-00 Magnese, Total 0.11 0.1 2 2 26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Necdynium, Total 13.2 100 100 2 26-Oct-00 Nickel, Total 7.9 0.9 100 2 26-Oct-00 Nickel, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 3.3 U 3.3		26-Oct-00	Cobalt, Total	1.8		0.9		
26-Oct-00 Dysprosium, Total 3.1 U 3.1 26-Oct-00 Iron, Total 3460 21.8 300 300 26-Oct-00 Lanthanum, Total 33.8 U 33.8 300 300 26-Oct-00 Lead, Total 5.4 2.1 15 5/10 26-Oct-00 Lithium, Total 546 0.2 50 50 26-Oct-00 Magnesium, Total 13700 6.7 26 26 26-Oct-00 Magnese, Total 3730 0.2 50 50 26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Neodymium, Total 13.2 U 13.2 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26 26-Oct-00 Nickel, Total 59.4 1.1 1007 26 26-Oct-00 Selenium, Total 59.4 1.1 1007 26 26-Oct-00 Solium, Total 70300 4.1 50000 26 26-Oct-00 Solium, Total 3.3		26-Oct-00	Copper, Total	4.9		0.9	1300	1000
26-Oct-00 Iron, Total 3460 21.8 300 300 26-Oct-00 Lanthanum, Total 33.8 U 33.8 15 300 300 26-Oct-00 Lead, Total 5.4 2.1 15 5/10 26-Oct-00 Lithium, Total 546 0.2 0.2 50 50 26-Oct-00 Magnesium, Total 13700 6.7 0.2 50 50 26-Oct-00 Manganese, Total 3730 0.2 50 50 26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Neodymium, Total 13.2 U 13.2 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Potassium, Total 27400 40.9 50 50 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 4 U 4 2 0.5/10 26-Oct-00 Sodium, Total 4 U 4 2 0.5/10		26-Oct-00	Dysprosium, Total	3.1	U	3.1		
26-Oct-00 Lanthanum, Total 33.8 U 33.8 26-Oct-00 Lead, Total 5.4 2.1 15 5/10 26-Oct-00 Lithium, Total 546 0.2 26 27 20 20 26 </td <td></td> <td>26-Oct-00</td> <td>Iron, Total</td> <td>3460</td> <td></td> <td>21.8</td> <td>300</td> <td>300</td>		26-Oct-00	Iron, Total	3460		21.8	300	300
26-Oct-00 Lead, Total 5.4 2.1 15 5/10 26-Oct-00 Lithium, Total 546 0.2 26		26-Oct-00	Lanthanum, Total	33.8	U	33.8		
26-Oct-00 Lithium, Total 546 0.2 26-Oct-00 Magnesium, Total 13700 6.7 26-Oct-00 Manganese, Total 3730 0.2 50 50 26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Neodymium, Total 13.2 U 13.2 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Nickel, Total 27400 40.9 26-Oct-00 50 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 59.4 1.1 1007 26-Oct-00 50000 26-Oct-00 Solium, Total 70300 4.1 50000 50000 26-Oct-00 Thallium, Total 4 U 4 2 0.5/10 26-Oct-00 Thallium, Total 3.3 0.8 26-Oct-00 70500 5000 26-Oct-00 Varadium, Total 3.		26-Oct-00	Lead, Total	5.4		2.1	15	5/10
26-Oct-00 Magnesium, Total 13700 6.7 26-Oct-00 Manganese, Total 3730 0.2 50 50 26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Neodymium, Total 13.2 U 13.2 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Potassium, Total 27400 40.9 26-Oct-00 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 59.4 1.1 1007 26-Oct-00 Soliver, Total 50000 26-Oct-00 Solium, Total 4 U 4 2 0.5/10 26-Oct-00 Thallium, Total 3.3 0.8 2 0.5/10 26-Oct-00 Vanadium, Total 3.3 0.8 2 0.5/10 26-Oct-00 Vanadium, Total 1.9 U 1.9 2 0.500 26-Oct-00 Zine, Tot		26-Oct-00	Lithium, Total	546		0.2		0,10
26-Oct-00 Manganese, Total 3730 0.2 50 50 26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Neodymium, Total 13.2 U 13.2 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Nickel, Total 27400 40.9 100 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 59.4 1.1 1007 26-Oct-00 50000 26-Oct-00 Solium, Total 59.4 1.1 1007 26-Oct-00 50000 26-Oct-00 Solium, Total 4 U 4 2 0.5/10 26-Oct-00 Thallium, Total 3.3 0.8 26-Oct-00 Vanadium, Total 3.3 0.8 26-Oct-00 Yttrium, Total 1.9 U 1.9 5000 5000 26-Oct-00 Zanadium, Total 1.9 0.4 500 500 26-Oct-00 Zanadium, Total 1.9 0.4		26-Oct-00	Magnesium, Total	13700		6.7		
26-Oct-00 Mercury, Total 0.11 0.1 2 2 26-Oct-00 Neodymium, Total 13.2 U 13.2 100 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Potassium, Total 27400 40.9 26 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 59.4 1.1 1007 26 50000 26-Oct-00 Soliver, Total 59.4 1.1 50000 26 50000 26-Oct-00 Solium, Total 4 U 4 2 0.5/10 26-Oct-00 Thallium, Total 3.3 0.8 2 0.5/10 26-Oct-00 Vanadium, Total 3.3 0.8 2 0.5/10 26-Oct-00 Vatadium, Total 1.9 U 1.9 2 5000 26-Oct-00 Ziter, Total 1.9 0.4 500 5000		26-Oct-00	Manganese, Total	3730		0.2	50	50
26-Oct-00 Neodymium, Total 13.2 U 13.2 26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Potassium, Total 27400 40.9 100 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 59.4 1.1 1007 26-Oct-00 50000 26-Oct-00 Soliver, Total 59.4 1.1 1007 26-Oct-00 50000 26-Oct-00 Solium, Total 70300 4.1 50000 20.5/10 26-Oct-00 26-Oct-00 Thallium, Total 4 U 4 2 0.5/10 26-Oct-00 Vanadium, Total 3.3 0.8 26-Oct-00 Yttrium, Total 1.9 U 1.9 26-Oct-00 Zine, Total 1.9 U 1.9 500 5000 26-Oct-00 Zine, Total 1.9 0.4 500 5000		26-Oct-00	Mercury, Total	0.11		0.1	2	2
26-Oct-00 Nickel, Total 7.9 0.9 100 26-Oct-00 Potassium, Total 27400 40.9 100 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Selenium, Total 59.4 1.1 1007 26-Oct-00 50000 26-Oct-00 Solium, Total 70300 4.1 50000 2000 26-Oct-00 Thallium, Total 4 U 4 2 0.5/10 26-Oct-00 Vanadium, Total 3.3 0.8 26-Oct-00 7000 1.9 26-Oct-00 Variatium, Total 1.9 U 1.9 26-Oct-00 5000 26-Oct-00 Zitratium, Total 1.9 U 500 500 26-Oct-00 Zitratium, Total 1.9 U 1.9 500 5000		26-Oct-00	Neodymium, Total	13.2	U	13.2	-	-
26-Oct-00 Potassium, Total 27400 40.9 26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Silver, Total 59.4 1.1 1007 26-Oct-00 50000 26-Oct-00 Sodium, Total 70300 4.1 50000 2000 26-Oct-00 Thallium, Total 4 U 4 2 0.5/10 26-Oct-00 Vanadium, Total 3.3 0.8 26-Oct-00 70100 1.9 1.9 26-Oct-00 Vitrium, Total 1.9 U 1.9 5000 5000		26-Oct-00	Nickel, Total	7.9		0.9		100
26-Oct-00 Selenium, Total 3.3 U 3.3 50 50 26-Oct-00 Silver, Total 59.4 1.1 1007 26-Oct-00 Sodium, Total 70300 4.1 50000 26-Oct-00 Thallium, Total 4 U 4 2 0.5/10 26-Oct-00 Thallium, Total 3.3 0.8 2 0.5/10 26-Oct-00 Vanadium, Total 1.9 U 1.9 2 0.5/10 26-Oct-00 Zitrium, Total 1.9 U 5 5 5 5		26-Oct-00	Potassium, Total	27400		40.9		
26-Oct-00 Silver, Total 59.4 1.1 1007 26-Oct-00 Sodium, Total 70300 4.1 50000 26-Oct-00 Thallium, Total 4 U 4 2 0.5/10 26-Oct-00 Thallium, Total 3.3 0.8 26-Oct-00 Yttrium, Total 1.9 U 1.9 26-Oct-00 Zitrium, Total 1.9 U 1.9 5000 5000		26-Oct-00	Selenium, Total	3.3	U	3.3	50	50
26-Oct-00 Sodium, Total 70300 4.1 50000 26-Oct-00 Thallium, Total 4 U 4 2 0.5/10 26-Oct-00 Vanadium, Total 3.3 0.8 0.8 0.8 0.4 5000 26-Oct-00 Yttrium, Total 1.9 U 1.9 0.4 500 5000		26-Oct-00	Silver, Total	59.4	-	1,1	1007	00
26-Oct-00 Thallium, Total 4 U 4 2 0.5/10 26-Oct-00 Vanadium, Total 3.3 0.8 26-Oct-00 Yttrium, Total 1.9 U 1.9 26-Oct-00 Zitrium, Total 1.9 0.4 500		26-Oct-00	Sodium, Total	70300		4.1		50000
26-Oct-00 Vanadium, Total 3.3 0.8 26-Oct-00 Yttrium, Total 1.9 U 1.9 26-Oct-00 Yttrium, Total 1.9 U 1.9		26-Oct-00	Thallium, Total	4	U	4	2	0.5/10
26-Oct-00 Yttrium, Total 1.9 U 1.9 26 Oct 00 Zino Total 186 04 500 500		26-Oct-00	Vanadium. Total	3.3	-	0.8	-	0.0/10
		26-Oct-00	Yttrium. Total	1.9	U	1.9		
		26-Oct-00	Zinc, Total	186	-	0.4	500	5000

Table 5-A
2000 Surface Water Analytical Results - Metals
Maywood Interim Storage Site - October 2000

Sampling Location Date Collected Analyte (ug/L) Result ⁴ (ug/L) Qualifier (ug/L) Federal ⁴ (ug/L) State ⁴ (ug/L) WBSW-4 23-Oct-00 Aluminum, Total 54.3 10.6 200 200 23-Oct-00 Arismory, Total 2.3 U 2.1 6 2/20 23-Oct-00 Arismory, Total 1.66 0.2 2000 2/2000 23-Oct-00 Beryllimm, Total 0.1 U 0.1 4 0.000/200 23-Oct-00 Calcium, Total 9.7 2.1 1 0.000/200 23-Oct-00 Calcium, Total 7.100 8.9 100 100 23-Oct-00 Calcium, Total 0.9 U 0.8 1300 1000 23-Oct-00 Cobelit, Total 0.9 U 0.8 1300 100 23-Oct-00 Cobelit, Total 1.1 16.4 300 300 23-Oct-00 Cabelit, Total 2.1 15 5/10 23-Oct-00 Magnesium, Total 3.3						Reporting	Related F	<u>Regulations</u>
Location Collected (ug/L) S&W ⁰ (ug/L) (ug/L) (ug/L) WBSW-4 23-Oct-00 Antimony, Total 2.3 U 2.1 6 220 23-Oct-00 Artimony, Total 2.3 U 2.1 6 220 23-Oct-00 Barium, Total 166 0.2 2000 2000 23-Oct-00 Barium, Total 0.1 U 0.1 4 0.002820 23-Oct-00 Gadmium, Total 7.7 2.1 0.008220 0.23 23-Oct-00 Carium, Total 35.3 U 35.3 0 0.3 23-Oct-00 Carium, Total 35.3 U 0.9 100 100 23-Oct-00 Chromium, Total 1.1 0.1 0.2 0.0 0.3 0.0 0.0 23-Oct-00 Chromium, Total 1.3.1 U 1.3 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 </th <th>Sampling</th> <th>Date</th> <th>Analyte</th> <th>Result^a</th> <th>Qualifier</th> <th>Limit</th> <th>Federal^c</th> <th>State^d</th>	Sampling	Date	Analyte	Result ^a	Qualifier	Limit	Federal ^c	State ^d
WBSW-4 23-Oct-00 Aluminum, Total 54.3 U 2.1 6 2/20 23-Oct-00 Arisenic, Total 3.8 3.4 50 0/20 2/20 23-Oct-00 Barium, Total 1.66 0.2 2000 2000 2000 23-Oct-00 Berylium, Total 0.1 U 0.1 4 0.008/20 23-Oct-00 Cadminm, Total 0.7 2.1 2.3 0/200 2000 23-Oct-00 Cadium, Total 0.3 U 0.3 5 4 23-Oct-00 Cadium, Total 35.3 U 35.3 23-Oct-00 Cohent, Total 0.9 U 0.9 100 100 23-Oct-00 Chornium, Total 3.1 U 3.1 U 3.1 0 3.3 <t< th=""><th>Location</th><th>Collected</th><th></th><th>(ug/L)</th><th>S&W⁵</th><th>(ug/L)</th><th>(ug/L)</th><th>(ug/L)</th></t<>	Location	Collected		(ug/L)	S&W⁵	(ug/L)	(ug/L)	(ug/L)
WBSW-4 23-Oct-00 Aluminum, Total 54.3 10.6 200 200 23-Oct-00 Artsnor, Total 3.8 3.4 50 0.02/8 23-Oct-00 Barium, Total 0.1 U 0.1 4 0.008/20 23-Oct-00 Barium, Total 0.1 U 0.1 4 0.008/20 23-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 23-Oct-00 Cadmium, Total 7.7 2.1 0.008/20 0.002 23-Oct-00 Cadmium, Total 0.9 U 0.9 100 100 23-Oct-00 Chromium, Total 0.9 U 0.8 1300 1000 23-Oct-00 Copper, Total 2.6 0.8 1300 1000 23-Oct-00 Iron, Total 3.1 U 3.1 5.3 3.8 23-Oct-00 Marganese, Total 3.5 2.1 15 5/10 23-Oct-00 Marganese, Total 3.5 2.2 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
23-Oct-00 Antimony, Total 2.3 U 2.1 6 220 23-Oct-00 Barium, Total 166 0.2 2000 2000 23-Oct-00 Berylium, Total 0.1 U 0.1 4 0.009/20 23-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 23-Oct-00 Calcium, Total 77 2.1 1 100 100 23-Oct-00 Calcium, Total 0.9 U 0.3 5 4 23-Oct-00 Chernium VI 0.02 U 0.02 100 100 23-Oct-00 Chernium, Total 3.1 U 3.1 100 100 23-Oct-00 Cobelt, Total 3.1 U 3.1 15 5/10 23-Oct-00 Lead, Total 4 2.1 15 5/10 23-Oct-00 Magnesium, Total 23.6 0.2 50 50 23-Oct-00 Magnesium, Total 13.2 U 13.2 2 2 23-Oct-00 Magnesium, Total 3.54	WBSW-4	23-Oct-00	Aluminum, Total	54.3		10.6	200	200
23-0ct-00 Arsonic, Total 3.8 3.4 50 0.02/8 23-0ct-00 Berylim, Total 0.1 U 0.1 4 0.008/20 23-0ct-00 Beron, Total 9.7 2.1 4 0.008/20 23-0ct-00 Calcium, Total 0.3 U 0.3 5 4 23-0ct-00 Calcium, Total 35.3 U 35.3 100 100 23-0ct-00 Chromium VI 0.02 U 0.9 100 100 23-0ct-00 Copper, Total 2.6 0.8 1300 1000 23-0ct-00 Copper, Total 3.6 0.1 3.1 0 3.1 23-0ct-00 Lead, Total 3.1 U 3.1 0.1 2 2 23-0ct-00 Marganese, Total 2.1 15 5/10 2 2 23-0ct-00 Marganese, Total 1.1 U 1.1 1007 2 2 2 2 2 2		23-Oct-00	Antimony, Total	2.3	U	2.1	6	2/20
23-0ct-00 Barylium, Total 0.1 U 0.1 4 0.006/20 23-0ct-00 Boron, Total 97.7 2.1 4 0.006/20 23-0ct-00 Cadmium, Total 0.3 U 0.3 5 4 23-0ct-00 Calcium, Total 77.100 8.9 5 4 23-0ct-00 Chromium, Total 0.9 U 0.02 2 23-0ct-00 Chromium, Total 0.9 U 0.9 100 100 23-0ct-00 Cobelt, Total 0.9 U 0.8 1000 2 23-0ct-00 Cobelt, Total 2.6 0.8 1300 1000 23-0ct-00 Iron, Total 3.1 U 3.1 3.3 3.3 23-0ct-00 Iran, Total 2.1 15 5/10 5 5 23-0ct-00 Magnesium, Total 2.1 12 100 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 </td <td></td> <td>23-Oct-00</td> <td>Arsenic, Total</td> <td>3.8</td> <td></td> <td>3.4</td> <td>50</td> <td>0.02/8</td>		23-Oct-00	Arsenic, Total	3.8		3.4	50	0.02/8
23-Oct-00 Beron, Total 0.1 U 0.1 4 0.008/20 23-Oct-00 Cadrium, Total 0.3 U 0.3 5 4 23-Oct-00 Calcium, Total 0.3 U 0.3 5 4 23-Oct-00 Carlum, Total 35.3 U 35.3 35.3 35.3 23-Oct-00 Chronium, Total 0.9 U 0.02 0.02 0.02 23-Oct-00 Corton Copper, Total 2.6 0.8 1300 1000 23-Oct-00 Disprosium, Total 3.1 U 3.1 300 300 23-Oct-00 Lanthanum, Total 3.5 33.8 0 000 000 23-Oct-00 Lanthanum, Total 9620 7.8 0.1 0.1 2 2 23-Oct-00 Marganese, Total 0.1 U 0.1 2 2 2 2 2 2 0.50 50 23-Oct-00 Marganese, Total 0.1 U 0.1 2 2 2 2 2 2 0.5000 <td></td> <td>23-Oct-00</td> <td>Barium, Total</td> <td>166</td> <td></td> <td>0.2</td> <td>2000</td> <td>2000</td>		23-Oct-00	Barium, Total	166		0.2	2000	2000
23-Oct-00 Boron, Total 97.7 2.1 23-Oct-00 Cadmium, Total 77100 8.9 23-Oct-00 Chium, Total 35.3 U 35.3 23-Oct-00 Chromium, Total 0.9 U 0.9 23-Oct-00 Chromium, Total 0.9 U 0.9 100 23-Oct-00 Cohon Cobelt, Total 0.9 U 0.8 1000 23-Oct-00 Cohon, Total 2.6 0.8 1300 1000 23-Oct-00 Cohon, Total 3.1 U 3.1 3.0 300 23-Oct-00 Lanthanum, Total 3.5 33.8 23-Oct-00 Lady, Total 4 2.1 15 5/10 23-Oct-00 Manganese, Total 4 2.1 15 5/10 2.2 2.0 50 50 23-Oct-00 Manganese, Total 1.1 U 0.1 2 2 2.0 50 50 23-Oct-00 Nicki, Total 3.2 U 1.3 0.4 50 50 23-Oct-00 Nicki, Total		23-Oct-00	Beryllium, Total	0.1	U	0.1	4	0.008/20
23-Oct-00 Calcium, Total 0.3 U 0.3 5 4 23-Oct-00 Calcium, Total 35.3 U 35.3 1 35.3 23-Oct-00 Chromium, Total 0.9 U 0.9 100 100 23-Oct-00 Cohomium, Total 0.9 U 0.9 100 100 23-Oct-00 Cohom, Total 3.1 U 3.1 3.1 0.3 300 23-Oct-00 Lead, Total 4 2.1 15 5/10 23-Oct-00 Lead, Total 4 2.1 15 5/10 23-Oct-00 Lead, Total 4 2.1 15 5/10 23-Oct-00 Maganese, Total 0.1 U 0.1 2 2 23-Oct-00 Maganese, Total 3.5 1.2 100 2 23-Oct-00 Netodymium, Total 3.2 U 1.3 50 50 23-Oct-00 Selenium, Total 3.5 1.2 100 <td></td> <td>23-Oct-00</td> <td>Boron, Total</td> <td>97.7</td> <td></td> <td>2.1</td> <td></td> <td></td>		23-Oct-00	Boron, Total	97.7		2.1		
23-Oct-00 Calcium, Total 77100 8.9 23-Oct-00 Chornium VI 0.02 U 0.02 23-Oct-00 Chornium, Total 0.9 U 0.9 100 100 23-Oct-00 Cobeli, Total 0.9 U 0.9 100 100 23-Oct-00 Coper, Total 2.6 0.8 1300 100 23-Oct-00 Dysprosium, Total 3.1 U 3.1 1 23-Oct-00 Leanthanum, Total 35.3 33.8 5 5/10 23-Oct-00 Lead, Total 4 2.1 15 5/10 23-Oct-00 Maganese, Total 0.2 50 50 23-Oct-00 Maganese, Total 0.2 50 50 23-Oct-00 Maganese, Total 1.3.2 13.2 100 23-Oct-00 Neodymium, Total 3.5 1.2 100 23-Oct-00 Solenium, Total 3.5 1.2 100 23-Oct-00 Solenium, Total 3.3 0 4.3 50 50 23-Oct-00		23-Oct-00	Cadmium, Total	0.3	U	0.3	5	4
23-Oct-00 Cerium, Total 35.3 U 35.3 23-Oct-00 Chromium, Total 0.9 U 0.02 23-Oct-00 Cobelt, Total 0.9 U 0.8 1300 1000 23-Oct-00 Cobelt, Total 2.6 0.8 1300 1000 23-Oct-00 Desporsium, Total 3.1 U 3.1 0.01 2.3 23-Oct-00 Lanthanum, Total 35.3 33.8 300 300 23-Oct-00 Lanthanum, Total 35.3 33.8 300 300 23-Oct-00 Magnesium, Total 9620 7.8 2 2 23-Oct-00 Magnesium, Total 13.2 U 13.2 100 23-Oct-00 Magnesium, Total 13.2 U 13.2 100 23-Oct-00 Nickel, Total 1.1 U 1.1 1007 23-Oct-00 Nickel, Total 1.1 U 1.1 1007 23-Oct-00 Solum, Total 3.300		23-Oct-00	Calcium, Total	77100		8.9		
23-Oct-00 Chromium VI 0.02 U 0.9 100 100 23-Oct-00 Cobalt, Total 0.9 U 0.9 100 100 23-Oct-00 Copper, Total 2.6 0.8 1300 1000 23-Oct-00 Dysprosium, Total 3.1 U 3.1 23-Oct-00 Leanthanum, Total 35.3 33.8 33.8 23-Oct-00 Leanthanum, Total 23.6 0.2 15 5/10 23-Oct-00 Lithium, Total 23.6 0.2 15 5/10 23-Oct-00 Maganese, Total 0.1 U 0.1 2 2 23-Oct-00 Maganese, Total 0.1 U 0.1 2 2 23-Oct-00 Maganese, Total 1.3.2 U 13.2 100 23-Oct-00 Nickel, Total 2.5 1.2 100 23-Oct-00 23-Oct-00 Silver, Total 1.3 U 4.3 500 50 23-Oct-00 Silver, Total 1.3 U 3.6 2.0.5/10 23-Oct-00		23-Oct-00	Cerium, Total	35.3	U	35.3		
23-Oct-00 Chromium, Total 0.9 U 0.9 100 100 23-Oct-00 Copper, Total 2.6 0.8 1300 1000 23-Oct-00 Dysprosium, Total 3.1 U 3.1 23-Oct-00 Iron, Total 3110 16.4 300 300 23-Oct-00 Lathnanum, Total 23.6 0.2 7.8 7.8 23-Oct-00 Lathnanum, Total 23.6 0.2 7.8 7.8 23-Oct-00 Magnesium, Total 9620 7.8 7.8 7.8 23-Oct-00 Magnese, Total 0.1 U 0.1 2 2 23-Oct-00 Mercury, Total 0.1 U 0.1 2 2 23-Oct-00 Nickei, Total 2.5 1.2 100 100 23-Oct-00 Selenium, Total 3.300 3.8 50000 23-Oct-00 23-Oct-00 Solium, Total 3.8 U 0.9 23-Oct-00 Solium, Total 2.3		23-Oct-00	Chromium VI	0.02	U	0.02		
23-Oct-00 Cobelt, Total 0.9 U 0.8 23-Oct-00 Copper, Total 3.1 U 3.1 23-Oct-00 Iron, Total 3.1 U 3.1 23-Oct-00 Lanthanum, Total 35.3 33.8 23-Oct-00 Lada, Total 4 2.1 15 5/10 23-Oct-00 Magnesum, Total 23.6 0.2 50 50 23-Oct-00 Magnesum, Total 9620 7.8 23-Oct-00 Magnesum, Total 13.2 U 13.2 23-Oct-00 Meagnesum, Total 13.2 U 13.2 100 23-Oct-00 Neodymium, Total 13.2 U 13.2 100 23-Oct-00 Neodymium, Total 3500 28 50 50 23-Oct-00 Solium, Total 4.3 U 4.3 50 50 23-Oct-00 Solium, Total 1.9 U 1.9 23-Oct-00 Solium, Total 2.3 0.4 500 5000 <		23-Oct-00	Chromium, Total	0.9	U	0.9	100	100
23-Oct-00 Copper, Total 2.6 0.8 1300 1000 23-Oct-00 Dyspositorym, Total 3.1 U 3.1 23-Oct-00 Linn, Total 35.3 33.8 300 23-Oct-00 Lithium, Total 23.6 0.2 300 23-Oct-00 Magnesium, Total 9620 7.8 300 23-Oct-00 Magnesium, Total 9620 7.8 300 23-Oct-00 Magnesium, Total 0.1 U 0.1 2 2 23-Oct-00 Nickel, Total 1.3.2 U 13.2 100 32 23-Oct-00 Nickel, Total 2.5 1.2 100 32 300 3.8 50 50 23-Oct-00 Selenium, Total 3.50 3.8 50000 30 50 50 23-Oct-00 Soluim, Total 3.300 3.8 50000 300 300 23-Oct-00 Total 1.9 U 1.9 30 500		23-Oct-00	Cobalt, Total	0.9	U	0.8		
23-Oct-00 Income Total 3.1 U 3.1 23-Oct-00 Lanthanum, Total 35.3 33.8 23-Oct-00 Lanthanum, Total 35.3 33.8 23-Oct-00 Lithium, Total 23.6 0.2 23-Oct-00 Lithium, Total 23.6 0.2 23-Oct-00 Magnesium, Total 9620 7.8 23-Oct-00 Marganese, Total 0.2 50 50 23-Oct-00 Marganese, Total 0.1 U 0.1 2 2 23-Oct-00 Nickel, Total 13.2 U 13.2 100 2 23-Oct-00 Potassium, Total 3540 29.9 2 100 2 23-Oct-00 Sodium, Total 33500 3.8 50000 2 50 50 23-Oct-00 Sodium, Total 1.9 U 1.9 2 2 0.6/10 23-Oct-00 Vitrium, Total 1.9 U 1.9 2 0.000 23-Oct		23-Oct-00	Copper, Total	2.6		0.8	1300	1000
23-Oct-00 Ion, Total 110 16.4 300 300 23-Oct-00 Lead, Total 35.3 33.8 33.8 23-Oct-00 Lead, Total 4 2.1 15 5/10 23-Oct-00 Magnesium, Total 23.6 0.2 50 50 23-Oct-00 Magnesium, Total 0.1 U 0.1 2 2 23-Oct-00 Neodymium, Total 13.2 U 13.2 100 23-Oct-00 Nickel, Total 2.5 1.2 100 2 23-Oct-00 Selenium, Total 4.3 U 4.3 50 50 23-Oct-00 Soldium, Total 33500 38 50000 50000 23-Oct-00 Soldium, Total 0.8 U 0.9 2 2 23-Oct-00 Soldium, Total 1.9 U 1.9 2 2 0.4 500 5000 23-Oct-00 Autinum, Total 1.9 U 1.9 2 <		23-Oct-00	Dysprosium, Total	3.1	U	3.1		
23-Oct-00 Lanthanum, Total 35.3 33.8 23-Oct-00 Lead, Total 4 2.1 15 5/10 23-Oct-00 Lithium, Total 23.6 0.2 7.8 23 23-Oct-00 Magnesium, Total 9620 7.8 23 24 23-Oct-00 Mercury, Total 0.1 U 0.1 2 2 23-Oct-00 Mercury, Total 0.1 U 0.1 2 2 23-Oct-00 Meodymium, Total 13.2 U 13.2 100 23-Oct-00 Selenium, Total 3540 29.9 23 20 50 50 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 23 22 1000 23-Oct-00 Sodium, Total 0.8 U 0.9 23 23 0.4 500 5000 23-Oct-00 Zinc, Total 1.9 U 1.9 23 23 0.4 500 5000		23-Oct-00	Iron, Total	1110		16.4	300	300
23-Oct-00 Lead, Total 4 2.1 15 5/10 23-Oct-00 Lithium, Total 23.6 0.2		23-Oct-00	Lanthanum, Total	35.3		33.8		
23-Oct-00 Magnesium, Total 9620 7.8 23-Oct-00 Magnese, Total 0.2 50 50 23-Oct-00 Mercury, Total 0.1 U 0.1 2 2 23-Oct-00 Neodymium, Total 13.2 U 13.2 100 23-Oct-00 Nickel, Total 2.5 1.2 100 23-Oct-00 Selenium, Total 3540 29.9 0 23-Oct-00 Selenium, Total 4.3 U 4.3 50 50 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 0 23-Oct-00 Soleur, Total 1.1 U 1.1 1007 0 23-Oct-00 Trallium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vitrium, Total 0.8 U 0.9 0 0 23-Oct-00 Vitrium, Total 1.9 U 1.9 2.0 0.00 24-Oct-00 Autonon, Total <td< td=""><td></td><td>23-Oct-00</td><td>Lead, Total</td><td>4</td><td></td><td>2.1</td><td>15</td><td>5/10</td></td<>		23-Oct-00	Lead, Total	4		2.1	15	5/10
23-Oct-00 Magnesium, Total 9620 7.8 23-Oct-00 Manganese, Total 0.1 U 0.1 2 2 23-Oct-00 Neodymium, Total 13.2 U 13.2 100 23-Oct-00 Nickel, Total 2.5 1.2 100 23-Oct-00 Nickel, Total 2.5 1.2 100 23-Oct-00 Selenium, Total 4.3 U 4.3 50 50 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 33500 3.8 50000 23-Oct-00 Sodium, Total 3550 3.8 50000 20-0 20-0 7.6 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20-0 20-0 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 20-0		23-Oct-00	Lithium, Total	23.6		0.2		
23-Oct-00 Marganese, Total 0.2 50 50 23-Oct-00 Mercury, Total 0.1 U 0.1 2 2 23-Oct-00 Needymium, Total 13.2 U 13.2 100 23-Oct-00 Nickel, Total 2.5 1.2 100 23-Oct-00 Selenium, Total 3540 29.9 100 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 23-Oct-00 Solenium, Total 3500 3.8 50000 23-Oct-00 Totalium, Total 1.9 U 1.9 0.9 23-Oct-00 Totalium, Total 1.9 U 1.9 0.9 23-Oct-00 Zinc, Total 2.3 0.4 500 5000 23-Oct-00 Zinc, Total 2.3 U 2.1 6 2/20 24-Oct-00 Aluminum, Total 2.3 U 2.1 6 2/20 24-Oct-00 Barlum, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Barlum, Total 0.3 U<		23-Oct-00	Magnesium, Total	9620		7.8		
23-Oct-00 Mercury, Total 0.1 U 13.2 U 13.2 100 23-Oct-00 Nickel, Total 2.5 1.2 100 23-Oct-00 Selenium, Total 3540 29.9 29.9 23-Oct-00 Selenium, Total 4.3 U 4.3 50 50 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 23-Oct-00 Soluer, Total 1.1 U 1.1 1007 23-Oct-00 Solum, Total 33500 3.8 50000 23-Oct-00 Thailium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.8 U 0.9 20-Oct-0 Yatim, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 200 24-Oct-00 Atimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Atimony, Total 157 0.2 2000 2000 2000 24-Oct-00 Barium, Total 0.1		23-Oct-00	Manganese, Total			0.2	50	50
23-Oct-00 Nickel, Total 13.2 U 13.2 23-Oct-00 Nickel, Total 2.5 1.2 100 23-Oct-00 Selenium, Total 3540 29.9 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 23-Oct-00 Selenium, Total 1.1 U 1.1 1007 23-Oct-00 Solum, Total 1.1 U 1.1 1007 23-Oct-00 Solum, Total 1.1 U 3.8 50000 23-Oct-00 Thallium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Yttrium, Total 1.9 U 1.9 23-Oct-00 200 200 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Antimony, Total 157 0.2 2000 2000 24-Oct-00 24-Oct-00 Calum, Total 95.1 2.1 2.1 24-Oct-00 Calum, Total 95.3 4 24-Oct-00<		23-Oct-00	Mercury, Total	0.1	U	0.1	2	2
23-Oct-00 Nickel, Total 2.5 1.2 100 23-Oct-00 Potassium, Total 3540 29.9 23-Oct-00 Selenium, Total 4.3 U 4.3 50 50 23-Oct-00 Solenium, Total 1.1 U 1.1 1007 23-Oct-00 Solum, Total 33500 3.8 50000 23-Oct-00 Solum, Total 33500 3.8 50000 23-Oct-00 Yanadium, Total 0.8 U 0.9 23-Oct-00 Yanadium, Total 1.9 U 1.9 23-Oct-00 Yanadium, Total 1.9 U 1.9 23-Oct-00 Zanochou Yanadium, Total 1.9 U 1.9 23-Oct-00 Zanochou Yanadium, Total 1.9 U 1.9 23-Oct-00 Zanochou Yanadium, Total 2.3 U 2.1 6 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20 2/20		23-Oct-00	Neodymium, Total	13.2	U	13.2		
23-Oct-00 Potassium, Total 3540 29.9 23-Oct-00 Selenium, Total 4.3 U 4.3 50 50 23-Oct-00 Silver, Total 1.1 U 1.1 1007 23-Oct-00 Solium, Total 33500 3.8 50000 23-Oct-00 Thallium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Thallium, Total 0.8 U 0.9 23-Oct-00 Yithium, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 WBSW-5 24-Oct-00 Aluminum, Total 2.7 U 10.6 200 200 24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Barium, Total 1.5 0.2 2000 2000 24-Oct-00 Berolin, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Berolin, Total 0.3 U 0.3 5 4 24-Oct-00 Calcium, Total <t< td=""><td></td><td>23-Oct-00</td><td>Nickel, Total</td><td>2.5</td><td></td><td>1.2</td><td></td><td>100</td></t<>		23-Oct-00	Nickel, Total	2.5		1.2		100
23-Oct-00 Selenium, Total 4.3 U 4.3 50 50 23-Oct-00 Solum, Total 1.1 U 1.1 1007 23-Oct-00 Solum, Total 33500 3.8 50000 23-Oct-00 Thallium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.8 U 0.9 23-Oct-00 Yanadium, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 WBSW-5 24-Oct-00 Aluminum, Total 22.7 U 10.6 200 200 24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Beryllium, Total 0.3 U 0.3 5 4 24-Oct-00 Carium, Total 82200 8.9 24-Oct-00 Carium, Total		23-Oct-00	Potassium, Total	3540		29.9		
23-Oct-00 Silver, Total 1.1 U 1.1 1007 23-Oct-00 Sodium, Total 33500 3.8 50000 23-Oct-00 Thallium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.8 U 0.9 23-Oct-00 Yttrium, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 23-Oct-00 Zinc, Total 23.3 0.4 500 200 23-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Antimony, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Barium, Total 0.3 U 0.3 5 4 24-Oct-00 Calnium, Total 0.3 U 0.3 5 4 24-Oct-00 Calcium, Total 35.3 U 35.3 24-Oct-00 Calcium, Total 35.3 24-Oct-00 100<		23-Oct-00	Selenium, Total	4.3	U	4.3	50	50
23-Oct-00 Sodium, Total 33500 3.8 50000 23-Oct-00 Thallium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.8 U 0.9 23-Oct-00 23-Oct-00 Zinc, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 WBSW-5 24-Oct-00 Aluminum, Total 2.7 U 10.6 200 200 24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Arsenic, Total 2.3 U 2.1 6 2/20 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Calmum, Total 95.1 2.1 21 24-Oct-00 Calmum, Total 89 24-Oct-00 Calmum, Total 35.3 U 35.3 24-Oct-00 100 100 24-Oct-00 Chromium VI 0.02		23-Oct-00	Silver, Total	1.1	U	1.1	1007	
23-Oct-00 Ihalium, Total 4 U 3.6 2 0.5/10 23-Oct-00 Vanadium, Total 0.8 U 0.9 19 23-Oct-00 Yttrium, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 WBSW-5 24-Oct-00 Aluminum, Total 22.7 U 10.6 200 200 24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Boron, Total 95.1 2.1 21 24-Oct-00 Calcium, Total 0.3 5 4 24-Oct-00 Calcium, Total 35.3 U 35.3 24-Oct-00 Chromium VI 0.02 24-Oct-00 100 100 24-Oct-00 Chormium, Total 0.5		23-Oct-00	Sodium, Total	33500		3.8		50000
23-Oct-00 Vanadium, Iotal 0.8 U 0.9 23-Oct-00 Yttrium, Total 1.9 U 1.9 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 WBSW-5 24-Oct-00 Aluminum, Total 22.7 U 10.6 200 200 24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Beron, Total 95.1 2.1 21 24-Oct-00 Cadmium, Total 82200 8.9 24-Oct-00 Calcium, Total 82200 8.9 24-Oct-00 Chromium VI 0.02 0.02 24-Oct-00 Chromium VI 0.02 0.02 24-Oct-00 Chromium VI 0.02 0.02 0.02 24-Oct-00 100 100 24-Oct-00 Chromium, Total 35.3 0 0.3<		23-Oct-00	Thallium, Total	4	U	3.6	2	0.5/10
23-Oct-00 Yttrum, Iotal 1.9 U 1.9 23-Oct-00 Zinc, Total 23.3 0.4 500 5000 WBSW-5 24-Oct-00 Aluminum, Total 22.7 U 10.6 200 200 24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Boron, Total 95.1 2.1 2.1 2.1 2.1 24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Calcium, Total 82200 8.9 24-Oct-00 24-Oct-00 Chromium VI 0.02 24-Oct-00 100 100 24-Oct-00 Chromium, Total 0.9 U 0.8 1300 1000<		23-Oct-00	Vanadium, Total	0.8	U	0.9		
23-Oct-00 Zinc, Total 23.3 0.4 500 5000 WBSW-5 24-Oct-00 Aluminum, Total 22.7 U 10.6 200 200 24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Beron, Total 95.1 2.1 21 24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Cadmum, Total 0.3 U 0.3 5 4 24-Oct-00 Chromium, Total 35.3 24-Oct-00 Chromium VI 0.02 0.02 24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 24-Oct-00 Chromium, Total 0.6 U 0.9 10		23-Oct-00	Yttrium, Total	1.9	U	1.9		
WBSW-5 24-Oct-00 Aluminum, Total 22.7 U 10.6 200 200 24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Boron, Total 95.1 2.1 21 24-0ct-00 24-0ct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Cadium, Total 82200 8.9 24-0ct-00 24-0ct-00 24-0ct-00 24-0ct-00 24-0ct-00 100 100 24-Oct-00 Chornium VI 0.02 U 0.02 24-0ct-00 100 100 24-Oct-00 Chornium, Total 0.6 U 0.9 100 100 24-Oct-00 Chornium, Total 0.6 U 0.9 100 100 24-Oct-00 Copper, Total 1.5		23-Oct-00	Zinc, Total	23.3	·	0.4	500	5000
24-Oct-00 Antimony, Total 2.3 U 2.1 6 2/20 24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Boron, Total 95.1 2.1 21 24 0.008/20 24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Calcium, Total 82200 8.9 24 24 24 24-Oct-00 Chromium VI 0.02 U 0.02 24 24 24 0.002 24 0.002 24 24 24 24 200 100 100 100 24 24 24 0.6 U 0.9 100 100 24 24 24 24 24 24 24 24 24 24	WBSW-5	24-Oct-00	Aluminum, Total	22.7	п	10.6	200	200
24-Oct-00 Arsenic, Total 2.4 U 3.4 50 0.02/8 24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 157 0.1 4 0.008/20 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Boron, Total 95.1 2.1 2.1 2.1 2.1 24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Calcium, Total 82200 8.9 2.1 2.1 2.1 24-Oct-00 Calcium, Total 35.3 U 35.3 3.5 4 24-Oct-00 Chromium VI 0.02 U 0.02 0.02 2.1 24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 24-Oct-00 Copper, Total 1.5 0.8 1300 1000 24-Oct-00 Dysprosium, Total 3.1 U 3.1 0.0 300 24-Oct-00 Lanthanum, Total </td <td></td> <td>24-Oct-00</td> <td>Antimony Total</td> <td>23</td> <td>ŭ</td> <td>2 1</td> <td>6</td> <td>2/20</td>		24-Oct-00	Antimony Total	23	ŭ	2 1	6	2/20
24-Oct-00 Barium, Total 157 0.2 2000 2000 24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Boron, Total 95.1 2.1 2.1 4 0.008/20 24-Oct-00 Boron, Total 95.1 2.1 2.1 4 0.008/20 24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Calcium, Total 82200 8.9 4 4 4 24-Oct-00 Cerium, Total 35.3 U 35.3 100 100 24-Oct-00 Chromium VI 0.02 U 0.02 0.02 100 100 24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 100 24-Oct-00 Cobalt, Total 0.9 U 0.8 1300 1000 24-Oct-00 Dysprosium, Total 3.1 U 3.1 100 100 24-Oct-00 Izon, Total 33.8 16.4 300 300 300		24-Oct-00	Arsenic Total	24	ŭ	34	50	0.02/8
24-Oct-00 Beryllium, Total 0.1 U 0.1 4 0.008/20 24-Oct-00 Boron, Total 95.1 2.1 2.1 24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Calcium, Total 82200 8.9 24-Oct-00 24-Oct-00 Cerium, Total 35.3 0 35.3 24-Oct-00 Cerium, Total 35.3 U 0.02 0.02 24-Oct-00 Chromium VI 0.02 0.02 24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 24-Oct-00 Cobalt, Total 0.6 U 0.9 100 100 24-Oct-00 Cobalt, Total 0.9 U 0.8 1300 1000 24-Oct-00 Copper, Total 1.5 0.8 1300 1000 24-Oct-00 Iron, Total 31 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 16.4 300 <t< td=""><td></td><td>24-Oct-00</td><td>Barium, Total</td><td>157</td><td>U</td><td>0.4</td><td>2000</td><td>2000</td></t<>		24-Oct-00	Barium, Total	157	U	0.4	2000	2000
24-Oct-00 Boron, Total 95.1 2.1 24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Cadmium, Total 82200 8.9		24-Oct-00	Bervilium, Total	0.1	11	0.1	4	0.008/20
24-Oct-00 Cadmium, Total 0.3 U 0.3 5 4 24-Oct-00 Calcium, Total 82200 8.9 24		24-Oct-00	Boron, Total	95.1	Ũ	2.1	7	0.000/20
24-Oct-00 Calcium, Total 82200 8.9 24-Oct-00 Cerium, Total 35.3 U 35.3 24-Oct-00 Chromium VI 0.02 U 0.02 24-Oct-00 Chromium VI 0.02 U 0.02 24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 24-Oct-00 Cobalt, Total 0.9 U 0.8 1300 1000 24-Oct-00 Copper, Total 1.5 0.8 1300 1000 24-Oct-00 Dysprosium, Total 3.1 U 3.1 24-Oct-00 100 24-Oct-00 Iron, Total 543 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 U 33.8 24-Oct-00 24-Oct-00 Lead, Total 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Cadmium, Total	0.3	U	0.3	5	4
24-Oct-00 Cerium, Total 35.3 U 35.3 24-Oct-00 Chromium VI 0.02 U 0.02 24-Oct-00 Chromium VI 0.02 U 0.02 24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 24-Oct-00 Cobalt, Total 0.9 U 0.8 1300 1000 24-Oct-00 Copper, Total 1.5 0.8 1300 1000 24-Oct-00 Dysprosium, Total 3.1 U 3.1 24-Oct-00 Iron, Total 543 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 U 33.8 24-Oct-00 Lead, Total 2.1 15 5/10 24-Oct-00 Lead, Total 2.1 U 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Calcium, Total	82200	Ū	89	0	4
24-Oct-00 Chromium VI 0.02 U 0.02 24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 24-Oct-00 Cobalt, Total 0.9 U 0.8 1300 1000 24-Oct-00 Copper, Total 1.5 0.8 1300 1000 24-Oct-00 Dysprosium, Total 3.1 U 3.1 3.1 3.1 24-Oct-00 Iron, Total 543 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 U 33.8 33.8 24-Oct-00 Lead, Total 2.1 U 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Cerium, Total	35.3	U	35.3		
24-Oct-00 Chromium, Total 0.6 U 0.9 100 100 24-Oct-00 Cobalt, Total 0.9 U 0.8 1300 1000 24-Oct-00 Copper, Total 1.5 0.8 1300 1000 24-Oct-00 Dysprosium, Total 3.1 U 3.1 24-Oct-00 Iron, Total 543 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 U 33.8 24-Oct-00 Lead, Total 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Total 9600 7.8		24-Oct-00	Chromium VI	0.02	ŭ	0.02		
24-Oct-00 Cobalt, Total 0.9 U 0.8 100 24-Oct-00 Copper, Total 1.5 0.8 1300 1000 24-Oct-00 Dysprosium, Total 3.1 U 3.1 24-Oct-00 16.4 300 300 24-Oct-00 Iron, Total 543 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 U 33.8 24-Oct-00 Lead, Total 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Total 9600 7.8		24-Oct-00	Chromium, Total	0.6	Ũ	0.9	100	100
24-Oct-00 Copper, Total 1.5 0.8 1300 1000 24-Oct-00 Dysprosium, Total 3.1 U 3.1 24-Oct-00 Iron, Total 543 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 U 33.8 24-Oct-00 Lead, Total 2.1 U 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Cobalt, Total	0.9	Ŭ	0.8		100
24-Oct-00 Dysprosium, Total 3.1 U 3.1 24-Oct-00 Iron, Total 543 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 U 33.8 24-Oct-00 Lead, Total 2.1 U 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Copper, Total	1.5	Ť	0.8	1300	1000
24-Oct-00 Iron, Total 543 16.4 300 300 24-Oct-00 Lanthanum, Total 33.8 U 33.8 24-Oct-00 Lead, Total 2.1 U 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Dysprosium Total	3.1	U	3.1	1000	1000
24-Oct-00 Lanthanum, Total 33.8 U 33.8 24-Oct-00 Lead, Total 2.1 U 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Iron. Total	543	~	16.4	300	300
24-Oct-00 Lead, Total 2.1 U 2.1 15 5/10 24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Lanthanum. Total	33.8	U	33.8	000	000
24-Oct-00 Lithium, Total 41.4 0.2 24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Lead. Total	2.1	Ŭ	21	15	5/10
24-Oct-00 Magnesium, Total 9600 7.8		24-Oct-00	Lithium, Total	41.4	<u> </u>	0.2		5/10
		24-Oct-00	Magnesium, Total	9600		7.8		

					Reporting	Related R	egulations
Sampling	Date	Analyte	Result ^a	Qualifier	Limit	Federal ^c	State ^d
Location	Collected		(ug/L)	S&W ^b	(ug/L)	(ug/L)	(ug/L)
	24-Oct-00	Manganese, Total	201		0.2	50	50
	24-Oct-00	Mercury, Total	0.1	U	0.1	2	2
	24-Oct-00	Neodymium, Total	13.2	U	13.2		
	24-Oct-00	Nickel, Total	3		1.2		100
	24-Oct-00	Potassium, Total	3550		29.9		
	24-Oct-00	Selenium, Total	3.3	U	4.3	50	50
	24-Oct-00	Silver, Total	8.6		1.1	1007	
	24-Oct-00	Sodium, Total	35900		3.8		50000
	24-Oct-00	Thallium, Total	4	U	3.6	2	0.5/10
	24-Oct-00	Vanadium, Total	0.8	U	0.9		
	24-Oct-00	Yttrium, Total	1.9	U	1.9		
	24-Oct-00	Zinc, Total	19.1		0.4	500	5000

Table 5-A 2000 Surface Water Analytical Results - Metals Maywood Interim Storage Site - October 2000

^a Only the analytes that were detected are reported. Shaded results indicate reported value exceeds criteria.

^b S&W and laboratory data qualifier flags:

U= The analyte was not detected

J= Reported as estimated value

^cFederal SDWA MCLs, 40 CFR 141. Regulations pertain to drinking water quality and are listed for comparison purposes only.

^d New Jersey surface water standards (NJAC 7:9-6).

Shaded values indicate exceedance above Federal/State limits.

SWMET-GWRI.xls06/21/2001

Sampling Location	Date Collected	Analyte	Result ^a (pCi/g)		Error	Qualifier S&W [~]	MDA ^c (pCi/g)	Cleanup Criteria ^ª (pCi/g)
SWSD001	24-Jul-00	Radium 226	0.98	±	0.25	I	0.19	5
	24-Jul-00	Radium 228	0.59	+	0.44	Ш.	0.72	5
	24-Jul-00	Thorium 228	0.62	±	0.23	I I	0.12	5
	24-Jul-00	Thorium 230	0.46	+	0.18	J	0.12	5
	24-Jul-00	Thorium 232	0.65	±	0.23	J	0.12	5
	24-Jul-00	Uranium 234	0.32	±	0.16	Ţ	0.09	5
	24-Jul-00	Uranium 235	0.02	±	0.04	UJ	0.05	
	24-Jul-00	Uranium 238	0.24	±	0.13	J	0.00	
	24-Jul-00	Total uranium	0.58		0110	·	0.10	100
· · · · · · · · · · · · · · · · · · ·								
SWSD002	24-Jul-00	Radium 226	0.58	±	0.16	J	0.12	5
	24-Jul-00	Radium 228	0.31	±	0.40	UJ	0.66	5
	24-Jul-00	Thorium 228	0.29	±	0.19	J	0.23	
	24-Jul-00	Thorium 230	0.53	±	0.25	J	0.10	5
	24-Jul-00	Thorium 232	0.35	Ŧ	0.20	J	0.15	5
	24-Jul-00	Uranium 234	0.28	±	0.14	J	0.10	
	24-Jul-00	Uranium 235	-0.01	±	0.01	UJ	0.09	
	24-Jul-00	Uranium 238	0.21	±	0.12	J	0.09	
	24-Jul-00	Total uranium	0.48					100
SWSD002	24-Jul-00	Thorium 228	0.25	±	0.15	J	0.11	
Duplicate	24-Jul-00	Thorium 230	0.90	±	0.32	J	0.05	5
	24-Jul-00	Thorium 232	0.25	±	0.14	J	0.10	5
	24-Jul-00	Uranium 234	0.39	±	0.16	J	0.07	
	24-Jul-00	Uranium 235	0.03	±	0.05	UJ	0.09	
	24-Jul-00	Uranium 238	0.42	±	0.16	J	0.03	
	24-Jul-00	Total uranium	0.84					100
SWSD005	20-Jul-00	Radium 226	-1.21	±	0.19	R	0.14	5
	20-Jul-00	Radium 228	2.64	±	0.52	J	0.62	5
	20-Jul-00	Thorium 228	1.50	±	0.56		0.28	
	20-Jul-00	Thorium 230	0.65	±	0.28	J	0.14	5
	20-Jul-00	Thorium 232	1.73	±	0.61		0.12	5
	20-Jul-00	Uranium 234	1.06	±	0.31		0.07	
	20-Jul-00	Uranium 235	0.04	±	0.05	UJ	0.07	
	20-Jul-00	Uranium 238	0.69	±	0.23	J	0.09	
	20-Jul-00	Total uranium	1.79					100
SWSD005	20-Jul-00	Radium 226	-0.72	±	0.11	R	0.15	5
Duplicate	20-Jul-00	Radium 228	2.39	±	0.50	J	0.59	5
-	20-Jul-00	Thorium 228	1.70	±	0.56		0.25	
	20-Jul-00	Thorium 230	0.64	±	0.31	J	0.12	5
	20-Jul-00	Thorium 232	1.70	±	0.55		0.10	5
	20-Jul-00	Uranium 234	0.53	±	0.19	J	0.09	
	20-Jul-00	Uranium 235	0.01	±	0.03	U	0.07	
	20-Jul-00	Uranium 238	0.77	±	0.25	J	0.06	
	20-Jul-00	Total uranium	1.31					100

Table 62000 Sediment Analytical Results - Radioactive ConstituentsMaywood Interim Storage Site - July 2000

			Tuble	•					
	2000 Sedii	ment Analytical	Results	s - R	adioac	tive Con	stituents		
Maywood Interim Storage Site - July 2000									
SWSD006	20-Jul-00	Radium 226	0.64	±	0.19	J	0.17	5	
	20-Jul-00	Radium 228	0.09	±	0.32	UJ	0.56	5	
	20-Jul-00	Thorium 228	0.39	±	0.20	J	0.20		
	20-Jul-00	Thorium 230	0.27	±	0.16	J	0.11	5	
	20-Jul-00	Thorium 232	0.33	±	0.17	J	0.08	5	
	20-Jul-00	Uranium 234	0.30	±	0.14	J	0.09		
	20-Jul-00	Uranium 235	-0.01	±	0.01	U	0.09		
	20-Jul-00	Uranium 238	0.40	±	0.17	J	0.06		
	20-Jul-00	Total uranium	0.69					100	
SWSD007	20-Jul-00	Radium 226	-0.07	±	0.01	R	0.18	5	
	20-Jul-00	Radium 228	1.42	±	0.40	J	0.55	5	
	20-Jul-00	Thorium 228	1.75	±	0.70	J	0.39		
	20-Jul-00	Thorium 230	0.51	±	0.30	J	0.09	5	
	20-Jul-00	Thorium 232	1.43	±	0.59	J	0.09	5	
	20-Jul-00	Uranium 234	0.90	±	0.28	J	0.10		
	20-Jul-00	Uranium 235	0.05	±	0.06	UJ	0.07		
	20-Jul-00	Uranium 238	0.62	±	0.21	J	0.03		
	20-Jul-00	Total uranium	1.57					100	

Table 6

^aResults reported with ± radiological error equal at 2 sigma (95% confidence level), Shaded results indicate reported value exceeds criteria.

- ^b BNI data qualifier flags:
 - U = The analyte was not detected.
 - J = Reported as an estimated value.
- ^c Minimum Detectable Activity (MDA)
- ^d DOE/EPA soil criteria (DOE 1994a) and DOE site-specific criterion (DOE 1994b).
- ^e A quality control duplicate is collected at the same time and location and is analyzed by the same method in order to evaluate precision in sampling and analysis.

Table 6-A
2000 Sediment Analytical Results - Radioactive Constituents
Maywood Interim Storage Site - October, December 2000

	-		-				Cleanup
Sampling	Date	Analyte	Result ^a	Error	Qualifier	MDA ^c	Criteria ^d
Location	Collected	-	(pCi/q)		S&W ^b	(pCi/g)	(pCi/g)
sediment sar	nnles collecte	ed in Lodi Brook	()				
Scament ou							
LBSED-1	07-Dec-00	Radium-226	10.41	1.4		0.36	5
		Thorium-228	23.58	4.919		0.20	
		Thorium-230	4.48	1.103		0.21	5
		Thorium-232	21.48	4.497		0.21	5
		Uranium-234	6.22	1.38		0.18	
		Uranium-235	0.27	0.1706		0.13	
		Uranium-238	5.76	1.291		0.16	
		Total uranium	12.25				100
LBSED-3	23-Oct-00	Radium-226	1.73	0.5072	J	0.50	5
		Thorium-228	1.32	0.403		0.18	
		Thorium-230	1.17	0.3692	J	0.17	5
		Thorium-232	0.91	0.3099		0.12	5
		Uranium-234	1.59	0.4549		0.20	
		Uranium-235	0.09	0.09076	UJ	0.10	
		Uranium-238	1.09	0.3489		0.15	
		Total uranium	2.77				100
LBSED-4	19-Oct-00	Radium-226	1.84	0.5217	J	0.32	5
		Thorium-228	1.59	0.492		0.19	
		Thorium-230	0.86	0.3296	J	0.22	5
		Thorium-232	1.45	0.4574	J	0.18	5
		Uranium-234	0.78	0.2996	J	0.19	
		Uranium-235	0.05	0.0724	U	0.12	
		Uranium-238	0.88	0.3219		0.18	
		Total uranium	1.71				100
LBSED-4	19-Oct-00	Radium-226	1.4	0.4146		0.3	5
Duplicate ^e		Thorium-228	1.14	0.4171		0.2	
		Thorium-230	1.05	0.4049	J	0.31	5
		Thorium-232	1.34	0.4651	J	0.26	5
		Uranium-234	0.74	0.2894	J	0.19	
		Uranium-235	0.07	0.08765	UJ	0.13	
		Uranium-238	0.54	0.2401		0.19	100
	10.0.1.00	l otal uranium	1.35	0.402		0.40	100
LBSED-6	19-Oct-00	Radium-226	1.2	0.423	J	0.42	5
		Thorium 220	1.10	0.4320	1	0.2	F
		Thorium 222	1.20	0.4475	J	0.14	5
		Honum-232	1 52	0.000	.1	0.21	5
		Uranium-235	0.03	0.7103	5 11	0.2	
		Liranium-238	0.05	0.07103	0	0.10	
		Total uranium	1.89	0.1000		0.21	100
		Uranium-235 Uranium-238 Total uranium	0.03 0.34 1.89	0.07103 0.1889	U	0.16 0.21	100
Table 6-A 2000 Sediment Analytical Results - Radioactive Constituents Maywood Interim Storage Site - October, December 2000

							Cleanup
Sampling	Date	Analyte	Result ^a	Error	Qualifier	MDA ^c	Criteria ^d
Location	Collected		(pCi/g)		S&W ^b	(pCi/g)	(pCi/g)
LBSED-7	19-Oct-00	Radium-226	2.35	0.5965		0.48	5
		Thorium-228	1.44	0.4256		0.16	
		Thorium-230	1.03	0.3413	J	0.17	5
		Thorium-232	0.33	0.1868	J	0.21	5
		Uranium-234	0.77	0.2993	J	0.22	
		Uranium-235	0.02	0.07464	U	0.2	
		Uranium-238	0.51	0.2322		0.17	
		Total uranium	1.30				100
LBSED-8	19-Oct-00	Radium-226	2.51	0.6557		0.36	5
		Thorium-228	0.67	0.2805		0.15	
		Thorium-230	0.8	0.3175	J	0.21	5
		Thorium-232	0.6	0.2601	J	0.13	5
		Uranium-234	1.34	0.4449	J	0.18	
		Uranium-235	0.19	0.1536		0.13	
		Uranium-238	0.72	0.2988		0.18	
		Total uranium	2.25				100
Sediment sar	nples collect	ed in Westerly b	rook:				
WBSED-1	23-Oct-00	Radium-226	1.17	0.4481		0.5	5
		Thorium-228	0.8	0.3982		0.22	
		Thorium-230	1.18	0.5081		0.26	5
		Thorium-232	0.59	0.3345		0.27	5
		Uranium-234	1.19	0.4251		0.29	
		Uranium-235	0.03	0.08832		0.22	
		Uranium-238	0.95	0.3655		0.25	
		Total uranium	2.17	·····			100
WBSED-2	23-Oct-00	Radium-226	2.83	0.7473	J	0.43	5
		Thorium-228	0.8	0.3399		0.21	_
		Thorium-230	1.18	0.4299	J	0.21	5
		Thorium-232	0.47	0.2457		0.18	5
		Uranium-234	1.3	0.4196	J	0.2	
		Uranium-235	0.14	0.1269	J	0.14	
		Uranium-238	1.22	0.4011		0.18	
<u></u>		Total uranium	2.66				100
WBSED-4	23-Oct-00	Radium-226	1.2	0.4653	J	0.48	5
		Thorium-228	0.54	0.3582		0.4	
		Thorium-230	1.14	0.54	J	0.44	5
		Thorium-232	0.59	0.3562		0.29	5
		Uranium-234	1.3	0.6281	J	0.47	
		Uranium-235	0.12	0.2229	U	0.46	
		Uranium-238	1.41	0.6466	J	0.35	
		Total uranium	2.83				100

Table 6-A 2000 Sediment Analytical Results - Radioactive Constituents Maywood Interim Storage Site - October, December 2000

Sampling Location	Date Collected	Analyte	Result ^a (pCi/g)	Error	Qualifier S&W ^b	MDA ^c (pCi/g)	Cleanup Criteria ^d (pCi/g)
WBSED-5	24-Oct-00	Radium-226	1.74	0.5599	J	0.34	5
		Thorium-228	0.53	0.2156	J	0.14	
		Thorium-230	1.29	0.3769		0.13	5
		Thorium-232	0.73	0.2598		0.15	5
		Uranium-234	0.7	0.2737	J	0.16	
		Uranium-235	0.01	0.04959	U	0.14	
		Uranium-238	0.73	0.281		0.17	
		Total uranium	1.44				100

^aResults reported with ± radiological error equal at 2 sigma (95% confidence level), Shaded results indicate reported value exceeds criteria.

^b S&W data qualifier flags:

U = The analyte was not detected.

J = Reported as an estimated value.

^c Minimum Detectable Activity (MDA)

^d DOE/EPA soil criteria (DOE 1994a) and DOE site-specific criterion (DOE 1994b).

^e A quality control duplicate is collected at the same time and location and is analyzed by the same method in order to evaluate precision in sampling and analysis.

Table 6-B 2000 Sediment Analytical Results - Metals Maywood Interim Storage Site - October, December 2000

				Data	Dementine	State	Lowest	Severe
Sampling	Date	Detected	Result:	Data Qualifier"	l imits	Criteria ^c	Effects	Effects
Location	Collected	Analyte ^a	(ma/ka)	S&W	(ma/ka)	(ma/ka)	(ma/ka)	(mg/kg)
LBSED-1	08-Dec-00	Aluminum, Total	7510		4.1	NE	((
(nonresidential) 08-Dec-00	Antimony, Total	0.42	J	0.42	340		
	08-Dec-00	Arsenic, Total	30.5		0.43	20	6	33
	08-Dec-00	Barium, Total	132		0.04	47000		
	08-Dec-00	Beryllium, Total	0.57	U	0.02	1		
	08-Dec-00	Boron, Total	79.8		0.49	NE		
	08-Dec-00	Cadmium, Total	0.89		0.05	100	0.6	10
	08-Dec-00	Calcium, Total	14300		3.5	NE		
	08-Dec-00	Cenum, rolar Chromium, Total	101		0.4	NE	26	110
	08-Dec-00	Cobalt Total	3		0.16	NE	20	110
	08-Dec-00	Copper, Total	96		0.16	600	16	110
	08-Dec-00	Dysprosium, Total	3.9		0.56	NE	10	110
	08-Dec-00	Iron, Total	10400		3.9	NE		
	08-Dec-00	Lanthanum, Total	355		6.1	NE		
	08-Dec-00	Lead, Total	354	J	0.38	600	31	250
	08-Dec-00	Lithium, Total	94.6		0.04	NE		
	08-Dec-00	Magnesium, Total	1400		1.2	NE		
	08-Dec-00	Manganese, Total	94.4		0.04	NE		
	08-Dec-00	Mercury, Total	0.29	U	0.03	270		
	08-Dec-00	Neodymium, Total	301		2.4	NE	40	
	08-Dec-00	Nickel, Total Potassium Total	13.0		0.16	2400	16	75
	08-Dec-00	Selenium Total	404		1.4	3100		
	08-Dec-00	Silver, Total	0.45	ŭ	0.00	4100		
	08-Dec-00	Sodium, Total	3840	Ŭ	0.74	NE		
	08-Dec-00	Thallium, Total	0.72	U	0.72	2		
	08-Dec-00	Vanadium, Total	21.4		0.14	7100		
	08-Dec-00	Yttrium, Total	11		0.34	NE		
	08-Dec-00	Zinc, Total	226	·	0.07	1500	120	820
LBSED-3	23-Oct-00	Aluminum, Total	3020		1.1	NE		
(nonresidential) 23-Oct-00	Antimony, Total	0.27	U	0.22	340		
	23-Oct-00	Arsenic, Total	1		0.36	20	6	33
	23-Oct-00	Barium, Total	40.7		0.02	47000		
	23-Oct-00	Beryllium, Total	0.27		0.01	1		
	23-Oct-00	Boron, I otal	10.6	UJ	0.22	NE		
	23-Oct-00	Cadmium, Total	0.32		0.03	100	0.6	10
	23-Oct-00	Calcium, Total	6340		0.93	NE		
	23-Oct-00	Cenum, rotar	10.7		3.8	NE	00	440
	23-0CI-00	Coholt Total	10.2	J	0.09	NE	20	110
	23-Oct-00	Copper Total	3.3 70 Q	P	0.08	INE 600	16	110
	23-Oct-00	Dysprosium Total	0.77	IX I	0.00	NE	10	110
	23-Oct-00	Iron Total	9330		17	NE		
	23-Oct-00	Lanthanum Total	13.8		3.6	NE		
	23-Oct-00	Lead. Total	33.8		0.22	600	31	250
	23-Oct-00	Lithium, Total	3.6	J	0.02	NE	01	200
	23-Oct-00	Magnesium, Total	5020	J	0.82	NE		
	23-Oct-00	Manganese, Total	138	J	0.02	NE		
	23-Oct-00	Mercury, Total	0.11		0.02	270		
	23-Oct-00	Neodymium, Total	8.3		1.4	NE		
	23-Oct-00	Nickel, Total	11.4		0.13	2400	16	75
	23-Oct-00	Potassium, Total	233		3.1	NE		-
	23-Oct-00	Selenium, Total	0.39	U	0.45	3100		
	23-Oct-00	Silver, Total	0.14	U	0.12	4100		
	23-Oct-00	Sodium, Total	273		0.4	NE		
	23-Oct-00	Thallium, Total	0.42	U	0.38	2		
	23-Oct-00	Vanadium, Total	12.5	J	0.09	7100		
	23-Oct-00	Yttrium, Total	3.5		0.2	NE		
	23-Oct-00	Zinc, Total	108		0.04	1500	120	820

Table 6-B
2000 Sediment Analytical Results - Metals
Maywood Interim Storage Site - October, December 2000

						State	Lowest	Severe
Sampling	Date	Detected	Result:	Data Qualifier"	Reporting Limits	Proposed Criteria ^c	Effects Level (LEL)	Effects Level (SEL)
Location	Collected	Analyte ^a	(mg/kg)	S&W	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
LBSED-4	19-Oct-00	Aluminum, Total	3860		1.2	NE		
(nonresidential)) 19-Oct-00	Antimony, Total	0.43	J	0.24	340		
	19-Oct-00	Arsenic, Total	3.4	J	0.39	20	6	33
	19-Oct-00	Barium, Total	103	J	0.02	47000		
	19-Oct-00	Beryllium, Total	0.26	J	0.01	1		
	19-Oct-00	Boron, Total	10.1	J	0.24	NE		
	19-Oct-00	Cadmium, Total	0.42		0.03	100	0.6	10
	19-Oct-00	Calcium, Total	7890	J	1	NE		
	19-0ct-00	Cenum, rotal	20.3	1	4.1	NE	26	110
	19-Oct-00	Cohalt Total	4.1	5	0.1	NE	20	110
	19-Oct-00	Copper Total	47 7	R	0.09	600	16	110
	19-Oct-00	Dysprosium, Total	12		0.36	NE	10	110
	19-Oct-00	Iron. Total	15400		1.9	NE		
	19-Oct-00	Lanthanum, Total	26.1		3.9	NE		
	19-Oct-00	Lead, Total	229	J	0.24	600	31	250
	19-Oct-00	Lithium, Total	7	J	0.02	NE		
	19-Oct-00	Magnesium, Total	3730	J	0.9	NE		
	19-Oct-00	Manganese, Total	524		0.02	NE		
	19-Oct-00	Mercury, Total	0.08		0.02	270		
	19-Oct-00	Neodymium, Total	8.9		1.5	NE		
	19-Oct-00	Nickel, Total	12.1		0.14	2400	16	75
	19-Oct-00	Potassium, Total	411		3.5	NE		
	19-Oct-00	Selenium, Total	0.47		0.5	3100		
	19-Oct-00	Silver, Total	0.13		0.13	4100		
	19-Oct-00	Sodium, Total	220		0.44	NE		
	19-Oct-00	Thallium, I otal	0.46		0.46	2		
	19-Oct-00	Vanadium, Lotal	15.5		0.1	7100		
	19-Oct-00	Y ttrium, Total	4.0		0.22	NE 1500	100	000
I BSED-4	19-Oct-00	Aluminum Total	3500		1.3	NF	120	020
Dunlicate ^d	19-Oct-00	Antimony Total	0.29	11	0.29	340		
Dupiloate	19-Oct-00	Arsenic Total	2.8		0.43	20	6	33
	19-Oct-00	Barium, Total	119	J	0.03	47000	Ū.	00
	19-Oct-00	Beryllium, Total	0.22	J	0.01	1		
	19-Oct-00	Boron, Total	17.6	Ĵ	0.27	NE		
	19-Oct-00	Cadmium, Total	0.54		0.04	100	0.6	10
	19-Oct-00	Calcium, Total	6920	J	1.1	NE		
	19-Oct-00	Cerium, Total	20		4.5	NE		
	19-Oct-00	Chromium, Total	45.3		0.11	NE	26	110
	19-Oct-00	Cobalt, Total	3.8		0.1	NE		
	19-Oct-00	Copper, Total	70.3		0.1	600	16	110
	19-Oct-00	Dysprosium, Total	0.81		0.39	NE		
	19-Oct-00	Iron, Total	14200		2.1	NE		
	19-Oct-00	Lanthanum, Total	20.4		4.3	NE		
	19-Oct-00	Lead, Total	57.7	J	0.27	600	31	250
	19-Oct-00	Lithium, Total	6.2		0.03	NE		
	19-Oct-00	Magnesium, Total	2930	J	0.99	NE		
	19-Uct-00	Manganese, Lotal	305		0.03	NE		
	19-UCI-UU	Needurgium Tatal	10.07		0.02	270		
	19-0CI-00	Neouymium, rotal	10.1		1.7		10	75
	19-Oct-00	Dotassium Total	200		20.10	2400 NE	10	15
	10-00+00	Selenium Total	0 4 2		0.0 0.40	INE 3100		
	19-00-00	Silver Total	0.42	11	0.42	4100		
	19-00t-00	Sodium Total	328	.1	0.49			
	19-Oct-00	Thallium Total	0.51	5	0.40	2		
	19-Oct-00	Vanadium, Total	15.2		0.11	7100		
	19-Oct-00	Yttrium, Total	3.7		0.24	NF		
	19-Oct-00	Zinc, Total	211	J	0.05	1500	120	820

Table 6-B
2000 Sediment Analytical Results - Metals
Maywood Interim Storage Site - October, December 2000

						State	Lowest	Severe
Sampling	Date	Detected	Result:	Data Qualifier"	Reporting Limits	Proposed Criteria ^c	Effects Level (LEL)	Effects Level (SEL)
Location	Collected	Analyte ^a	(mg/kg)	S&W	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
LBSED-6	19-Oct-00	Aluminum, Total	3630		1.2	NE		
(residential)	19-Oct-00	Antimony, Total	2.6	J	0.24	14		
	19-Oct-00	Arsenic, Total	4.8	J	0.4	20	6	33
	19-Oct-00	Barium, Total	88.3	J	0.02	700		
	19-Oct-00	Beryllium, Total	0.78	J	0.01	1		
	19-Oct-00	Boron, Total	7.5	J	0.24	NE		
	19-Oct-00	Cadmium, Total	0.37		0.03	1	0.6	10
	19-Oct-00	Calcium, Total	21900	J	1	NE		
	19-Oct-00	Cerium, Total	23.8	1	4.1	NE	20	440
	19-Oct-00	Cobalt Total	20.2	J	0.1	NE.	20	110
	19-Oct-00	Conner Total	963	P	0.09	INE 600	16	110
	19-Oct-00	Dvenrosium Total	50.5 1 A	n.	0.09	NE	10	110
	19-Oct-00	Iron Total	24200		1.0	NE		
	19-Oct-00	Lanthanum Total	14 5		3.9	NE		
	19-Oct-00	Lead Total	199	.1	0.24	400	31	250
	19-Oct-00	Lithium, Total	6	Ū	0.02	NE	51	250
	19-Oct-00	Magnesium, Total	3260	L	0.91	NE		
	19-Oct-00	Manganese, Total	410	•	0.02	NE		
	19-Oct-00	Mercury, Total	0.07		0.02	14		
	19-Oct-00	Neodymium, Total	11.6		1.5	NE		
	19-Oct-00	Nickel, Total	23.9		0.14	250	16	75
	19-Oct-00	Potassium, Total	407		3.5	NE		
	19-Oct-00	Selenium, Total	0.38	U	0.38	63		
	19-Oct-00	Silver, Total	0.13	U	0.13	110		
	19-Oct-00	Sodium, Total	545	J	0.44	NE		
	19-Oct-00	Thallium, Total	0.47	U	0.47	2		
	19-Oct-00	Vanadium, Total	16.4		0.1	370		
	19-Oct-00	Yttrium, Total	6.8		0.22	NE		
10050 7	<u>19-Oct-00</u>	Zinc, Total	621	J	0.05	1500	120	820
LBSED-/	19-Oct-00	Aluminum, Total	3770		1.2	NE 14		
(residential)	19-Oct-00	Arsenic Total	39	.1	0.24	20	6	22
	19-Oct-00	Barium Total	59.8	.1	0.03	700	0	55
	19-Oct-00	Bervllium, Total	0.66	J.	0.01	1		
	19-Oct-00	Boron, Total	16.3	J	0.24	NF		
	19-Oct-00	Cadmium, Total	0.27	-	0.03	1	0.6	10
	19-Oct-00	Calcium, Total	12900	J	1	NE	010	
	19-Oct-00	Cerium, Total	16		4.1	NE		
	19-Oct-00	Chromium, Total	21		0.1	NE	26	110
	19-Oct-00	Cobalt, Total	16.6		0.09	NE	-	
	19-Oct-00	Copper, Total	222	R	0.09	600	16	110
	19-Oct-00	Dysprosium, Total	1.4		0.36	NE		
	19-Oct-00	Iron, Total	30000		1.9	NE		
	19-Oct-00	Lanthanum, Total	6.6		3.9	NE		
	19-Oct-00	Lead, Total	427	J	0.24	400	31	250
	19-Oct-00	Lithium, Total	5.9		0.02	NE		
	19-Oct-00	Magnesium, Total	7240	J	0.9	NE		
	19-Oct-00	Manganese, Total	448		0.02	NE		
	19-Oct-00	Mercury, Total	0.07		0.02	14		
	19-Oct-00	Neodymium, Total	8.2		1.5	NE		
	19-Oct-00	Nickel, Total	61		0.14	250	16	75
	19-Oct-00	Potassium, Lotal	360		3.5	NE		
	19-Oct-00	Selenium, Total	0.38		0.38	63		
	19-Oct-00	Sliver, I otal	0.14	U	0.13	110		
	19-Oct-00	Socium, Iotal	3/6	J	0.44	NE		
	19-001-00	Inamum, Iotal	U.46		0.46	2		
	19-Oct-00	Variaulum, Total	10.0 5.5		U.1 0.22	3/U		
	19-00-00	Zinc Total	0.0 1020	ı	0.22	NE 1500	400	000
	19-001-00	zino, rotal	1020	J	0.05	1500	120	820

e.

Table 6-B
2000 Sediment Analytical Results - Metals
Maywood Interim Storage Site - October, December 2000

				Data	Dente	State	Lowest	Severe
Sampling	Date	Detected	Result:	Data Qualifier"	Limits	Proposed Criteria	Effects Level (LEL)	Effects Level (SEL)
Location	Collected	Analyte ^a	(mg/kg)	S&W	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
LBSED-8	19-Oct-00	Aluminum, Total	4570		1.1	NE		
(residential)	19-Oct-00	Antimony, Total	0.7	J	0.21	14		
	19-Oct-00	Arsenic, Total	4.7	J	0.35	20	6	33
	19-Oct-00	Barium, Total	95.4	J	0.02	700		
	19-Oct-00	Beryllium, Total	0.55	J	0.01	1		
	19-Oct-00	Boron, Totai	12	J	0.21	NE		
	19-Oct-00	Cadmium, Total	0.41		0.03	1	0.6	10
	19-Oct-00	Calcium, Total	13800	J	0.9	NE		
	19-Oct-00	Cerium, Total	7.3		3.6	NE		
	19-Oct-00	Chromium, Total	27.3	J	0.09	NE	26	110
	19-Oct-00	Cobalt, Total	7.5		0.08	NE		
	19-Oct-00	Copper, Total	87.3	R	0.08	600	16	110
	19-Oct-00	Dysprosium, Total	1.1		0.31	NE		
	19-Oct-00	Iron, Total	37300		1.7	NE		
	19-Oct-00	Lanthanum, Total	5.9		3.4	NE		
	19-Oct-00	Lead, Total	128	J	0.21	400	31	250
	19-Oct-00	Lithium, Total	6.4		0.02	NE		
	19-Oct-00	Magnesium, Total	5920	J	0.79	NE		
	19-Oct-00	Manganese, Total	580		0.02	NE		
	19-Oct-00	Mercury, Total	0.04		0.01	14		
	19-Oct-00	Neodymium, Total	5.1		1.3	NE		
	19-Oct-00	Nickel, Total	24.3		0.12	250	16	75
	19-Oct-00	Potassium, Total	329		3	NE		
	19-Oct-00	Selenium, Total	0.33	U	0.33	63		
	19-Oct-00	Silver, Total	0.13	U	0.11	110		
	19-Oct-00	Sodium, Total	636	J	0.39	NE		
	19-Oct-00	Thallium, Total	0.41	U	0.41	2		
	19-Oct-00	Vanadium, Total	20.9		0.09	370		
	19-Oct-00	Yttrium, Total	4.5		0.19	NE		
	19-Oct-00	Zinc, I otal	323	J	0.04	1500	120	820
WBSED-1	23-Oct-00	Aluminum, Total	4280		1.2	NE		
(residential)	23-Oct-00	Antimony, Total	0.49		0.25	14		
	23-Oct-00	Arsenic, Total	4.3		0.4	20	6	33
	23-Oct-00	Barium, Total	47.6		0.02	700		
	23-Oct-00	Beryllium, Lotal	0.46		0.01	1		
	23-Oct-00	Boron, I otal	7.3	UJ	0.25	NE		
	23-Oct-00	Cadmium, Total	0.48		0.04	1	0.6	10
	23-Oct-00	Calcium, Total	7710		1	NE		
	23-Oct-00	Chromium, Lotal	13.6	J	0.11	NE	26	110
	23-Oct-00	Cobait, I otal	5.4	R	0.09	NE		
	23-Oct-00	Copper, Total	97.4		0.09	600	16	110
	23-Oct-00	Iron, Iotal	12500		1.9	NE		
	23-Oct-00	Lead, Total	88.8		0.25	400	31	250
	23-Oct-00	Lithium, Lotai	6.9	J	0.02	NE		
	23-001-00	Magnesium, Fotal	2590	J	0.91	NE		
	23-001-00	Manyanese, I otal	207	J	0.02	NE		
	23-UCI-UU	Niekol Total	0.07		0.02	14		_
	23-UCT-00	Nickel, Total	17.7		0.14	250	16	75
	23-Oct-00	Potassium, Lotal	403		3.5	NE		
	23-Oct-00	Selenium, I otal	0.51	U	0.5	63		
	23-Oct-00	Silver, Lotal	0.15	U	0.13	110		
	23-Uct-00	Socium, i otal	185		0.44	NE		
	23-Uct-00	Framum, Fotal	0.47		0.42	2		
	23-Oct-00	vanadium, Lotal	16.1	J	0.11	370		
	23-Oct-00	ZINC, Lotal	202		0.05	1500	120	820

Table 6-B
2000 Sediment Analytical Results - Metals
Maywood Interim Storage Site - October, December 2000

				Data	Reporting	State Proposed	Lowest Effects	Severe Effects
Sampling	Date	Detected	Result:	Qualifier	Limits	Criteria	Level (LEL)	Level (SEL)
Location	Collected	Analyte ^a	(ma/ka)	S&W	(ma/ka)	(ma/ka)	(ma/ka)	(ma/ka)
WBSED-2	23-Oct-00	Aluminum, Total	4280		1.2	NE	(33)	(
(residential)	23-Oct-00	Antimony, Total	0.49		0.25	14		
, ,	23-Oct-00	Arsenic, Total	4.3		0.4	20	6	33
	23-Oct-00	Barium, Total	47.6		0.02	700		
	23-Oct-00	Beryllium, Total	0.46		0.01	1		
	23-Oct-00	Boron, Total	7.3	UJ	0.25	NE		
	23-Oct-00	Cadmium, Total	0.48		0.04	1	0.6	10
	23-Oct-00	Calcium, Total	7710		1	NE		
	23-Oct-00	Chromium, Total	13.6	J	0.11	NE	26	110
	23-Oct-00	Cobalt, Total	5.4		0.09	NE		
	23-Oct-00	Copper, Total	97.4	R	0.09	600	16	110
	23-Oct-00	Iron, Total	12500		1.9	NE		
	23-Oct-00	Lead, Total	88.8		0.25	400	31	250
	23-Oct-00	Lithium, Total	6.9	J	0.02	NE	•••	
	23-Oct-00	Magnesium, Total	2590	Ĵ	0.91	NE		
	23-Oct-00	Manganese, Total	207	J	0.02	NE		
	23-Oct-00	Mercury, Total	0.07		0.02	14		
	23-Oct-00	Nickel, Total	17.7		0.14	250	16	75
	23-Oct-00	Potassium, Total	403		3.5	NE		
	23-Oct-00	Selenium, Total	0.51		0.5	63		
	23-Oct-00	Silver, Total	0.15	U	0.13	110		
	23-Oct-00	Sodium, Total	185		0.44	NE		
	23-Oct-00	Thallium, Total	0.47		0.42	2		
	23-Oct-00	Vanadium, Total	16.1	U	0.11	370		
	23-Oct-00	Zinc, Total	202		0.05	1500	120	820
WBSED-4	23-Oct-00	Aluminum, Total	2930		1.2	NE		
(nonresidential) 23-Oct-00	Antimony, Total	0.61		0.23	340		
	23-Oct-00	Arsenic, Total	1.9		0.38	20	6	33
	23-Oct-00	Barium, Total	31.3		0.02	47000		
	23-Oct-00	Beryllium, Total	0.3		0.01	1		
	23-Oct-00	Boron, Total	5.1	UJ	0.23	NE		
	23-Oct-00	Cadmium, Total	0.36		0.03	100	0.6	10
	23-Oct-00	Calcium, Total	2310		0.99	NE		
	23-Oct-00	Chromium, Total	9.6	J	0.1	NE	26	110
	23-Oct-00	Cobalt, Total	3.5		0.09	NE		
	23-Oct-00	Copper, Total	210	R	0.09	600	16	110
	23-Oct-00	Iron, Total	8050		1.8	NE		
	23-Oct-00	Lead, Total	50.9		0.23	600	31	250
	23-Oct-00	Lithium, Total	4.1	J	0.02	NE		
	23-Oct-00	Magnesium, Total	1490	J	0.87	NE		
	23-Oct-00	Manganese, Total	62.7	J	0.02	NE		
	23-Oct-00	Mercury, Total	0.03		0.02	270		
	23-Oct-00	Nickel, Total	15.7		0.13	2400	16	75
	23-Oct-00	Potassium, Total	305		3.3	NE		
	23-Oct-00	Selenium, Total	1.6		0.48	NE		
	23-Oct-00	Silver, Total	0.3	U	0.12	4100		
	23-Oct-00	Sodium, Total	162		0.42	NE		
	23-Oct-00	Thallium Total	0.44		0.4	2		
	20-000-00	ritainain, rotai						
	23-Oct-00	Vanadium, Total	8.9	J	0.1	7100		

.....

....

 Table 6-B

 2000 Sediment Analytical Results - Metals

 Maywood Interim Storage Site - October, December 2000

				Data	Reporting	State Proposed	Lowest Effects	Severe Effects
Sampling	Date	Detected	Result:	Qualifier	Limits	Criteria	Level (LEL)	Level (SEL)
Location	Collected	Analyte	(mg/kg)	S&W	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
WBSED-5	24-Oct-00	Aluminum, Total	2990		1.2			
(nonresidential)	24-Oct-00	Antimony, Total	0.59		0.23	340		
	24-Oct-00	Arsenic, Total	3.6		0.38	20	6	33
	24-Oct-00	Barium, Total	71.1		0.02	47000		
	24-Oct-00	Boron, Total	7.1	UJ	0.23	NE		
	24-Oct-00	Calcium, Total	3550	J	1	NE		
	24-Oct-00	Chromium, Total	9.7		0.1	NE	26	110
	24-Oct-00	Cobalt, Total	3.2		0.09	NÉ		
	24-Oct-00	Copper, Total	31.7		0.09	600	16	110
	24-Oct-00	iron, Total	8180		1.8	NE		
	24-Oct-00	Lead, Total	93.3		0.23	600	31	250
	24-Oct-00	Lithium, Total	5.8		0.02	NE		
	24-Oct-00	Magnesium, Total	2060	J	0.87	NE		
	24-Oct-00	Manganese, Total	83.3	J	0.02	NE		
	24-Oct-00	Mercury, Total	0.05	J	0.02	270		
	24-Oct-00	Nickel, Total	11.1		0.13	2400	16	75
	24-Oct-00	Potassium, Total	338		3.3	NE		
	24-Oct-00	Selenium, Total	0.39		0.48	3100		
	24-Oct-00	Silver, Total	1.1		0.12	4100		
	24-Oct-00	Sodium, Total	160		0.42	NE		
	24-Oct-00	Thallium, Total	0.45	U	0.4	2		
	24-Oct-00	Vanadium, Total	10.5	J	0.1	7100		
	24-Oct-00	Zinc, Total	158		0.04	1500	120	820

^a Only the analytes that were detected are reported. Shaded results indicate reported value exceeds criteria.

^b S&W and laboratory data qualifier flags:

U= The analyte was not detected

J= Reported as estimated value.

^c New Jersey Proposed Cleanup Standards for Contaminated Sites: Residential and Non-residential Soil Cleanup

Standards (N.J.A.C. 7:26). Residential or non-residential limits are presented, depending upon the zoning of the sampling loc ^d A quality control duplicate is collected at the same time and location, and is analyzed by the same method in

order to evaluate precision in sampling and analysis.

NE= Not established.

TABLE 7 DEPTH TO GROUNDWATER AND GROUNDWATER ELEVATIONS FOR OVERBURDEN MONITORING WELLS JANUARY THROUGH NOVEMBER 2000

MAYWOOD FUSRAP SUPERFUND SITE,

MAYWOOD, NJ

				Piezometric Elevation (ft	DTW Below Ground Surface					
Well Name	Northing	Easting	Elevation TOR (ft MSL)	MSL)	(ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	DTW Below TOR (ft)	DTW Below TOR (ft)	Groundwater Elevation (ft MSt.)
MISSO1AA	752963.64	2164101.98	62.70	60.50	14.58	16.78	45.92	12.72	14.92	47.78
MISS02A	752788.00	2164706.13	61.47	60.56	8.79	9.70	51.77	8.79	9.70	51 77
MISS03A	752302.00	2164437.77	58.52	56.56	7.10	9.06	49.46	6.36	832	50.20
MISS04A	752109.73	2164349.46	57.17	55.36	8.60	10.41	46.76	7 74	0.55	47.62
MISS05A	752360.40	2164044.20	58.65	57.86	13.07	13.86	44.79	12.21	13.00	47.02
MISSO6A	752645.21	2164224.78	58.26	57.07	7.05	8.24	50.02	6.86	8.05	43.03
MISS07A	752657.57	2164053.10	55.60	53.52	6.12	8.20	47.40	6.63	0.05	
B38W01S	752836.02	2164805.24	60.72	57.55	3.06	6.23	54.49	2.03	6.71	40.89
B38W12A	750774,61	2165389.50	50.10	47.23	3.77	6.64	43.46	3.39	0.20	54.52
B38W14S	752600.98	2163384.82	43.89	44,18	NG	NG	NA	5.30	0.25	43.85
B38W15S	752365.46	2163471.15	45.70	46.24	6.72	6 18	39.52	634	4.09	39.00
B38W17A	752019.80	2163922.90	53.24	50.70	6.53	9.07	44 17	6.53	5.80	39.90
B38W19S	752513.62	2164049.13	59,91	57.48	13.17	15.60	44.31	13 17	9.07	44.1/
B38W24\$	752193.57	2164291.43	55.04	55.38	9.85	9.51	45.53	13.17	15.60	44.31
B38W25S	752512.97	2164346.37	57.44	55.67	4.24	6.01	51.43	9.05	9,51	45.53
								743		51.43
						Min. GW Elv. (ft MSL)	39.52		Min GW Ely (ft MSL)	39.00
Legend						Max. GW Elv. (ft MSL)	54.49		Max. GW Elv. (ft MSL)	54.52
TOP . Top of Piner										
DTW. Depth to Weber										
BCC Determ Crewed Curferer										
DGS - Delow Ground SUITACE										

1

ft - feet MSL - Mean Sea Level NG - Not Gauged NA - Not Applicable

-

 \rangle

TABLE 7 DEPTH TO GROUNDWATER AND GROUNDWATER ELEVATIONS FOR OVERBURDEN MONITORING WELLS JANUARY THROUGH NOVEMBER 2000

MAYWOOD FUSRAP SUPERFUND SITE,

MAYWOOD, NJ

	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	Minimum Water Level Elevation (ft MSL) - Synoptic Gauging Year 2000	Maximum Water Level Elevation (ft MSL) - Synoptic Gauging Year 2000	Water Level Fluctuation (ft)
MISS01AA	12.16	14.36	48.34	12.31	14.51	48.19	NG	NG	NA	45.92	48.34	2.42
MISS02A	7.74	8.65	52.82	6.42	7.33	54.14	7.39	8.30	53.17	51.77	54.14	2.37
MISS03A	5.44	7,40	51.12	4.89	6.85	51.67	5.44	7.40	51.12	49.46	51.67	2.21
MISS04A	6.64	8.45	48.72	9.66	11.47	45.70	6.01	7.82	49.35	45.70	49.35	3.65
MISS05A	11.45	12.24	46.41	10.64	11.43	47.22	9.53	10.32	48.33	44.79	48.33	3.54
MISSO6A	8.58	9.77	48.49	7.08	8.27	49,99	9,14	10.33	47.93	47.93	50.21	2.28
MISS07A	6.32	8.40	47.20	6.07	8.15	47.45	6.42	8.50	47.10	46.89	47.45	0.56
B38W01S	2.49	5.66	55.06	2.34	5.51	55,21	2.69	5.86	54.86	54.49	55.21	0.72
B38W12A	2.57	5.44	44.66	2.46	5.33	44.77	2.91	5.78	44.32	43.46	44.77	1.31
B38W14S	4.74	4.45	39.44	NG	NG	N/A	NG	NG	NA	39.00	39.44	0.44
B38W15S	5.84	5.30	40.40	NG	NG	N/A	NG	NG	NA	39.52	40.40	0.88
B38W17A	5.72	8.26	44.98	5.42	7.96	45.28	6.11	8.65	44.59	44.17	45.28	1.11
B38W195	12.59	15.02	44.89	12.31	14.74	45.17	12.87	15.30	44.61	44.31	45.17	0.86
B38W24S	9.36	9.02	46.02	7.99	7.65	47 39	949	9 15	45.89	45.53	47.39	1.86
B38W25S	4.15	5.92	51.52	4,19	5.96	51.48	5.23	7.00	50.44	50.44	51.52	1.08
							,		1 20:44			4
Legend		Min. GW Elv. (ft MSL) Max. GW Elv. (ft MSL)	39.44		Min. GW Elv. (ft MSL)	44.77	大喜兴和社	Min. GW Elv. (ft MSL)	44.32	Minimum Water Level Fluctu	ation - B38W14S (ft)	0.44
				and the second of the second	WAA. GTT EIV. (ILMOL)	00.Z1	And the second se	Max. GVV CIV. (IT MSL)	34.80	Maximum water Level Fluct	1911011 - MIGG-4A (IL)	3.00

2

-

TOR - Top of Riser DTW - Depth to Water

BGS - Below Ground Surface

ft - feet

MSL - Mean Sea Level

NG - Not Gauged

NA - Not Applicable

05/08/2001

)

TABLE 8 DEPTH TO GROUNDWATER AND GROUNDWATER ELEVATION FOR BEDROCK MONITORING WELLS JANUARY THROUGH NOVEMBER 2000 FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NJ

					11/29/00			9/29/00		
Well	Northing	Easting	Elevation TOR (ft MSL)	Ground Surface Elevation (ft MSL)	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)
MISS01B	752,964.86	2,164,092.32	61.98	60.42	15.13	16.69	45.29	14.83	16.39	45.59
MISS02B	752,771.91	2,164,709.45	61.64	61.15	8.99	9.48	52.16	10.85	11 34	50.30
MISS03B	752,296.78	2,164,451.46	57.66	56.78	9.18	10.06	47.60	8.82	9.70	47.96
MISS04B	752,096.08	2,164,353.55	56.42	55.38	10.02	11.06	45.36	9.76	10.80	45.62
MISS05B	752,371,68	2,164,044.40	59.76	58.09	14.42	16.09	43.67	13.88	15.55	44.21
MISS07B	752,652.98	2,164,048.77	55.77	53.99	9.44	11.22	44.55	9.12	10.90	44.87
B38W02D	752,558.00	2,165,243.20	67.70	64.75	13.90	16.85	50.85	13.90	16.85	50.85
B38W03B	752,253.19	2,164,513.81	58.27	56.93	8.86	10.20	48.07	8.46	9.80	48.47
B38W04B	752,093.44	2,164,950.21	65.85	63.02	8.77	11.60	54,25	7.32	10.15	55.70
B38W05B	752,175.06	2,165,367.58	71.05	68.18	12.24	15.11	55,94	9.88	12.75	58.30
B38W06B	752,016.47	2,164,670.94	54,41	51.70	7.98	10.69	43.72	7.83	10.54	43.87
B38W07B	751,974,49	2,164,168.36	54.63	52.25	7.44	9.82	44.81	7.12	9.50	45.13
B38W12B	750,766.38	2,165,393.46	49.78	47.53	4.14	6.39	43.39	3.50	5.75	44.03
B38W14D	752,597.24	2,163,391.63	43.79	44.16	NG	NG	NA	4.05	3.68	40.11
B38W15D	752,369.12	2,163,474.42	45.89	46.28	5.75	5.36	40.53	5.19	4.80	41.09
B38W17B	752,021.78	2,163,927.32	53.28	50.68	7.07	9.67	43.61	6.50	9.10	44.18
B38W18D	752,505.39	2,164,783.97	57.85	58.02	4.69	4.52	53.33	5.15	4.98	52.87
B38W19D	752,522.83	2,164,045.10	59.98	57.49	13.78	16.27	43.71	13.31	15.80	44.18
B38W24D	752,193.57	2,164,291.33	54.91	55,29	9.96	9.58	45.33	9.42	9.04	45.87
B38W25D	752,520.38	2,164,353.79	58.24	56.13	4.54	6.65	51.59	4.49	6.60	51.64
						Minimum GW Elv.	40.53		Minimum GW Elv.	40.11
						Maximum GW Elv.	55.94		Maximum GW Elv.	58.30

1

11/29/00			9/29/00	
DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)
16.69	45.29	14.83	16.39	45.59
9.48	52.16	10.85	11.34	50.30
10.06	47.60	8.82	9.70	47.96
11.06	45.36	9.76	10.80	45.62
16.09	43.67	13.88	15.55	44.21
11.22	44.55	9.12	10.90	44.87
16.85	50.85	13.90	16.85	50.85
10.20	48.07	8.46	9.80	48.47
11.60	54.25	7.32	10.15	55.70
15.11	55.94	9.88	12.75	58.30
10.69	43.72	7.83	10.54	43.87
9.82	44.81	7.12	9.50	45.13
6.39	43.39	3.50	5.75	44.03
NG	NA	4.05	3.68	40.11
5.36	40.53	5.19	4.80	41.09
9.67	43.61	6.50	9.10	44.18
4.52	53.33	5.15	4.98	52.87
16.27	43.71	13.31	15.80	44.18
9.58	45.33	9.42	9.04	45.87
6.65	51.59	4.49	6.60	51.64
Minimum GW Elv.	40.53		Minimum GW Elv.	40.11
Maximum GW Elv.	55.94		Maximum GW Elv.	58.30

.

Legend

TOR - Top of Riser DTW - Depth to Water BGS - Below Ground Surface ft - feet MSL - Mean Sea Level NG - Not Gauged N/A - Not Applicable

-

)

TABLE 8 DEPTH TO GROUNDWATER AND GROUNDWATER ELEVATION FOR BEDROCK MONITORING WELLS JANUARY THROUGH NOVEMBER 2000 FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NJ

		6/12/2000		3/27/00				1/19/00			Water Level Trend	
Well	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	DTW Below Ground Surface (ft)	DTW Below TOR (ft)	Piezometric Elevation (ft MSL)	Minimum Water Level Elevation (ft MSL) - Synoptic Year 2000	Maximum Water Level Elevation (ft MSL) - Synoptic Year 2000	Water Level Fluctuation (ft)
MISS01B	14.21	15.77	46.21	14.57	16.13	45.85	14.47	16.03	45.95	45.29	46.21	0.92
MISS02B	10.28	10.77	50.87	10.01	10.50	51.14	10.41	10.90	50.74	50.30	52.16	1.86
MISS03B	8.02	8.90	48.76	7.94	8.82	48.84	8.42	9.30	48.36	47.60	48 84	1 24
MISS04B	9.01	10.05	46.37	8.72	9.76	46.66	NG	NG	N/A	45.36	46.66	1 30
MISS05B	13.23	14.90	44.86	12.99	14.66	45.10	13.53	15.20	44.56	43.67	45 10	1.00
MISS07B	8.44	10.22	45.55	8.40	10.18	45.59	8.77	10.55	45.22	44.55	45.50	1.45
B38W02D	11.67	14.62	53.08	11.73	14.68	53.02	12.60	15.55	52 15	50.85	53.08	1.04
B38W03B	7.51	8.85	49.42	7.41	8.75	49.52	8.00	9 34	48.93	48.07	49.52	1.45
B38W04B	5.87	8.70	57.15	6.07	8.90	56.95	6.87	9 70	56 15	54.25	49.32 57.15	1.45
B38W05B	7.33	10.20	60.85	6.86	9.73	61.32	8.60	11.47	59 58	55.94		2.90
B38W06B	6.69	9.40	45.01	NG	NG	NG	NG	NG	N/A	43.72	45.01	5.38
B38W07B	6.22	8.60	46.03	5.65	8.03	46.60	6.34	8 72	45.01	43.72	45.01	1.29
B38W12B	2.59	4.84	44.94	2.57	4.82	44.96	3.05	5 30	44.48	44.01	40.60	1.79
B38W14D	4.37	4.00	39.79	NG	NG	N/A	NG	NG	N/A	43.39	44.90	1.57
B38W15D	5.06	4.67	41.22	NG	NG	N/A	NG	NG	N/A		40.11	0.32
B38W17B	5.72	8.32	44.96	5.48	8.08	45.20	6 15	8 75	N/A	40.53	41.22	0.69
B38W18D	3.57	3.40	54.45	3.58	3 41	54 44	4 12	3.05	53.00	43.61	45.20	1.59
B38W19D	12.75	15.24	44,74	12 41	14.90	45.08	12.00	15 59		52.87	54.45	1.58
B38W24D	8.83	8.45	46 46	8.31	7.93	46.98	0.03	13.36	44.40	43.71	45.08	1.37
B38W25D	4.29	6.40	51.84	4 27	6.38	51.86	5 70	0.55	40.36	45.33	46.98	1.65
				7.4-7	0.00		0.18	1.90	50.34	50.34	51.86	1.52
		Minimum GW Fly	39.79			44.06	CONSTRUCTION OF THE		······································			
		Maximum GW Elv	60.85		Maximum GW Elv.	61.22		Manimum GW Elv.	44.40	Minimum Water Level Fluct	uation - B38W14D (ft)	0.32
		0.1 2.1	00.00		Maximum GW EIV.	01.32		Maximum GW EIV.	59.58	Maximum Water Level Fluch	uation - B38W05B (ft)	5.38

N DESCRIPTION N	viinimum GW Elv.	39.79	A DECEMBER OF STREET	Minimum GW Elv.	44.96	Service and	Minimum GW Elv	44 40	Minir
V	Aaximum GW Elv.	60.85		Maximum GW Elv.	61.32		Maximum GW Elv.	59.58	Maxi

2

Legend

TOR - Top of Riser

DTW - Depth to Water

BGS - Below Ground St

ft - feet

MSL - Mean Sea Level

NG - Not Gauged

N/A - Not Applicable

)

-

-

VERTICAL GRADIENT CALCULATIONS FOR MONITORING WELL CLUSTERS

MAYWOOD FUSRAP SUPERFUND SITE MAYWOOD, NJ

		Construction in a second state of the second			
					1
Woll	11/20/2000	00/20/2000	06142/2000	02/27/2000	01/10/0000
4468	Groupdwater	Groundwater	Groundwater	Groundwoter	01/19/2000
	Elevation (ft MSL)	Elevation /# MSL	Elevation (# MSL)	Elouation (# MSL)	Soundwater
				Lievadon (it ivist.)	Clevation (ILMSL)
MISSO1AA	45.92	47 78	48.34	48 19	NG
MISS01B	45.29	45.59	46.21	45.85	45.95
Hydraulic Head Difference (ft)	0.63	2 19	2 13	2.34	N/A
Gradient Direction	Downward	Downward	Downward	Downward	N/A
MISS02A	51.77	51.77	52.82	54.14	53.17
MISS02B	52.16	50.30	50.87	51.14	50.74
Hydraulic Head Difference (ft)	-0.39	1.47	1.95	3.00	2.43
Gradient Direction	Upward	Downward	Downward	Downward	Downward
MISS03A	49.46	50.20	51.12	51.67	51.12
MISS03B	47.60	47.96	48.76	48.84	48.36
Hydraulic Head Difference (ft)	1.86	2.24	2.36	2.83	2.76
Gradient Direction	Downward	Downward	Downward	Downward	Downward
	10.20		10.50		
MISSU4A	46.76	47.62	48.72	45.70	49.35
MISSU4B	45.36	45.62	46.37	46.66	NG
Credient Direction	1.40	2.00	2.30	-0.96	N/A
Gradient Direction	Downwaru	Downward	Downwaru	Opward	N/A
MISSO5A	44 79	45.65	46.41	47.22	48.33
MISS05B	43.67	44.21	44 86	45.10	40.55
Hydraulic Head Difference (ft)	1.12	1.44	1.55	2.12	3.77
Gradient Direction	Downward	Downward	Downward	Downward	Downward
MISS07A	47.40	46.89	47.20	47.45	47.10
MISS07B	44.55	44.87	45.55	45.59	45.22
Hydraulic Head Difference (ft)	2.85	2.02	1.65	1.86	1.88
Gradient Direction	Downward	Downward	Downward	Downward	Downward
B38W19S	44.31	44.31	44.89	45.17	44.61
B38W19D	43.71	44.18	44.74	45.08	44.40
Hydraulic Head Difference (ft)	0.60	0.13	0.15	0.09	0.21
Gradient Direction	Downward	Downward	Downward	Downward	Downward
B38W/245	45.53	45.53	46.02	47.20	45.90
B38W240	45.33	45.55	40.02	47.39	45.09
Hydraulic Head Difference (ft)	0.20	-0.34	-0.44	0.41	-0.47
Gradient Direction	Downward	Uoward	Unward	Downward	Linward
					opilara
B38W25S	51.43	51,43	51.52	51.48	50.44
B38W25D	51.59	51.64	51.84	51.86	50.34
Hydraulic Head Difference (ft)	-0.16	-0.21	-0.32	-0.38	0.10
Gradient Direction	Upward	Upward	Upward	Upward	Downward
an a	and the second	OFF-SITE MISS W	ELLS and Some and		学校に、2012年19月4日か
B38W12A	43.46	43.85	44.66	44.77	44.32
B38W12B	43.39	44.03	44.94	44.96	44.48
Hydraulic Head Difference (tt)	0.07	-0.18	-0.28	-0.19	-0.16
Gradient Direction	Honzontal	Upward	Upward	Upward	Upward
D 3914/14C	NC	20.00	20.44	NO	
B30W145	NG	40.11	20.70	NG	NG
Hydraulic Head Difference (ft)	N/A	-1.11	_0.35	N/A	NUS
Gradient Direction	N/A	Linward	-0.00	N/A	Unword
or a digit in or object		opilaiu	opward		
B38W15S	39.52	39.90	40.40	NG	NG
B38W15D	40,53	41.09	41.22	NG	NG
Hydraulic Head Difference (ft)	-1.01	-1.19	-0.82	N/A	N/A
Gradient Direction	Upward	Upward	Upward	N/A	N/A
B38W17A	44.17	44.17	44.98	45.28	44.59
B38W17B	43.61	44.18	44.96	45.20	44.53
Hydraulic Head Difference (ft)	0.56	-0.01	0.02	0.08	0.06
Gradient Direction	Downward	Horizontal	Horizontal	Horizontal	Horizontal

Legend

NG - Not Gauged N/A - Not Applicable Positive Hydraulic Head Differences indicate a downward gradient Negative Hydraulic Head Differences represent an upward gradient

Head Differences less than 0.10 are considered to represent horizontal flow

Table 102000 Field Parameter SummaryMaywood Interim Storage Site

Sampling		Temp	Spec. Cond. ^a		Eh	DO	Turbidity	Discharge
Location	Date	(C)	(mS/cm)	pН	$(mV)^{b}$	mg/l	(NTU) ^c	(GPM) ^e
GROUNDWATER							· · · · · ·	
MISS01AA	06/20/00	19.5	2.39	6.99	23	1.65	35	0.05
MISS01B	06/20/00	18.1	0.91	7.04	14	0.25	10	0.08
MISS02A	06/23/00	19.3	4.28	6.52	-162	0.89	5	0.04
MISS02B	06/23/00	17.0	5.84	6.58	-116	.09	15	0.10
MISS05A	07/11/00	d	d	d	^d	d	d	d
MISS05B	07/11/00	18.50	1.80	6.93	-150	0.62	57	0.100
MISS06A	07/10/00	26.0	0.93	6.26	88	1.22	136	0.04
MISS07B	07/12/00	17.4	5.0	6.72	-52	0.91	27	0.08
B38W01S	07/18/00	f	f	[†]	^t	1	ť	t
B38W02D	07/17/00	16.4	0.504	6.22	135	2.25	11	0.04
B38W14S	07/05/00	20.0	0.769	6.70	15	0.17	3	0.066
B38W14D	07/05/00	17.6	0.857	6.75	51	1.38	10	0.050
B38W15S	06/26/00	19.00	2.30	6.94	-130	0.42	184	0.053
B38W15D	06/26/00	17.50	2.45	7.08	37	0.23	7	0.084
B38W17A	06/19/00	18.1	0.471	6.40	40	1.03	190	0.045
B38W17B	06/19/00	17.1	2.75	6.81	-154	0.47	10	0.069
B38W18D	07/06/00	19.1	1.03	5.64	33	0.08	28	0.070
B38W19S	07/12/00	d	d	d	^d	d	^d	d
B38W19D	07/12/00	18.4	3.69	6.40	-146	0.01	10	0.082
B38W24S	06/21/00	27.6	0.525	5.78	19	0.53	41	0.074
B38W24D	06/22/00	22.0	0.90	5.94	-93	0.15	61	0.053
B38W25S	07/07/00	20.3	1.38	6.39	-56	1.8	30	0.050
B38W25D	07/07/00	19.5	0.96	6.44	-134	0.56	10	0.069

1

Table 10 (continued)2000 Field Parameter SummaryMaywood Interim Storage Site

Sampling		Temp	Spec. Cond. ^a		Eh	DO	Turbidity	Discharge
Location	Date	(C)	(mS/cm)	pН	(mV) ^b	mg/l	(NTU) ^c	(GPM) ^e
SURFACE WATER	2nd quarter							
SWSD001	07/24/00	23.5	1.0	7.60	107	8.55	2.0	g
SWSD002	07/24/00	18.5	103	7.34	84	10.29	2	^g
SWSD003	07/20/00	18.6	0.524	7.13	133	10.95	3	^g
SWSD005	07/20/00	23.8	0.732	7.22	105	7.73	7	^g
SWSD006	07/20/00	19.8	0.758	7.27	433	10.51	0.0	^g
SWSD007	07/20/00	19.5	0.752	7.31	113	10.13	7	^g

^a Specific conductance, measured in milliSiemens/centimeter (mS/cm).

^bOxidation/reduction potential (Eh), measured in milliVolts (mV).

^c Nephelometric turbidity units.

^d Well is dry.

^e Gallons per Minute (GPM).

^f Well was not sampled because of obstruction in the well. The sump pump could not be lowered more than 7 feet.

^g Parameter not applicable.

								State/Federal ^d
Sampling	Date	Analyte	Result ^a			S&W	MDA ^c	Standards
Location	Collected	•	(nCi/L)			Flag ^b	(pCi/L)	(nCi/L)
Moniroring w	vells comple	ted in unconsoli	dated sedi	men	t.	8	(P 0 2 2)	(pere)
Wonnoring w	ens compte	ted in unconson	duted bear					
	08-Nov-00	Radium 226	0.13	+	0.10	T	0.15	5
D 50 ((015	08-Nov-00	Radium 228	-0.36	+	0.83	Ш	0.15	5
	08-Nov-00	Thorium 228	0.20	+	0.34	U U	0.67	5
	08 Nov 00	Thorium 220	1.06		1.03	I	1.07	
	08 Nov 00	Thorium 232	0.35		0.44	J	0.77	
	08 Nov-00	Total Thorium	0.55		0.44	0	0.77	15
	08 Nov-00	I Janium 224	0.15	- -	0.71	т	1.04	15
	08-Nov-00	Uranium 234	0.92	±	0.71	J	1.00	
	08-Nov-00	Uranium 235	0.18	± .	0.31	U	0.58	
	08-Nov-00	Uranium 238	0.22	±	0.51	U	1.16	
	08-Nov-00	Total Uranium	1.32	±		· _ ·		27
B38W14S	05-Jul-00	Gross Alpha	4.5	±	2.7	J	3.7	15
	05-Jul-00	Gross Beta	7.3	±	2.9		4.4	50
	05-Jul-00	Radium 226	0.07	±	0.11	R	0.19	5
	05-Jul-00	Radium 228	-0.11	±	0.44	U	0.77	5
	05-Jul-00	Thorium 228	0	±	0.16	U	0.44	
	05-Jul-00	Thorium 230	0.11	±	0.15	UJ	0.23	
	05-Jul-00	Thorium 232	0.04	Ŧ	0.08	UJ	0.11	
	05-Jul-00	Total Thorium	0.15					15
	05-Jul-00	Uranium 234	1.16	±	0.39	U	0.1	
	05-Jul-00	Uranium 235	0.07	±	0.09	UJ	0.13	
	05-Jul-00	Uranium 238	0.55	±	0.24	J	0.06	
	05-Jul-00	Total Uranium	1.78					27
B38W15S	26-Jun-00	Gross Alpha	13.8	±		J	7.1	15
	26-Jun-00	Gross Beta	. 137	±			9	50
	26-Jun-00	Radium 226	0.34	±		J	0.18	5
	26-Jun-00	Radium 228	0.58	±		U	0.6	5
	26-Jun-00	Thorium 228	0.14	±		U	0.31	
	26-Jun-00	Thorium 230	0.44	±		J	0.16	
	26-Jun-00	Thorium 232	-0.07	±		R	0.09	
	26-Jun-00	Total Thorium	0.58					15
	26-Jun-00	Uranium 234	0.24	±		J	0.14	
	26-Jun-00	Uranium 235	-0.01	±		U	0.18	
	26-Jun-00	Uranium 238	0.25	±		J	0.07	
	26-Jun-00	Total Uranium	0.48					27

								State/Federal ^d
Sampling	Date	Analyte	Result ^a			S&W	MDA ^c	Standards
Location	Collected	•	(pCi/L)			Flag ^b	(pCi/L)	(pCi/L)
B38W17A	19-Jun-00	Gross Alpha	6.9	±	2.5		2.8	15
	19-Jun-00	Gross Beta	22.3	±	3.4		3.2	50
	19-Jun-00	Radium 226	0.48	±	0.19	J	0.21	5
	19-Jun-00	Radium 228	0.46	±	0.58	U	0.96	5
	19-Jun-00	Thorium 228	-0.03	±	0.09	U	0.32	
	19-Jun-00	Thorium 230	0.28	±	0.23	U	0.3	
	19-Jun-00	Thorium 232	-0.01	±	0.02	U	0.2	
	19-Jun-00	Total Thorium	0.24					15
	19-Jun-00	Uranium 234	0.12	±	0.13	U	0.18	
	19-Jun-00	Uranium 235	-0.02	±	0.023	U	0.23	
	19-Jun-00	Uranium 238	0.06	±	0.09	\mathbf{U}	0.09	
	19-Jun-00	Total Uranium	0.16					27
B38W19S ^g	07-Nov-00	Radium 226	0.63	±	0.24	J	0.23	5
	07-Nov-00	Radium 228	2.1	±	0.70	J	0.69	5
	07-Nov-00	Thorium 228	0	±	0.31	U	0.93	
	07-Nov-00	Thorium 230	1.2	±	0.77	J	0.74	
	07-Nov-00	Thorium 232	0.27	±	0.35	UJ	0.54	
	07-Nov-00	Total Thorium						15
	07-Nov-00	Uranium 234	0.72	±	0.63	J	0.91	
	07-Nov-00	Uranium 235	-0.02	±	0.04	U	0.58	
	07-Nov-00	Uranium 238	0.62	±	0.59	J	0.91	
	07-Nov-00	Total Uranium	1.32					27
B38W24S	21-Jun-00	Gross Alpha	2.8	±	1.8	J	2.6	15
	21-Jun-00	Gross Beta	12.4	±	2.7	J	3.3	50
	21-Jun-00	Radium 226	0.1	±	0.06	J	0.07	5
	21-Jun-00	Radium 228	0.11	±	0.71	U	1.2	5
	21-Jun-00	Thorium 228	0.05	±	0.13	U	0.29	
	21-Jun-00	Thorium 230	0.16	±	0.16	UJ	0.19	
	21-Jun-00	Thorium 232	-0.01	±	0.02	U	0.19	
	21-Jun-00	Total Thorium	0.2					15
	21-Jun-00	Uranium 234	0.05	±	0.07	U	0.11	
	21-Jun-00	Uranium 235	0.01	±	0.05	U	0.16	
	21-Jun-00	Uranium 238	0.02	±	0.04	UJ	0.05	
	21-Jun-00	Total Uranium	0.08					27

TABLE 11 2000 Groundwater Analytical Results-Radioactive Constituents Maywood Interim Storage Site

								State/Federal ^d
Sampling	Date	Analvte	Result ^a			S&W	MDA ^c	Standards
Location	Collected	j	(pCi/L)			Flag ^b	(pCi/L)	(pCi/L)
B38W25S	07-Jul-00	Gross Alpha	+ 21.5 ⇒	±	6.2		5.9	15
	07-Jul-00	Gross Beta	65.6	±	9		6.8	50
	07-Jul-00	Radium 226	0.8	±	0.22	R	0.22	5
	07-Jul-00	Radium 228	0.17	±	0.42	U	0.71	5
	07-Jul-00	Thorium 228	0.46	±	0.32	J	0.38	
	07-Jul-00	Thorium 230	0.38	±	0.28	J	0.28	
	07-Jul-00	Thorium 232	0.13	±	0.17	U	0.28	
	07-Jul-00	Total Thorium	0.97					15
	07-Jul-00	Uranium 234	0.17	±	0.14	J	0.16	
	07-Jul-00	Uranium 235	-0.01	±	0.016	U	0.16	
	07-Jul-00	Uranium 238	0.21	±	0.15	J	0.16	
	07-Jul-00	Total Uranium	0.37					27
MISS01AA	06-Jun-00	Gross Alpha	0.63	±	0.58	U	0.93	15
	06-Jun-00	Gross Beta	1.4	±	1.1	U	1.8	50
	06-Jun-00	Radium 226	0.13	±	0.06	J	0.084	5
	06-Jun-00	Radium 228	0.12	±	0.38	U	0.67	5
	06-Jun-00	Thorium 228	0	±	0.17	U	0.46	
	06-Jun-00	Thorium 230	0.76	±	0.41	J	0.24	
	06-Jun-00	Thorium 232	0.03	±	0.09	U	0.24	
	06-Jun-00	Total Thorium	0.79					15
	06-Jun-00	Uranium 234	0.04	±	0.07	U	0.12	
	06-Jun-00	Uranium 235	-0.01	±	0.01	U	0.15	
	06-Jun-00	Uranium 238	0	±	0	U	0.07	
	06-Jun-00	Total Uranium	0.03					27
MISS02A	23-Jun-00	Gross Alpha	2	±	10	U	19	15
	23-Jun-00	Gross Beta	8	±	12	U	21	50
	23-Jun-00	Radium 226	0.08	±	0.11	U	0.18	5
	23-Jun-00	Radium 228	0.09	±	0.36	U	0.63	5
	23-Jun-00	Thorium 228	0.01	±	0.09	U	0.25	
	23-Jun-00	Thorium 230	0.07	±	0.1	U	0.18	
	23-Jun-00	Thorium 232	0.02	±	0.06	U	0.14	
	23-Jun-00	Total Thorium	0.1					15
	23-Jun-00	Uranium 234	0.27	±	0.24	J	0.2	
	23-Jun-00	Uranium 235	-0.01	±	0.02	U	0.24	
	23-Jun-00	Uranium 238	0.3	Ŧ	0.26	J	0.25	
	23-Jun-00	Total Uranium	0.56					27

								State/Federal ^d
Sampling	Date	Analyte	Result ^a			S&W	MDA ^c	Standards
Location	Collected		(pCi/L)			Flag ^b	(pCi/L)	(pCi/L)
MISS05A ^g	06-Nov-00	Radium 226	1.39	±	0.34	J	0.22	5
	06-Nov-00	Radium 228	2.5	±	0.74	J	0.72	5
	06-Nov-00	Thorium 228	2.38	±	0.94		0.71	
	06-Nov-00	Thorium 230	2.45	±	0.94	J	0.66	
	06-Nov-00	Thorium 232	0.35	±	0.37	UJ	0.59	
	06-Nov-00	Total Thorium	5.18					15
	06-Nov-00	Uranium 234	35.02	±	7.22		0.87	
	06-Nov-00	Uranium 235	1.96	±	0.97		0.61	
	06-Nov-00	Uranium 238	36.5	±	7.49		0.57	
	06-Nov-00	Total Uranium	73.48					27
MISS06A	10-Jul-00	Gross Alpha	3.8	±	2.6		3.7	15
	10-Jul-00	Gross Beta	15.3	±	4		5.3	50
	10-Jul-00	Radium 226	0.42	±	0.18	R	0.22	5
	10-Jul-00	Radium 228	0.7	±	0.45	U	0.73	5
	10-Jul-00	Thorium 228	0.27	±	0.25	UJ	0.36	
	10-Jul-00	Thorium 230	0.41	±	0.27	J	0.22	
	10-Jul-00	Thorium 232	0.04	±	0.08	UJ	0.1	
	10-Jul-00	Total Thorium	0.72					15
	10-Jul-00	Uranium 234	0.99	±	0.37	J	0.16	
	10-Jul-00	Uranium 235	0.05	±	0.08	U	0.16	
	10-Jul-00	Uranium 238	2.13	±	0.62	J	0.06	
	10-Jul-00	Total Uranium	3.17					27
MISS07B	12-Jul-00	Gross Alpha	27	±	16		22	15
	12-Jul-00	Gross Beta	25	±	13		21	50
	12-Jul-00	Radium 226	0.1	±	0.09	UJ	0.14	5
	12-Jul-00	Radium 228	0.6	±	0.38	U	0.6	5
	12-Jul-00	Thorium 228	0.09	±	0.15	U	0.28	
	12-Jul-00	Thorium 230	0.37	±	0.24	J	0.21	
	12-Jul-00	Thorium 232	-0.02	±	0.02	U	0.19	
	12-Jul-00	Total Thorium	0.44					15
	12-Jul-00	Uranium 234	3.6	±	0.93		0.06	
	12-Jul-00	Uranium 235	0.18	±	0.15	J	0.13	
	12-Jul-00	Uranium 238	2.48	±	0.69		0.1	
	12-Jul-00	Total Uranium	6.26					27

								State/Federal ^d
Sampling	Date	Analyte	Result ^a			S&W	MDA ^c	Standards
Location	Collected		(nCi/L)			Flag ^b	(nCi/L)	(nCi/L)
	Uncere	t in hadroaks	(pc//L)		_	8	(PCIL)	(PCLL)
Monitoring we	ens completed	a in Deditock.						
D29W02De	13 Jul-00	Gross Alpha	12	+	14	IJ	2.2	15
B30W02D Baakaraund	13 Jul-00	Gross Beta	7	+	27	I	4	50
Dackground	13 Jul 00	Radium 226	0.16	+	0.13	л П	0.2	5
	13 Jul-00	Radium 228	0.10	+	0.19	U	0.64	5
	13 Jul 00	Thorium 228	0.57	+	0.11	U	0.22	U U
	13-Jul-00	Thorium 230	0.07	+	0.19	U	0.22	
	13-Jul-00	Thorium 232	0.14	- -	0.17	и Ш	0.15	
	13-Jul-00	Tatal Thorium	0.09	Т	0.11	05	0.15	15
	13-Jui-00	Leanium 224	0.5	.د.	0.12	т	0.14	15
	13-Jul-00	Uranium 234	0.15		0.12	J	0.14	
	13-Jul-00	Uranium 235	0.01	Ŧ	0.032	U	0.14	
	13-Jui-00	Uranium 238	0.22	Ŧ	0.14	J	0.03	27
	<u>13-Jul-00</u>	Total Uranium	0.38		17	TI	27	
B38W02D	13-Jul-00	Gross Alpha	1.9	±	1./	0	2.7	15
Duplicate	13-Jul-00	Gross Beta	1.1	±	3.1	UJ	5.3	50
	13-Jul-00	Radium 226	0.16	±	0.1	J	0.12	5
	13-Jul-00	Radium 228	0.28	±	0.37	U	0.63	5
	13-Jul-00	Thorium 228	-0.01	±	0.1	U	0.31	
	13-Jul-00	Thorium 230	0.29	±	0.22	J	0.27	
	13-Jul-00	Thorium 232	-0.04	±	0.03	R	0.24	
	13-Jul-00	Total Thorium	0.24					15
	13-Jul-00	Uranium 234	0.24	±	0.16	J	0.13	
	13-Jul-00	Uranium 235	-0.01	±	0.02	U	0.15	
	13-Jul-00	Uranium 238	1.03	±	0.36	J	0.12	
	13-Jul-00	Total Uranium	1.26					27
B38W14D	05-Jul-00	Gross Alpha	1.7	±	3.1	U	5.4	15
	05-Jul-00	Gross Beta	6.1	±	5.1	UJ	8.4	50
	05-Jul-00	Radium 226	0.12	±	0.11	R	0.17	5
	05-Jul-00	Radium 228	0	±	0	U	0.6	5
	05-Jul-00	Thorium 228	0.07	±	0.25	U	0.59	
	05-Jul-00	Thorium 230	0.41	±	0.31	J	0.14	
	05-Jul-00	Thorium 232	0.02	±	0.11	U	0.32	
	05-Jul-00	Total Thorium	0.5					15
	05-Jul-00	Uranium 234	0.55	±	0.26	J	0.14	
	05-Jul-00	Uranium 235	-0.01	±	0.01	Ū	0.14	
	05_Jul_00	Uranium 238	0.22	+	0.15	I	0.07	
	05-Jul-00	Total Uranium	0.76	-		-		27

								State/Federal ^u
Sampling	Date	Analyte	Result ^a			S&W	MDA ^c	Standards
Location	Collected	·	(pCi/L)			Flag^b	(pCi/L)	(pCi/L)
B38W14D	05-Jul-00	Gross Alpha	3.8	±	2.9	UJ	4.1	15
Duplicate	05-Jul-00	Gross Beta	8.3	±	4.9	J	7.7	50
Dupneate	05-Jul-00	Radium 226	0	±	0.1	R	0.19	5
	05-Jul-00	Radium 228	0.04	±	0.47	U	0.82	5
	05-Jul-00	Thorium 228	0.11	±	0.16	U	0.27	
	05-Jul-00	Thorium 230	0.18	±	0.17	J	0.1	
	05-Jul-00	Thorium 232	-0.02	±	0.03	U	0.23	
	05-Jul-00	Total Thorium	0.27					15
	05-Jul-00	Uranium 234	0.88	±	0.34	J	0.07	
	05-Jul-00	Uranium 235	0.03	±	0.07	U	0.15	
	05-Jul-00	Uranium 238	0.3	±	0.19	J	0.15	
	05-Jul-00	Total Uranium	1.21					27
B38W15D	26-Jun-00	Gross Alpha	10	±	5.2		6.8	15
2001122	26-Jun-00	Gross Beta	47.5	±	8.4		9	50
	26-Jun-00	Radium 226	0.3	±	0.16		0.21	5
	26-Jun-00	Radium 228	0.15	±	0.37		0.63	5
	26-Jun-00	Thorium 228	-0.03	±	0.11		0.35	
	26-Jun-00	Thorium 230	0.35	±	0.27		0.41	
	26-Jun-00	Thorium 232	0.07	±	0.12		0.22	
	26-Jun-00	Total Thorium	0.39					15
	26-Jun-00	Uranium 234	4.5	±	1.1		0.1	
	26-Jun-00	Uranium 235	0.24	±	0.18		0.15	
	26-Jun-00	Uranium 238	2.64	±	0.75		0.12	
	26-Jun-00	Total Uranium	7.38					27
B38W17B	19-Jun-00	Gross Alpha	18.9	±	7.9		9	15
	19-Jun-00	Gross Beta	. 83	ž ±	14		14	50
	19-Jun-00	Radium 226	-1.63	±	0.59	R	0.19	5
	19-Jun-00	Radium 228	0.97	±	0.48	J	0.75	5
	19-Jun-00	Thorium 228	0.07	±	0.1	U	0.18	
	19-Jun-00	Thorium 230	0.35	±	0.22	J	0.21	
	19-Jun-00	Thorium 232	0.02	±	0.06	U	0.14	
	19-Jun-00	Total Thorium	0.44					15
	19-Jun-00	Uranium 234	0.18	±	0.15	J	0.15	
	19-Jun-00	Uranium 235	0.06	±	0.1	U	0.16	
	19-Jun-00	Uranium 238	0.05	±	0.08	U	0.13	
	19-Jun-00	Total Uranium	0.29	±				27

а

								State/Federal ^d
Sampling	Date	Analvte	Result ^a			S&W	MDA ^c	Standards
Location	Collected		(pCi/L)			Flag ^b	(pCi/L)	(pCi/L)
B38W24D	21-Jun-00	Gross Alpha	8.6	±	4	J	5.1	15
	21-Jun-00	Gross Beta	13.7	±	5	J	7.4	50
	21-Jun-00	Radium 226	0.18	±	0.065	J	0.06	5
	21-Jun-00	Radium 228	0.33	±	0.72	U	1.2	5
	21-Jun-00	Thorium 228	0.04	±	0.24	U	0.21	
	21-Jun-00	Thorium 230	0.55	±	0.29	J	0.23	
	21-Jun-00	Thorium 232	0.02	±	0.09	U	0.24	
	21-Jun-00	Total Thorium	0.61					15
	21-Jun-00	Uranium 234	0.01	±	0.015	U	0.12	
	21-Jun-00	Uranium 235	0.03	±	0.065	U	0.13	
	21-Jun-00	Uranium 238	0.05	±	0.07	U	0.11	
	21-Jun-00	Total Uranium	0.09					27
B38W24D	21-Jun-00	Gross Alpha	5.6	±	3.1	J	4	15
Duplicate	21-Jun-00	Gross Beta	15.6	±	5.6	J	8.2	50
-	21-Jun-00	Radium 226	0.28	±	0.08	J	0.07	5
	21-Jun-00	Radium 228	0.85	±	0.87	U	1.4	5
	21-Jun-00	Thorium 228	0.04	±	0.066	U	0.26	
	21-Jun-00	Thorium 230	0.47	±	0.25	J	0.15	
	21-Jun-00	Thorium 232	0.06	±	0.095	U	0.17	
	21-Jun-00	Total Thorium	0.57					15
	21-Jun-00	Uranium 234	0.04	±	0.074	U	0.12	
	21-Jun-00	Uranium 235	0.01	±	0.013	U	0.13	
	21-Jun-00	Uranium 238	0	±	0	U	0.07	
	21-Jun-00	Total Uranium	0.05	±				27
B38W25D	07-Jul-00	Gross Alpha	13.8	±	4.7		4.7	15
	07-Jul-00	Gross Beta	89	±	11		7	50
	07-Jul-00	Radium 226	-1.1	±	1	R	0.3	5
	07-Jul-00	Radium 228	0.74	±	0.46	J	0.72	5
	07-Jul-00	Thorium 228	0.08	±	0.14	U	0.3	
	07-Jul-00	Thorium 230	0.23	±	0.17	J	0.17	
	07-Jul-00	Thorium 232	0.02	±	0.051	U	0.12	
	07-Jul-00	Total Thorium	0.33					. 15
	07-Jul-00	Uranium 234	0.06	±	0.078	U	0.12	
	07-Jul-00	Uranium 235	0.03	±	0.054	UJ	0.07	
	07-Jul-00	Uranium 238	0.09	±	0.089	J	0.06	~ -
	07-Jul-00	Total Uranium	0.18					27

								State/Federal ^d
Sampling	Date	Analvte	Result ^a			S&W	MDA ^c	Standards
Location	Collected	j	(pCi/L)			Flag ^b	(pCi/L)	(pCi/L)
MISS01B	20-Jun-00	Gross Alpha	11.3	±	7.4	U	11	15
11100010	20-Jun-00	Gross Beta	11.1	±	7.4	U	12	50
	20-Jun-00	Radium 226	0.03	±	0.048	U	0.08	5
	20-Jun-00	Radium 228	0.39	±	0.74	U	1.3	5
	20-Jun-00	Thorium 228	-0.02	±	0.085	U	0.31	
	20-Jun-00	Thorium 230	0.32	±	0.23	J	0.17	
	20-Jun-00	Thorium 232	0.04	±	0.07	U	0.1	
	20-Jun-00	Total Thorium	0.34					15
	20-Jun-00	Uranium 234	0.12	±	0.11	U	0.07	
	20-Jun-00	Uranium 235	0.01	±	0.06	J	0.19	
	20-Jun-00	Uranium 238	0.09	±	0.1	U	0.14	
	20-Jun-00	Total Uranium	0.22					27
MISS02B	23-Jun-00	Gross Alpha	1	±	11	U	22	15
	23-Jun-00	Gross Beta	40	±	18		27	50
	23-Jun-00	Radium 226	0.25	±	0.13	J	0.15	5
	23-Jun-00	Radium 228	0.32	±	0.33	U	0.55	5
	23-Jun-00	Thorium 228	0.04	±	0.09	U	0.2	
	23-Jun-00	Thorium 230	0.4	±	0.25	J	0.27	
	23-Jun-00	Thorium 232	0.02	±	0.06	U	0.14	
	23-Jun-00	Total Thorium	0.46					15
	23-Jun-00	Uranium 234	0.25	±	0.17	J	0.11	
	23-Jun-00	Uranium 235	0.04	±	0.09	U	0.15	
	23-Jun-00	Uranium 238	0.14	±	0.12	J	0.06	
	23-Jun-00	Total Uranium	0.43					27
B38W18D ^g	13-Nov-00) Radium 226	2.87		0.65		0.44	5
	13-Nov-00) Radium 228	16.53		1.42		1.01	5
	13-Nov-00) Thorium 228	6.89		1.79	J	0.35	
	13-Nov-00) Thorium 230	1.71		0.69	J	0.39	
	13-Nov-00) Thorium 232	7.53		1.92		0.49	
	13-Nov-00) Total Thorium	16.13					15
	13-Nov-0	0 Uranium 234	1.54		0.64	J	0.58	
	13-Nov-0	0 Uranium 235	0.35		0.33	J	0.49	
	13-Nov-0	0 Uranium 238	1		0.49	J	0.45	
	13-Nov-0	0 Total Uranium	2.89					27

								State/Federal ^d
Sampling	Date	Analvte	Result ^a			S&W	MDA ^c	Standards
Location	Collected		(pCi/L)			Flag ^b	(pCi/L)	(pCi/L)
B38W18D	06-Jul-00	Gross Alpha	230	±	26		4	15
	06-Jul-00	Gross Beta	273	±	28		5	50
	06-Jul-00	Radium 226	-1.37	±	0.17	R	0.22	5
	06-Jul-00	Radium 228	4.05	±	0.76		0.87	5
	06-Jul-00	Thorium 228	0.02	±	0.09	R	0.22	
	06-Jul-00	Thorium 230	0.3	±	0.2	R	0.23	
	06-Jul-00	Thorium 232	-0.038	±	0.06	R	0.24	
	06-Jul-00	Total Thorium						15
	06-Jul-00	Uranium 234	1.64	±	0.49		0.14	
	06-Jul-00	Uranium 235	0.04	±	0.1	U	0.23	
	06-Jul-00	Uranium 238	1.4	±	0.43		0.19	
	06-Jul-00	Total Uranium	3.08					27
MISS05B	11-Jul-00	Gross Alpha	10.4	±	7.6	UJ	11	15
	11-Jul-00	Gross Beta	886	±	91		13	50
	11-Jul-00	Radium 226	0.22	±	0.15	U	0.23	5
	11-Jul-00	Radium 228	0.27	±	0.39	U	0.66	5
	11-Jul-00	Thorium 228	-0.04	±	0.14	U	0.42	
	11-Jul-00	Thorium 230	0.18	±	0.18	U	0.24	
	11-Jul-00	Thorium 232	0.07	±	0.1	U	0.1	
	11-Jul-00	Total Thorium	0.21					15
	11-Jul-00	Uranium 234	0.06	±	0.1	U	0.17	
	11-Jul-00	Uranium 235	0	±	0	U	0.09	
	11-Jul-00	Uranium 238	0.27	Ŧ	0.18	J	0.13	
	11-Jul-00	Total Uranium	0.33					27
MISS05B	11-Jul-00	Gross Alpha	21	* ±	11	J	15	15
Duplicate	11-Jul-00	Gross Beta	154	1 ±	21		15	50
	11-Jul-00	Radium 226	0.19	±	0.14	U	0.21	5
	11-Jul-00	Radium 228	0.43	±	0.39	U	0.64	5
	11-Jul-00	Thorium 228	-0.09	±	0.06	R	0.37	
	11-Jul-00	Thorium 230	0.29	±	0.22	J	0.21	
	11-Jul-00	Thorium 232	0.04	±	0.08	UJ	0.1	
	11-Jul-00	Total Thorium	0.24					15
	11-Jul-00	Uranium 234	0.47	±	0.22	J	0.06	
	11-Jul-00	Uranium 235	0.03	±	0.05	U	0.07	
	11-Jul-00	Uranium 238	2.48	±	0.68	J	0.12	
	11-Jul-00	Total Uranium	2.98	±				27

Sampling Location	Date Collected	Analyte	Result ^ª (pCi/L)			S&W Flag ^b	MDA ^c (pCi/L)	State/Federal Standards (pCi/L)
B38W19D	12-Jul-00	Gross Alpha	- 22	±	12		14	15
	12-Jul-00	Gross Beta	365	±	43		20	50
	12-Jul-00	Radium 226	0.16	±	0.13	UJ	0.2	5
	12-Jul-00	Radium 228	0.43	±	0.4	U	0.66	5
	12-Jul-00	Thorium 228	-0.03	±	0.03	R	0.19	
	12-Jul-00	Thorium 230	0.11	±	0.12	UJ	0.18	
	12-Jul-00	Thorium 232	0.01	±	0.05	U	0.13	
	12-Jul-00	Total Thorium	0.09					15
	12-Jul-00	Uranium 234	0.24	±	0.16	J	0.11	
	12-Jul-00	Uranium 235	0.04	±	0.08	U	0.16	
	12-Jul-00	Uranium 238	1.36	±	0.45	J	0.14	
	12-Jul-00	Total Uranium	1.64					27

TABLE 11 2000 Groundwater Analytical Results-Radioactive Constituents Maywood Interim Storage Site

٠d

^a Results reported with (±) radiological error quoted at 2 sigma (95 percent confidence level).

^bStone & Webster data qualifier flags:

U = The analyte was not detected.

- UJ = Analyte was not detected; estimated value reported. The result is below the MDA or less than the associated error term.
- J= Reported as an estimated value. R= Rejected by validation.

^c Minimum Detectable Activity (MDA).

^d Federal and State SDWA standards.

^e Monitoring well B38W02D is the background location for wells that are completed in bedrock.

^f A quality control duplicate is collected at the same time and location, and is analyzed by the same method in order to evaluate precision in sampling and analysis.

^gA groundwater data obtained from the 2000 Groundwater Remedial Investigation is used to compensate for either rejected data (by validation) or for data could not be obtained during the Environmental Monitoring Program. The GWRI program did not analyze for gross alpha and beta.

^hThe federal MCL of 50 pCi/L was used as standard to evaluate measured gross beta.

ⁱSix of the eleven rejected sample results were in batch(es) that had a Ra-226 LCS recovery of 224%. Army Corp Radionuclide data Evaluation guidance recommends rejection of results associated with an LCS having a percent recovery of greater than 150%. Four of the eleven sample results were rejected because the 2 sigma uncertainty was less than the absolute value of the negative result

Table 12	
2000 Groundwater Analytical Results - Meta	als
Maywood Interim Storage Site	

					Reporting	Related R	egulations
Sampling	Date	Detected	Result	Data	Limit	Federal ^c	State ^d
Location	Collected	Analyte ^a	(ua/L)	Qualifiers ^b	(ua/L)	(ua/L)	(ua/L)
Monitoring w	ells complete	d in unconsolidated	d sediment		(
Monitoring W	chia complete						
B38W01S	08-Nov-00	Aluminum, Total	650		22.7	200	200
Background	08-Nov-00	Antimony, Total	2.3	U	2.3	6	2/20
Buonground	08-Nov-00	Arsenic, Total	2.4		2.4	50	0.02/8
	08-Nov-00	Barium, Total	27.7		0.2	2000	2000
	08-Nov-00	Bervilium Total	2.4		0.1	4	0.008/20
	08-Nov-00	Boron Total	290		2.7		
	08-Nov-00	Cadmium Total	0.97		0.3	5	4
	08-Nov-00	Calcium Total	403000		19.2	-	
	08 Nov-00	Chromium Total	400000	ы	0.6	100	100
	08 Nov 00	Cobalt Total	23	Ũ	0.9		
	08 Nov 00	Copper Total	3.0		0.0	1300	1000
	08 Nov-00	Iron Total			21.8	300	300
	08-Nov-00	Lood Total	5.9		21.0	15	5/10
	08-NOV-00	Leau, Total	J.6		2.1	15	5,10
	08-Nov-00	Limum, rotai	1010		0.2		
	08-Nov-00	Magnesium, i otai	31000		0.7	50	50
	08-Nov-00	Manganese, Total	2050		0.2	50	50
	08-Nov-00	Mercury, I otal	0.1	U	0.1	2	۲ 100
	08-Nov-00	Nickel, Iotal	22.1		0.9		100
	08-Nov-00	Potassium, Total	44200		303	50	50
	08-Nov-00	Selenium, Total	3.3	U	3.3	50	50
	08-Nov-00	Silver, Total	1.1		1.1	1007	
	08-Nov-00	Sodium, Total	40000		4.1		50000
	08-Nov-00	Thallium, Total	4	U	4	2	0.5/10
	08-Nov-00	Vanadium, Total	1.6		0.8		
	08-Nov-00	Zinc, Total	11.3		0.4	500	5000
D2014/14C	05 101 00	Aluminum Total		R	22.2	200	200
D3011 143	05-301-00	Antimony Total	4.8		3.8	6	2/20
	05-Jul-00	Anomicia Total	7.0	Ŭ	5	50	0.02/8
	05-Jul-00	Arsenic, Folai	01.2	0	0.1	2000	2000
	05-Jul-00	Banum, Total	91.5		0.1	2000	0.008/20
	05-Jui-00	Derymurn, Total	0.2	0	0.4		0.000/20
	05-Jul-00	Cadmium, Total	1.1		0.0	5	-
	05-Jul-00	Calcium, Total	94600		0.3	100	100
	05-Jul-00	Chromium, Total	7.5		0.0	1200	1000
	05-Jul-00	Copper, Total	2.5		0.7	1300	1000
	05-Jul-00	Iron, I otal	340		13	300	300
	05-Jul-00	Lead, I otal	1.3	U	2.3	15	5/10
	05-Jul-00	Magnesium, Total	26600		б.1 С С	50	50
	05-Jul-00	Manganese, Total	76.3		0.3	50	50
	05-Jul-00	Mercury, Total	0.1	U	0.1	2	2
	05-Jul-00	Nickel, Total	9.6		1.2		100
	05-Jul-00	Potassium, Total	4420		182		
	05-Jul-00	Selenium, Total	1.5	U	5.2	50	50
	05-Jul-00	Silver, Total	0.3	U	0.8	1007	
	05-Jul-00	Sodium, Total	23300		188		50000
	05-Jul-00	Thallium, Total	5.3	U	6.3	2	0.5/10
	05-Jul-00	Vanadium, Total	2.1	U	0.6		
	05-Jul-00	Zinc, Total	4.3	U	1.8	500	5000

Table 12
2000 Groundwater Analytical Results - Metals
Maywood Interim Storage Site

					Reporting	Related R	egulations
Sampling	Date	Detected	Result	Data	Limit	Federal ^c	State ^d
Location	Collected	Analyte ^a	(ug/L)	Qualifiers ^b	(ug/L)	(ug/L)	(ug/L)
B38W15S	26-Jun-00	Aluminum, Total		R	10.5	200	200
	26-Jun-00	Antimony, Total	2.1	U	2.1	6	2/20
	26-Jun-00	Arsenic, Total	3.1	U	2	50	0.02/8
	26-Jun-00	Barium, Total	37.6		0.2	2000	2000
	26-Jun-00	Beryllium, Total	0.2	U	0.2	4	0.008/20
	26-Jun-00	Cadmium, Total	0.2	U	0.4	5	4
	26-Jun-00	Calcium, Total	80500		4.3		
	26-Jun-00	Chromium, Total	3	U	1	100	100
	26-Jun-00	Copper, Total	4.1		1	1300	1000
	26-Jun-00	Iron. Total	546		10.5	300	300
	26-Jun-00	Lead. Total	1.3	U	1.3	15	5/10
	26-Jun-00	Magnesium, Total	25300		7		
	26- Jun-00	Manganese Total	2050		0.2	50	50
	26- Jun-00	Mercury Total	0.1	U	0.1	2	2
	26- Jun-00	Nickel Total	4.8	-	1	_	100
	26- Jun-00	Potassium Total	164000		98		
	26- Jun-00	Selenium Total	15	U	3.4	50	50
	20-Jun-00	Silver Total	0.3	Ŭ	1	1007	
	20-Jun-00	Sodium Total	175000	v	19.5		50000
	20-Jun-00	Thallium Total	62	.1	3.8	2	0.5/10
	26-Jun-00	Vanadium Total	15	U U	1	-	0.0/10
	26-Jun-00	Zinc Total	3.2	1	0.4	500	5000
02010/170	20-Jun-00	Aluminum Total	785	0	10.5	200	200
D30VV I/A	19-Jun-00	Antimony Total	37.6		21	6	2/20
	19-Jun-00	Animony, Total	2	11	2	50	0.02/8
	19-Jun-00	Barium Total	0/1	0	0.2	2000	2000
	19-Jun-00	Danum, rotal	0.21		0.2	2000	0.008/2
	19-Jun-00	Codmium Total	0.21	11	0.4	5	0.000/2 A
	19-Jun-00	Caumium, rotal	54000	0	43	5	+
	19-Jun-00	Calcium, Total	34000		4.5	100	100
	19-Jun-00	Chromium, Total	1080		0.5	100	100
	19-Jun-00	Cobalt, Total	13		10.5	300	300
	19-Jun-00		1200	• •	10.5	300	500
	19-Jun-00	Lead, I otal	0.1	U	1.3	15	5/10
	19-Jun-00	Magnesium, Total	0070	1	0.2	50	50
	19-Jun-00	Manganese, Total	2070		0.2	50	50
	19-Jun-00	Mercury, I otal	0.1	U	0.1	2	۲ 100
	19-Jun-00		114	5 5	I		100
	19-Jun-00	Potassium, Total	18900		98	50	50
	19-Jun-00	Selenium, Total	3.4	U	3.4	50	50
	19-Jun-00	Silver, Total	1	U	1	1007	
	19-Jun-00	Sodium, Total	38100		19.5		50000
	19-Jun-00	Thallium, total	3.8	U	3.8	2	0.5/10
	19-Jun-00	Vanadium, Total	11.8		1		
	19-Jun-00	Zinc, Total	25.8		0.4	500	5000

Table 12
2000 Groundwater Analytical Results - Metals
Maywood Interim Storage Site

Complian		Detected			Reporting	Related R	egulations
	Dete		Result	Data	Limit	Federal ^c	State ^d
Sampling	Date	Δnalvte ^a	(ug/L)	Qualifiers ^b	(ug/L)	(ua/L)	(ua/L)
Location	Collecteu	Analyte	(ug/c)		(49,-)		(-3)
D2014/105	07-Nov-00	Aluminum Total	37.4		22.7	200	200
D3000190	07-Nov-00	Antimony Total	2.3	U	2.3	6	2/20
	07-NOV-00	Arsenic Total	318	-	2.4	50	0.02/8
	07-Nov-00	Barium Total	38.7	u	0.2	2000	2000
	07-Nov-00	Bendlium Total	0.1	ŭ	0.1	4	0.008/20
	07-NOV-00	Boron Total	919	•	2.7		4
	07-Nov-00	Codmium Total	03	u –	0.3	5	4
	07-NOV-00	Calcium Total	634000	•	192		
	07-NOV-00	Calcium, Total	1 4		0.6	100	100
	07-NOV-00	Cohoit Total	0.0		0.0		
	07-NOV-00	Copart, Total	0.9	1	0.0	1300	1000
	07-NOV-00	Copper, Total	4420	0	21.8	300	300
	07-NOV-00	Iron, rotal	2.1		21.0	15	5/10
	07-Nov-00	Lead, Iotal	4700		0.2	10	0.10
	07-Nov-00	Lithium, Total	50100		67		
	07-Nov-00	Magnesium, Total	52100		0.7	50	50
	07-Nov-00	Manganese, Total	1160		0.2	2	2
	07-Nov-00	Mercury, Total	0.1	U	0.1	2	100
	07-Nov-00	Nickel, I otal	3	U	0.9		100
	07-Nov-00	Potassium, Total	45900		303	50	50
	07-Nov-00	Selenium, Total	3.3	U	3.3	1007	50
	07-Nov-00	Silver, Total	1.1	U	1.1	1007	50000
	07-Nov-00	Sodium, Total	22700		4.1	0	50000
	07-Nov-00	Thallium, Total	4	U	4	2	0.5/10
	07-Nov-00	Vanadium, Total	0.85		0.8	500	5000
	07-Nov-00	Zinc, Total	2.1	<u> </u>	0.4	200	200
B38W24S	21-Jun-00	Aluminum, Total	10.5	U	10.5	200	200
	21-Jun-00,	Antimony, Total	2.1	U	2.1	50	2/20
	21-Jun-00	Arsenic, Total	2	U	2	00	0.02/6
	21-Jun-00	Barium, Total	36.2		0.2	2000	2000
	21-Jun-00	Beryllium, Total	1.1		0.2	4	0.008/20
	21-Jun-00	Cadmium, Total	0.4	U	0.4	5	4
	21-Jun-00	Calcium, Total	56700		4.3	400	400
	21-Jun-00	Chromium, Total	5.6		1	100	100
	21-Jun-00	Cobalt, Total	0.72	J	0.5		
	21-Jun-00	Iron, Total	31900		10.5	300	300
	21-Jun-00	Lead, Total	1.3	U	1.3	15	5/10
	21-Jun-00	Magnesium, Total	7830		7		
	21-Jun-00	Manganese, Total	3830		0.2	50	50
	21-Jun-00	Mercury, Total	0.12	J.	0.1	2	2
	21-Jun-00	Nickel, Total	8		1		100
	21-Jun-00	Potassium, Total	6990		98		
	21-Jun-00	Selenium, Total	3.4	U	3.4	50	50
	21-Jun-00	Silver, Total	1	U	1	1007	
	21-Jun-00	Sodium, Total	13900		19.5		50000
	21-Jun-00	Thallium total	3.8	U	3.8	2	0.5/10
	21-Jun-00	Vanadium, Total	1	U	1		
	21- Jun-00	Zinc Total	10.9	U	0.4	500	5000

Table 12	
2000 Groundwater Analytical Results - Mei	als
Maywood Interim Storage Site	

		Detected Analyte ^a			Reporting	Related Regulations	
Sampling	Date		Result	Data	Limit	Federal ^c	State ^d
	Collected		(ug/L)	Qualifiers ^b	(ug/L)	(ug/L)	(ug/L)
B38W25S	07-Jul-00	Aluminum, Total		R	22.2	200	200
	07-Jul-00	Antimony, Total	2.1	U	3.8	6	2/20
	07-Jul-00	Arsenic, Total	13.4		5	50	0.02/8
	07-Jul-00	Barium, Total	166		0.1	2000	2000
	07-Jul-00	Beryllium, Total	0.2	U	0.4	4	0.008/20
	07-Jul-00	Cadmium, Total	1.4		0.6	5	4
	07-Jul-00	Calcium, Total	186000		8.3		
	07-Jul-00	Chromium, Total	48.4		0.6	100	100
	07-Jul-00	Copper, Total	5.2		0.7	1300	1000
	07-Jul-00	Iron, Total	14000		13	300	300
	07-Jul-00	Lead, Total	1.3	U	2.3	15	5/10
	07-Jul-00	Magnesium, Total	7520		6.1		
	07-Jul-00	Manganese, Total	7120		0.3	50	50
	07-Jul-00	Mercury, Total	0.1	U	0.1	2	2
	07-Jul-00	Nickel, Total	32.4		1.2		100
	07-Jul-00	Potassium, Total	59900		182		
	07-Jul-00	Selenium, Total	1.5	U	5.2	50	50
	07-Jul-00	Silver, Total	0.76	U	0.8	1007	
	07-Jul-00	Sodium, Total	30100		188		50000
	07-Jul-00	Thallium, Total	17.4		6.3	2	0.5/10
	07-Jul-00	Vanadium, Total	1.4	U	0.6		
	07-Jul-00	Zinc, Total	530		1.8	500	5000
MISS01AA	20-Jun-00	Aluminum, Total	10.5	U	10.5	200	200
	20-Jun-00	Antimony, Total	2.1	U	2.1	6	2/20
	20-Jun-00	Arsenic, Total	2	U	2	50	0.02/8
	20-Jun-00	Barium, Total	6.9		0.2	2000	2000
	20-Jun-00	Beryllium, Total	0.2	U	0.2	4	0.008/2
	20-Jun-00	Cadmium, Total	0.4	U	0.4	5	4
	20-Jun-00	Calcium, Total	544000		4.3		
	20-Jun-00	Chromium, Total	4.4		1	100	100
	20-Jun-00	Cobalt, Total	0.5	U	0.5		
	20-Jun-00	Iron, Total	490		10.5	300	300
	20-Jun-00	Lead, Total	1.3	U	1.3	15	5/10
	20-Jun-00	Magnesium, Total	23700		7		
	20-Jun-00	Manganese, Total	94.9		0.2	50	50
	20-Jun-00	Mercury, Total	0.1	U	0.1	2	2
	20-Jun-00	Nickel, Total	4		1		100
	20-Jun-00	Potassium, Total	1270		98		
	20-Jun-00	Selenium, Total	3.4	U	3.4	50	50
	20-Jun-00	Silver, Total	1	U	1	1007	
	20-Jun-00	Sodium, Total	4850		19.5		50000
	20-Jun-00	Thallium, total	3.8	U	3.8	2	0.5/10
	20-Jun-00	Vanadium, Total	1	U	1		
	20- lun-00	Zinc. Total	6.1	U	0.4	500	5000

Table 12
2000 Groundwater Analytical Results - Metals
Maywood Interim Storage Site

					Reporting	Related R	egulations
Sampling	Date	Detected	Result	Data	Limit	Federal ^c	Stated
Location	Collected	Analyte ^a	(ug/L)	Qualifiers ^b	(ug/L)	(ug/L)	(ug/L)
MICCOEA	06 Nov 00		46.2		20.7	000	
MISSUSA	06-Nov-00	Antimony Total	40.3		22.7	200	200
	06 Nov-00	Anumony, Total	2.3	U	2.3	6	2/20
	06-Nov-00	Arsenic, rolar Porium, Total	2.4		2.4	50	0.02/8
	06-NOV-00	Banum, Total Bondium, Total	10		0.2	2000	2000
	06-100-00	Berginum, Total	0.1	U	0.1	4	0.008/20
	06-NOV-00	Codmium Total	4/5		2.7	-	
	06-NOV-00	Cadmium, Total	0.3	U	0.3	5	4
	06-NOV-00	Calcium, Total	659000		192		
	06-NOV-00		1.2		0.6	100	100
	06-Nov-00	Cobait, Total	8.1		0.9		
	06-Nov-00	Copper, Total	2		0.9	1300	1000
	06-Nov-00	Iron, Total	24月1420 年		21.8	300	300
	06-Nov-00	Lead, Total	2.1	U	2.1	15	5/10
	06-Nov-00	Lithium, Total	1130		0.2		
•	06-Nov-00	Magnesium, Total	76900		6.7		
	06-Nov-00	Manganese, Total			0.2	50	50
	06-Nov-00	Mercury, Total	0.1	U	0.1	2	2
	06-Nov-00	Nickel, Total	6		0.9		100
	06-Nov-00	Potassium, Total	73700		303		
	06-Nov-00	Selenium, Total	3.3	U	3.3	50	50
	06-Nov-00	Silver, Total	1.1	U	1.1	1007	
	06-Nov-00	Sodium, Total	27600		4.1		50000
	06-Nov-00	Thallium, Total	4	U	4	2	0.5/10
	06-Nov-00	Vanadium, Total	0.8	U	0.8		
	06-Nov-00	Zinc, Total	23.7		0.4	500	5000
MISS02A	22-Jun-00	Aluminum, Total	360		10.5	200	200
	22-Jun-00	Antimony, Total	2.3	U	2.1	6	2/20
	22-Jun-00	Arsenic, Total	3520		2	50	0.02/8
	22-Jun-00	Barium, Total	8.6		0.2	2000	2000
	22-Jun-00	Beryllium, Total	0.2	υ	0.2	4	0.008/20
	22-Jun-00	Cadmium, Total	0.4	U	0.4	5	4
	22-Jun-00	Calcium, Total	116000		4.3	-	•
	22-Jun-00	Chromium, Total	69.2		1	100	100
	22-Jun-00	Cobalt, Total	1.8	U	0.5	100	100
	22-Jun-00	Iron, Total	~ 5410	-	10.5	300	300
	22-Jun-00	Lead. Total	13		13	15	5/10
	22-Jun-00	Magnesium, Total	7780		7	10	5/10
	22-Jun-00	Manganese Total	268		0.2	50	50
	22-Jun-00	Mercury Total	0.45		0.1	20	50
	22-Jun-00	Nickel Total	20		1	2	2
	22-Jun-00	Potassium Total	9350	.1	08 1		100
	22-Jun-00	Selenium Total	34	U U	34	50	50
	22-Jun-00	Silver Total	1	Ц		1007	50
	22-Jun-00	Sodium Total	666000	0	10 5	1007	50000
	22-Jun-00	Thallium total	3.8		19.0	2	00000
	22-Jun-00	Vanadium Total	27	1	J.O 1	2	0.5/10
	22-Jun-00	Zinc Total	2./ 19 P	5	0.4	600	5000
	22-JUII-00	LING, TOTAL	10.0		0.4	500	5000

....

....

Table 12 2000 Groundwater Analytical Results - Metals Maywood Interim Storage Site

					Reporting	Related Regulations	
Sampling	Date	Detected	Result	Data	Limit	Federal ^c	State ^d
Location	Collected	Analyte ^a	(ug/L)	Qualifiers ^b	(ug/L)	(ug/L)	(ug/L)
MISS06A	10-Jul-00	Aluminum, Total	39.2	U	22.2	200	200
	10-Jul-00	Antimony, Total	2.5	U	3.8	6	2/20
	10-Jul-00	Arsenic, Total	4	J	5	50	0.02/8
	10-Jul-00	Barium, Total	51.4		0.1	2000	2000
	10-Jul-00	Beryllium, Total	0.2	U	0.4	4	0.008/20
	10-Jul-00	Cadmium, Total	1.5		0.6	5	4
	10-Jul-00	Calcium, Total	168000		8.3		
	10-Jul-00	Chromium, Total	16.8		0.6	100	100
	10-Jul-00	Cobalt, Total	1.2	L	0.8		
	10-Jul-00	Iron, Total	1910		13	300	300
	10-Jul-00	Lead, Total	9.6		2.3	15	5/10
	10-Jul-00	Magnesium, Total	9330		6.1		
	10-Jul-00	Manganese, Total	228. ++:		0.3	50	50
	10-Jul-00	Mercury, Total	0.22	UJ	0.1	2	2
	10-Jul-00	Nickel, Total	21.1		1.2		100
	10-Jul-00	Potassium, Total	12600		182		
	10-Jul-00	Selenium, Total	3.4	U	5.2	50	50
	10-Jul-00	Silver, Total	1	U	0.8	1007	
	10-Jul-00	Sodium, Total	17100		188		50000
	10-Jul-00	Thallium, total	3.8	U	6.3	2	0.5/10
	10-Jul-00	Vanadium, Total	2.1	J	0.6		
	10-Jul-00	Zinc, Total	495		1.8	500	5000
Monitoring w	ells complete	ed in bedrock					
B38W02D ^e	13-Jul-00	Aluminum, Total	37.3	U	22.2	200	200
Background	13-Jul-00	Antimony, Total	2.1	ŭ	38	6	2/20
Ũ	13-Jul-00	Arsenic, Total	2	ŭ	5	50	0.02/8
	13-Jul-00	Barium, Total	299	•	01	2000	2000
	13-Jul-00	Bervilium, Total	0.2	U	0.4	4	0.008/20
	13-Jul-00	Cadmium, Total	0.4	ŭ	0.6	5	0.000/20
	13-Jul-00	Calcium, Total	86300	· ·	8.3	5	-
	13-Jul-00	Chromium, Total	98.4	.1	0.6	100	100
	13-Jul-00	Cobalt, Total	1.4	ت ا	0.8	100	100
	13-Jul-00	Iron. Total	202	U	13	300	300
	13-Jul-00	Lead, Total	1.3	u	23	15	5/10
	13-Jul-00	Magnesium, Total	3740	•	61	10	5/10
	13-Jul-00	Manganese, Total	2300		0.3	50	50
	13-Jul-00	Mercury, Total	0.1	U.I	0.0	2	2
	13-Jul-00	Nickel, Total	32.7		12	2	100
	13-Jul-00	Potassium. Total	847		182		100
	13-Jul-00	Selenium. Total	3.4	U	52	50	50
	13-Jul-00	Silver, Total	1	ŭ	0.8	1007	50
	13-Jul-00	Sodium, Total	9050	U	188	1007	50000
	13-Jul-00	Thallium, total	5.5	Ŀ	6.3	2	0.5/10
	13-Jul-00	Vanadium, Total	1.8	J	0.0	2	0.5/10
	13-Jul-00	Zinc, Total	9.8	ŭ	1.8	500	5000

Table 12	
2000 Groundwater Analytical Results - Meta	als
Maywood Interim Storage Site	

Sampling Location	Date Collected	Detected Analyte ^a	Result (ug/L)		Reporting	Related Regulations	
				Data	Limit	Federal ^c	Stated
				Qualifiers ^b	(ug/L)	(ug/L)	(ug/L)
B38W14D	05-Jul-00	Aluminum, Total		R	22.2	200	200
	05-Jul-00	Antimony, Total	4.8	U	3.8	6	2/20
	05-Jul-00	Arsenic, Total	3.1	U	5	50	0.02/8
	05-Jul-00	Barium, Total	105		0.1	2000	2000
	05-Jul-00	Beryllium, Total	0.2	U	0.4	4	0.008/20
	05-Jul-00	Cadmium, Total	2.9		0.6	5	4
	05-Jul-00	Calcium, Total	102000		8.3		
	05-Jul-00	Chromium, Total	3.8	U	0.6	100	100
	05-Jul-00	Copper, Total	21.6		0.7	1300	1000
	05-Jul-00	Iron, Total	130	- U	13	300	300
	05-Jul-00	Lead, Total	1.3	U	2.3	15	5/10
	05-Jul-00	Magnesium, Total	25300		6.1		
	05-Jul-00	Manganese, Total	11.5		0.3	50	50
	05-Jul-00	Mercury, Total	0.11	J	0.1	2	2
	05-Jul-00	Nickel, Total	12.1		1.2		100
	05-Jul-00	Potassium, Total	6240		182		
	05-Jul-00	Selenium, Total	1.5	U	5.2	50	50
	05-Jul-00	Silver, Total	0.3	U	0.8	1007	
	05-Jul-00	Sodium, Total	34800		188		50000
	05-Jul-00	Thallium, Total	5.3	U	6.3	2	0.5/10
	05-Jul-00	Vanadium, Total	0.52	U	0.6		
	05-Jul-00	Zinc, Total	24.7		1.8	500	5000
B38W15D	26-Jun-00	Aluminum, Total		R	10.5	200	200
	26-Jun-00	Antimony, Total	2.1	U	2.1	6	2/20
	26-Jun-00	Arsenic, Total	11.1		2	50	0.02/8
	26-Jun-00	Barium, Total	30.2		0.2	2000	2000
	26-Jun-00	Beryllium, Total	0.2	U	0.2	4	0.008/20
	26-Jun-00	Cadmium, Total	0.2	U	0.4	5	4
	26-Jun-00	Calcium, Total	102000		4.3		
	26-Jun-00	Chromium, Total	2.1	U	1	100	100
	26-Jun-00	Copper, Total	1.3		1	1300	1000
	26-Jun-00	Iron, Total	7.2	U	10.5	300	300
	26-Jun-00	Lead, Total	1.3	U	1.3	15	5/10
	26-Jun-00	Magnesium, Total	39400		7		
	26-Jun-00	Manganese, Total	1060		0.2	50	50
	26-Jun-00	Mercury, Total	0.1	U	0.1	2	2
	26-Jun-00	Nickel, Total	9.7		1		100
	26-Jun-00	Potassium, Total	72700		98		
	26-Jun-00	Selenium, Total	1.5	U	3.4	50	50
	26-Jun-00	Silver, Total	0.3	U	1	1007	
	26-Jun-00	Sodium, Total	204000		19.5		50000
	26-Jun-00	Thallium, Total	5.3	U	3.8	2	0.5/10
	26-Jun-00	Vanadium, Total	2.5	U	1		
	26-Jun-00	Zinc, Total	5.5	U	0.4	500	5000

_

Table 12
2000 Groundwater Analytical Results - Metals
Maywood Interim Storage Site

					Reporting	Related F	Regulations
Sampling	Date	Detected	Result	Data	Limit	Federal ^c	State ^d
Location	Collected	Analyte ^a	(ug/L)	Qualifiers ^b	(ug/L)	(ug/L)	(ug/L)
B38W17B	19-Jun-00	Aluminum, Total	40.6	J	10.5	200	200
	19-Jun-00	Antimony, Total	2.1	U	2.1	6	2/20
	19-Jun-00	Arsenic, Total	2	U	2	50	0.02/8
	19-Jun-00	Barium, Total	69.4		0.2	2000	2000
	19-Jun-00	Beryllium, Total	0.2	U	0.2	4	0.008/20
	19-Jun-00	Cadmium, Total	0.4	U	0.4	5	4
	19-Jun-00	Calcium, Total	258000		4.3		
	19-Jun-00	Chromium, Total	12.9		1	100	100
	19-Jun-00	Cobalt, Total	0.5	U	0.5		
	19-Jun-00	Iron, Total	A 8490 .		10.5	300	300
	19-Jun-00	Lead, Total	2.2	U	1.3	15	5/10
	19-Jun-00	Manganese, Total	- 3970		0.2	50	50
	19-Jun-00	Mercury, Total	0.1	U	0.1	2	2
	19-Jun-00	Nickel, Total	7		1	-	100
	19-Jun-00	Potassium, Total	93300		98		
	19-Jun-00	Selenium, Total	3.4	U	3.4	50	50
	19-Jun-00	Silver, Total	1	U	1	1007	
	19-Jun-00	Sodium, Total	211000		19.5		50000
	19-Jun-00	Thallium, total	3.8	U	3.8	2	0.5/10
	19-Jun-00	Vanadium, Total	1	J	1	-	0.0/10
	19-Jun-00	Zinc, Total	11.3	U	0.4	500	5000
B38W18D	06-Jul-00	Aluminum, Total	101	R	22.2	200	200
	06-Jul-00	Antimony, Total	5.6	U	3.8	6	2/20
	06-Jul-00	Arsenic, Total	8.2	J	5	50	0.02/8
	06-Jul-00	Barium, Total	22.9		0.1	2000	2000
	06-Jul-00	Beryllium, Total	0.52	J	0.4	4	0.008/20
	06-Jul-00	Cadmium, Total	0.35	U	0.6	5	4
	06-Jul-00	Calcium, Total	143000		8.3		
	06-Jul-00	Chromium, Total	28		0.6	100	100
	06-Jul-00	Copper, Total	2.4		0.7	1300	1000
	06-Jul-00	Iron, Total	11600		13	300	300
	06-Jul-00	Lead, Total	1.9	J	2.3	15	5/10
	06-Jul-00	Magnesium, Total	12400		6.1		-
	06-Jul-00	Manganese, Total	3510		0.3	50	50
	06-Jul-00	Mercury, Total	0.1	U	0.1	2	2
	06-Jul-00	Nickel, Total	22.7		1.2		100
	06-Jul-00	Potassium, Total	6320		182		
	06-Jul-00	Selenium, Total	1.5	U	5.2	50	50
	06-Jul-00	Silver, Total	0.3	U	0.8	1007	
	06-Jul-00	Sodium, Total	36600		188		50000
	06-Jul-00	Thallium, Total	7.8	J	6.3	2	0.5/10
	06-Jul-00	Vanadium, Total	0.3	U	0.6		
	06-Jul-00	Zinc, Total	91.2		1.8	500	5000

_

Table 12 2000 Groundwater Analytical Results - Metals Maywood Interim Storage Site

					Reporting	Related F	Regulations
Sampling	Date	Detected	Result	Data	Limit	Federal ^c	Stated
Location	Collected	Analyte ^a	(ug/L)	Qualifiers ^b	(ug/L)	(ug/L)	(ug/L)
B38W19D	12-Jul-00	Aluminum, Total	10.5	U	22.2	200	200
	12-Jul-00	Antimony, Total	2.1	U	3.8	6	2/20
	12-Jul-00	Arsenic, Total	70.3		5	50	0.02/8
	12-Jul-00	Barium, Total	26.9		0.1	2000	2000
	12-Jul-00	Beryllium, Total	0.2	U	0.4	4	0.008/20
	12-Jul-00	Cadmium, Total	0.4	U	0.6	5	4
	12-Jul-00	Calcium, Total	192000		8.3		
	12-Jul-00	Chromium, Total	2.8		0.6	100	100
	12-Jul-00	Cobalt, Total	0.5	J	0.8		
	12-Jul-00	Iron, Total			13	300	300
	12-Jul-00	Lead, Total	1.3	U	2.3	15	5/10
	12-Jul-00	Magnesium, Total	31100		6.1		
	12-Jul-00	Manganese, Total	2240		0.3	50	50
	12-Jul-00	Mercury, Total	0.13	UJ	0.1	2	2
	12-Jul-00	Nickel, Total	2.2	J	1.2		100
	12-Jul-00	Potassium, Total	291000		182		
	12-Jul-00	Selenium, Total	3.4	U	5.2	50	50
	12-Jul-00	Silver, Total	1	U	0.8	1007	
	12-Jul-00	Sodium, Total	206000	J	188		50000
	12-Jul-00	Thallium, total	3.8	U	6.3	2	0.5/10
	12-Jul-00	Vanadium, Total	4.5		0.6		
	12-Jul-00	Zinc, Total	13.5	U	1.8	500	5000
B38W24D	22-Jun-00	Aluminum, Total		R	10.5		200
	22-Jun-00	Antimony, Total	2.1	U	2.1	6	2/20
	22-Jun-00	Arsenic, Total	2.1	J	2	50	0.02/8
	22-Jun-00	Barium, Total	240	J	0.2	2000	2000
	22-Jun-00	Beryllium, Total		R	0.2	4	0.008/20
	22-Jun-00	Cadmium, Total		R	0.4	5	4
	22-Jun-00	Calcium, Total	89800		4.3		
	22-Jun-00	Chromium, Total		R	1	100	100
	22-Jun-00	Cobalt, Total		R	0.5		
	22-Jun-00	Iron, Total	37900		10.5	300	300
	22-Jun-00	Lead, Total		R	1.3	15	5/10
	22-Jun-00	Magnesium, Total	10700		7		
	22-Jun-00	Manganese, Total	5350		0.2	50	50
	22-Jun-00	Mercury, Total	0.1	U	0.1	2	2
	22-Jun-00	Nickel, Total		R	1		100
	22-Jun-00	Potassium, Total	11600		98		
	22-Jun-00	Selenium, Total	3.4	U	3.4	50	50
	22-Jun-00	Silver, Total	1	U	1	1007	
	22-Jun-00	Sodium, Total	34700		19.5		50000
	22-Jun-00	Thallium, total	3.8	U	3.8	2	0.5/10
	22-Jun-00	Vanadium, Total		R	1		
	22-Jun-00	Zinc, Total		R	0.4	500	5000

Table 12	
2000 Groundwater Analytical Results - Metals	
Maywood Interim Storage Site	

Sampling	Date Collected	Detected Analyte ^a	Result (ug/L)	Data Qualifiers ^b	Reporting Limit (ug/L)	Related Regulations	
						Federal ^c (ug/L)	State ^d (ug/L)
Location							
B38W25D	07-Jul-00	Aluminum, Total		R	22.2	200	200
	07-Jul-00	Antimony, Total	3.6	U	3.8	6	2/20
	07-Jul-00	Arsenic, Total	3.1	U	5	50	0.02/8
	07-Jul-00	Barium, Total	61.4		0.1	2000	2000
	07-Jul-00	Beryllium, Total	0.2	U	0.4	4	0.008/20
	07-Jul-00	Cadmium, Total	0.2	U	0.6	5	4
	07-Jul-00	Calcium, Total	99500		8.3		
	07-Jul-00	Chromium, Total	5.3		0.6	100	100
	07-Jul-00	Copper, Total	0.54	J	0.7	1300	1000
	07-Jul-00	Iron, Total	5270		13	300	300
	07-Jul-00	Lead, Total	1.3	U	2.3	15	5/10
	07-Jul-00	Magnesium, Total	4920		6.1		
	07-Jul-00	Manganese, Total	1250		0.3	50	50
	07-Jul-00	Mercury, Total	0.1	U	0.1	2	2
	07-Jul-00	Nickel, Total	3.6		1.2		100
	07-Jul-00	Potassium, Total	48300		182		
	07-Jul-00	Selenium, Total	1.5	U	5.2	50	50
	07-Jul-00	Silver, Total	0.3	U	0.8	1007	
	07-Jul-00	Sodium, Total	28600		188		50000
	07-Jul-00	Thallium, Total	5.3	U	6.3	2	0.5/10
	07-Jul-00	Vanadium, Total	0.4	U	0.6	_	0.07.0
	07-Jul-00	Zinc, Total	8	U	1.8	500	5000
MISS01B	20-Jun-00	Aluminum, Total	10.5	U	10.5	200	200
	20-Jun-00	Antimony, Total	2.1	U	2.1	6	2/20
	20-Jun-00	Arsenic, Total	2	U	2	50	0.02/8
	20-Jun-00	Barium, Total	66.7		0.2	2000	2000
	20-Jun-00	Beryllium, Total	0.2	U	0.2	4	0.008/20
	20-Jun-00	Cadmium, Total	0.4	U	0.4	5	4
	20-Jun-00	Chromium, Total	1.7	J	1	100	100
	20-Jun-00	Cobalt, Total	0.5	U	0.5		
	20-Jun-00	Iron, Total	4970		10.5	300	300
	20-Jun-00	Lead, Total	1.3	U	1.3	15	5/10
	20-Jun-00	Magnesium, Total	17200		7		0,10
	20-Jun-00	Manganese, Total	291		0.2	50	50
	20-Jun-00	Mercury, Total	0.1	υ	0.1	2	2
	20-Jun-00	Nickel, Total	1.9	J	1	-	100
	20-Jun-00	Potassium, Total	9000		98		100
	20-Jun-00	Selenium, Total	3.4	U	3.4	50	50
	20-Jun-00	Silver, Total	1	Ū	1	1007	00
	20-Jun-00	Sodium, Total	50000	-	19.5		50000
	20-Jun-00	Thallium, total	3.8	U	3.8	2	0.5/10
	20-Jun-00	Vanadium, Total	2.9	J	1	-	0.0/10
	20-Jun-00	Zinc, Total	4.1	Ū	0.4	500	5000

.....

Table 12
2000 Groundwater Analytical Results - Metals
Maywood Interim Storage Site

Sampling Location	Date Collected	Detected Analyte ^a	Result (ug/L)	Data Qualifiers ^b	Reporting Limit (ug/L)	Related Regulations	
						Federal ^c (ug/L)	State ^d (ug/L)
	23-Jun-00	Antimony, Total	2.1	U	2.1	6	2/20
	23-Jun-00	Arsenic, Total	3.2	U	2	50	0.02/8
	23-Jun-00	Barium, Total	11.4		0.2	2000	2000
	23-Jun-00	Beryllium, Total	0.57	J	0.2	4	0.008/20
	23-Jun-00	Cadmium, Total	0.97		0.4	5	4
	23-Jun-00	Calcium, Total	240000		4.3		
	23-Jun-00	Chromium, Total	24.1		1	100	100
	23-Jun-00	Copper, Total	1.7		1	1300	1000
	23-Jun-00	Iron, Total	15500		10.5	300	300
	23-Jun-00	Lead, Total	1.3	U	1.3	15	5/10
	23-Jun-00	Magnesium, Total	34200		7		
	23-Jun-00	Manganese, Total	3820		0.2	50	50
	23-Jun-00	Mercury, Total	0.1	U	0.1	2	2
	23-Jun-00	Nickel, Total	20.9		1		100
	23-Jun-00	Potassium, Total	84400		98		
	23-Jun-00	Selenium, Total	1.5	U	3.4	50	50
	23-Jun-00	Silver, Total	0.3	U	1	1007	
	23-Jun-00	Sodium, Total	342000		19.5		50000
	23-Jun-00	Thallium, Total	7.8	J	3.8	2	0.5/10
	23-Jun-00	Vanadium, Total	4.7		1		
	23-Jun-00	Zinc, Total	109		0.4	500	5000
MISS05B	11-Jul-00	Aluminum, Total	15.5	U	22.2	200	200
	11-Jul-00	Antimony, Total	2.1	U	3.8	6	2/20
	11-Jul-00	Arsenic, Total	20.5		5	50	0.02/8
	11-Jul-00	Barium, Total	41.6		0.1	2000	2000
	11-Jul-00	Beryllium, Total	0.2	U	0.4	4	0.008/20
	11-Jul-00	Cadmium, Total	0.4	U	0.6	5	4
	11-Jul-00	Calcium, Total	201000		8.3		
	11-Jul-00	Chromium, Total	2.4		0.6	100	100
	11-Jul-00	Cobalt, Total	0.5	U	0.8		
	11-Jul-00	Iron, Total	6110		13	300	300
	11-Jul-00	Lead, Total	1.3	U	2.3	15	5/10
	11-Jul-00	Magnesium, Total	23900		6.1		
	11-Jul-00	Manganese, Total	951		0.3	50	50
	11-Jul-00	Mercury, Total	0.1	UJ	0.1	2	2
	11-Jul-00	Nickel, Total	4.1	U	1.2		100
	11-Jul-00	Potassium, Total	167000		182		-
	11-Jul-00	Selenium, Total	3.4	U	5.2	50	50
	11-Jul-00	Silver, Total	1	U	0.8	1007	-
	11-Jul-00	Sodium, Total	94800		188		50000
	11-Jul-00	Thallium, total	3.8	U	6.3	2	0.5/10
	11-Jul-00	Vanadium, Total	2.1	J	0.6		
	11-Jul-00	Zinc, Total	17		1.8	500	5000

......
Table 12 2000 Groundwater Analytical Results - Metals Maywood Interim Storage Site

					Reporting	Related	Regulations
Sampling	Date	Detected	Result	Data	Limit	Federal ^c	State ^d
Location	Collected	Analyte ^a	(ug/L)	Qualifiers ^b	(ug/L)	(ug/L)	(ug/L)
MISS07B	12-Jul-00	Aluminum, Total	13.2	U	22.2	200	200
	12-Jul-00	Antimony, Total	2.1	U	3.8	6	2/20
	12-Jul-00	Arsenic, Total	52.6		5	50	0.02/8
	12-Jul-00	Barium, Total	20		0.1	2000	2000
	12-Jul-00	Beryllium, Total	0.2	U	0.4	4	0.008/20
	12-Jul-00	Cadmium, Total	0.4	U	0.6	5	4
	12-Jul-00	Calcium, Total	138000		8.3		
	12-Jul-00	Chromium, Total	2.1	J	0.6	100	100
	12-Jul-00	Cobalt, Total	3.6		0.8		
	12-Jul-00	Iron, Total	6390-		13	300	300
	12-Jul-00	Lead, Total	1.3	U	2.3	15	5/10
	12-Jul-00	Magnesium, Total	50000		6.1		
	12-Jul-00	Manganese, Total	a 🖌 2030 🐪		0.3	50	50
	12-Jul-00	Mercury, Total	0.11	UJ	0.1	2	2
	12-Jul-00	Nickel, Total	6.8		1.2		100
	12-Jul-00	Potassium, Total	29200		182		
	12-Jul-00	Selenium, Total	3.4	U	5.2	50	50
	12-Jul-00	Silver, Total	1	U	0.8	1007	
	12-Jul-00	Sodium, Total	338000		188		50000
	12-Jul-00	Thallium, total	3.8	U	6.3	2	0.5/10
	12-Jul-00	Vanadium, Total	13.9		0.6		
	12-Jul-00	Zinc, Total	21.8	U	1.8	500	5000

^a Only the analytes that were detected are reported. Shaded result indicates value exceeds criteria.

^b Stone & Webster qualifier flags: J = Reported as an estimated value, U= analyte was not detected. R= Rejected by validation.

^c Federal SDWA MCLs, 40 CFR 141. Regulations pertain to drinking water quality and are listed for comparison purposes only.

^d New Jersey Class IIA Groundwater Quality Standards NJAC 7:9-6. Analytes for which the PQL is greater than the GWQC are noted as such: GWQC/PQL.

^e Monitoring well B38W02D is the background location for wells completed in bedrock.

2000 Groundwater	Table 13 Analytical Posulte - Volatile Ormania Commune
2000 Groundwater	Maywood Interim Storage Site

_				Data	Reporting	Related F	Regulations
Sampling Location	Date Collected	Analyte*	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
Monitoring	wells comp	pleted in unconsolidated se	diment:			((-3)
B38W01S	08-Nov-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	Ú	1	3/5	3
		1,1-Dichloroethane	1	Ŭ	1	0.0	70
		1,1-Dichloroethene	1	Ŭ	1	7	1
		1,2-Dichloroethane	1 '	ŭ	1	5	03
		1,2-Dichloroethene (total)	1	ŭ	1	70	10
		1,2-Dichloropropane	1	Ũ	1	5	0.5
		2-Butanone	5	ŭ	5	Ū	3
		2-Hexanone	5	ŭ	5		5
		4-Methyl-2-pentanone	5	Ű	5		400
		Acetone	5	ŭ	5		700
		Benzene	1	ŭ	1	5	700
		Bromodichloromethane	1	Ŭ	1	5	0.2
		Bromoform	1		1		0.3
		Bromomethane	2	0	1		4
		Carbon Disulfide		0	2		10
		Carbon Tetrachloride	1	0			
		Chlorobenzene	1	0	1	100	0.4
		Chloroethane	1	0	1	100	4
		Chloroform	2	0	2		
		Chloromethane	2	U	1		6
		cis.1.3 Dichloropropopo	2	0	2		30
		Dibromochloromothana	1	0	1		
		Ethylhonzono		Ų	1		10
		Mothylono Chlorido	0.1	J	1	700	700
		Shiropo	2	U	2		2
		Totrophloroothopo	1	U	1	100	100
		Teluana	1	U	1	5	0.4
		Trans 1.2 Disblasses	3		1	100	1000
		Triablesethers	1	U	1		
			1	U	1	5	1
		Vinyi Chioride	2	U	2	5	0.08
38W14S	16-Nov-00	1 1 1-Trichloroethane	4	1.1			
	10-1404-00	1 1 2 2-Tetrachloroethano	1	0	1	200	30
		1,1,2,2-1 etrachioroethane	1	0	1	0/5	2
		1,1,2-menoroethane	0.0	U	1	3/5	3
		1.1.Dichloroothane	0.2	J	1	-	70
		1.2-Dichloroothano	1	U	1	/	1
		1.2-Dichloroothono (total)		U	1	5	0.3
		1.2 Dichloropropopo	anna Unit		1	70	10
		2-Butanone		U	1	5	0.5
			5	U	5		3
		A Mothyl 2 pontanona	5	U	5		
		Apotono	5	U	5		400
		Rearrance	5	U	5		700
			0.2	J	1	5	0.2
		bromodicnioromethane	1	U	1		0.3
		Bromotorm	1	U	1		4
		Bromomethane	2	U	2		10

~

•				Data	Reporting	Related Regulations	
Sampling Location	Date Collected	Analyte [•]	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
		Carbon Disulfide	1	U	1		/
		Carbon Tetrachloride	1	U	1		0.4
		Chlorobenzene	1	U	1	100	4
		Chioroethane	2	U	2		·
		Chloroform	6		1		6
		Chloromethane	2	U	2		30
		cis-1,3-Dichloropropene	1	U	1		•••
		Dibromochloromethane	1	U	1		10
		Ethylbenzene	0.1	J	1	700	700
		Methylene Chloride	0.8	U	2		2
		Styrene	1	ŭ	1	100	100
		Tetrachloroethene		-	1	5	0.4
		Toluene	0.4	L	1	100	1000
		Trans-1,3-Dichloropropene	1	ŭ	1	100	1000
		Trichloroethene	State rate	0	1	5	1
		Vinyl Chloride	0.1	.1	2	5	0.08
							0.00
338W15S	09-Nov-00	1,1,1-Trichloroethane	1	Ù	1	200	30
		1,1,2,2-Tetrachloroethane	1	ŭ	1	200	2
		1,1,2-Trichloroethane	1	ŭ	1	3/5	2
		1,1-Dichloroethane	1	Ŭ	1	0/0	70
		1,1-Dichloroethene	1	ŭ	1	7	1
		1.2-Dichloroethane	1	ŭ	1	5	0.2
		1.2-Dichloroethene (total)	1	U U	1	70	0.5
		1.2-Dichloropropane	1	U U	1	70	10
		2-Butanone	5	U U	5	5	0.5
		2-Hexanone	5	U U	5		3
		4-Methyl-2-pentanone	5	U U	5		100
		Acetone	<u>л</u>	Ð	5		400
		Benzene	- - -	<u>г</u>	5	<i>c</i>	700
		Bromodichloromethane	1	J	1	S	0.2
		Bromoform	1	U	4		0.3
		Bromomethane	1	U	1		4
		Carbon Disulfide	2	0	2		10
		Carbon Tetrachlorida	1	0	1		
		Chlorobenzene	1	0	1		0.4
		Chloroethana	, ,	0	1	100	4
		Chloroform	2	U	2		
		Chloromothana	1	U	1		6
			2	U	2		30
		Dibroma ablance ath an	1	U	1		
			1	U	1		10
			0.4	J	1	700	700
		Metriylene Chloride	2	U	2		2
			1	U	1	100	100
			1	U	1	5	0.4
			2		1	100	1000
		Irans-1,3-Dichloropropene	1	U	1		
		Irichloroethene	1	U	1	5	1
·····		Vinyi Chloride	2	U	2	5	0.08

Table 13 2000 Groundwater Analytical Results - Volatile Organic Compounds Maywood Interim Storage Site

				Data	Reporting	Related F	Regulations
Sampling Location	Date Collected	Analyte*	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
B38W17A	02-Nov-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	1	U	1		70
		1,1-Dichloroethene	1	U	1	7	1
		1,2-Dichloroethane	1	U	1	5	0.3
		1,2-Dichloroethene (total)	1	υ·	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		-
		4-Methyl-2-pentanone	5	Ū	5		400
		Acetone	20	B	5		700
		Benzene	0.1	.1	1	5	0.2
		Bromodichloromethane	1	ŭ	1	Ũ	0.3
		Bromoform	1	Ŭ	1		4
		Bromomethane	2	Ŭ	2		10
		Carbon Disulfide	1	Ц	2		10
		Carbon Tetrachloride	1		1		0.4
		Chlorobenzene	1	0	1	100	0.4
		Chlorosthane	י ר	0	2	100	4
		Chloroform	4	0	2		0
		Chloromothono	1	U			6
			2	0	2		30
		Dibromochioropropene	4	U	1		40
			1	Ū	1	-	10
			0.3	J	1	700	700
		Methylene Chloride	2	U	2		2
		Styrene	1	U	1	100	100
		letrachloroethene	1	U	1	5	0.4
		Toluene	2		1	100	1000
		Trans-1,3-Dichloropropene	1	U	1		
		Trichloroethene	1	U	1	5	1
		Vinyl Chloride	2	U	2	5	0.08
B38\//105	07-Nov-00	1 1 1-Trichloroethane	4		4	200	20
00044130	07-1404-00	1,1,2,2 Totrachloroothano	1	0	1	200	30
		1,1,2,2-1 etrachioroethane	1	U	1	2/5	2
		1, 1, 2- menioroethane	1	0	1	3/5	3
		1,1-Dichloroethane	1	0	1	-	70
		1, 1-Dichloroethene	1	U	1	<u>/</u>	1
			1	U	1	5	0.3
		1,2-Dichloroethene (total)	1	U	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	5	U	5		700
		Benzene	1	U	1	5	0.2
		Bromodichloromethane	1	U	1		0.3
		Bromoform	1	U	1		4
		Bromomethane	2	U	2		10
		Carbon Disulfide	1	U	1		

•

_

	Table 13
2000 Groundwater	Analytical Results - Volatile Organic Compounds
	Maywood Interim Storage Site

				Data	Reporting	Related F	Regulations
Sampling Location	Date Collected	Analyte*	Resuit (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
		Carbon Tetrachloride	1	υ	1		0.4
		Chlorobenzene	1	Ū	1	100	4
		Chloroethane	2	Ŭ	2	100	-
		Chloroform	1	Ū	1		6
		Chloromethane	2	U	2		30
		cis-1,3-Dichloropropene	1	U	1		
		Dibromochloromethane	1	Ŭ	1		10
		Ethylbenzene	0.2	Ĵ	1	700	700
		Methylene Chloride	2	U	2		2
		Styrene	1	Ŭ	1	100	100
		Tetrachloroethene	1	Ū	1	5	04
		Toluene	0.7	J	1	100	1000
		Trans-1,3-Dichloropropene	1	Ŭ	1		1000
		Trichloroethene	1	ŭ	1	5	1
		Vinyl Chloride	2	ŭ	2	5	0 08
							0.00
B38W24S	15-Nov-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachioroethane	1	U	1		2
		1,1,2-Trichloroethane	1	Ů	1	3/5	3
		1,1-Dichloroethane	1	Ŭ	1	0.0	70
		1,1-Dichloroethene	1	Ũ	1	7	1
		1,2-Dichloroethane	1	Ŭ	1	5	03
		1.2-Dichloroethene (total)	1	ŭ	1	70	10
		1.2-Dichloropropane	1	Ŭ	1	5	0.5
		2-Butanone	5	ŭ	5	Ũ	3
		2-Hexanone	5	ŭ	5		5
		4-Methyl-2-pentanone	5	ŭ	5		400
		Acetone	5	ŭ	5		700
		Benzene	1	U U	1	5	0.2
		Bromodichloromethane	1	U U	1	5	0.2
		Bromoform	1	ŭ	1		0.5
		Bromomethane	2	Ŭ	2		4
		Carbon Disulfide	1	Ŭ	1		10
		Carbon Tetrachloride	1	Ŭ	1		0.4
		Chlorobenzene	1	Ŭ	1	100	0.4
		Chloroethane	2	Ŭ	2	100	4
		Chloroform	1	ŭ	2		c
		Chloromethane	2		2		20
		cis-1.3-Dichloropropene	1	Ц	2		30
		Dibromochloromethane	4	0	1		40
		Ethylbenzene	01	0	1	700	10
		Methylene Chloride	0.1	J	1	700	700
		Styrene	U.O 1	JB	2	100	2
		Tetrachloroethene	1	U	1	100	100
		Toluono	0.7	U ,	1	5	0.4
		Trans-1 3-Dichloroproposo	0.7	J	1	100	1000
		Trichloroethene	1	U	1	-	
		Vinyl Chloride	י כ	U	1	5	1
		vinyi Chionde	2	U	2	5	0.08

_

Table 13 2000 Groundwater Analytical Results - Volatile Organic Compounds Maywood Interim Storage Site

				Data	Reporting	<u>Related F</u>	Regulations
Sampling Location	Date Collected	Analyte"	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
B38W25S	27-Nov-00	1.1.1-Trichloroethane	1	U	1	200	30
		1.1.2.2-Tetrachloroethane	1	ŭ	1	200	2
		1.1.2-Trichloroethane	1	Ũ	1	3/5	3
		1.1-Dichloroethane	1	ŭ	1	0.0	70
		1.1-Dichloroethene	1	ŭ	1	7	1
		1.2-Dichloroethane	1	ŭ	1	5	0.3
		1.2-Dichloroethene (total)	1	Ŭ	1	70	10
		1,2-Dichloropropane	1	Ŭ	1	5	0.5
		2-Butanone	5	Ū	5	-	3
		2-Hexanone	5	Ū	5		-
		4-Methvi-2-pentanone	5	Ŭ	5		400
		Acetone	5	Ŭ	5		700
		Benzene	1	Ŭ	1	5	0.2
		Bromodichloromethane	1	ŭ	1	· ·	0.3
		Bromoform	1	Ŭ	1		4
		Bromomethane	2	ŭ	2		10
		Carbon Disulfide	1	Ŭ	1		
		Carbon Tetrachloride	1	Ŭ	1		04
		Chlorobenzene	0.1	J	1	100	4
		Chloroethane	2	Ŭ	2		•
		Chloroform	1	ŭ	1		6
		Chloromethane	2	Ŭ	2		30
		cis-1.3-Dichloropropene	1	ŭ	1		00
		Dibromochloromethane	1	ŭ	1		10
		Ethylbenzene	02		1	700	700
		Methylene Chloride	0.5	JB	2	100	2
		Styrene	1	11	1	100	100
		Tetrachloroethene	1	ŭ	1	5	04
		Toluene	07		1	100	1000
		Total Xviene	0. <i>1</i>		1	10000	40
		Trans-1 3-Dichloropropene	1	Ŭ	1	10000	40
		Trichloroethene	1	U U	1	5	1
		Vinvl Chloride	2	U U	2	5	0.08
				Ÿ		v	0.00
MISS01AA	21-Dec-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	1	U	1		70
		1,1-Dichloroethene	1	U	1	7	1
		1,2-Dichloroethane	1	U	1	5	0.3
		1,2-Dichloroethene (total)	1	U	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	1	J	5		700
		Benzene	1	U	1	5	0.2
		Bromodichloromethane	1	U	1		0.3
		Bromoform	1	11	1		4
		Dromoionn	1	0	1		4

GWVOCs.xls06/22/2001

_

5

		Table 13			
2000 Groundwater	Analytical	Results -	Volatile	Organic (Compounds
	Maywood	Interim St	orage Si	ite	

Sampling Location Date Collected Analyte* (ugL) Result (ugL) Qualifiers* (ugL) Limit (ugL) Federal* (ugL) Statud (ugL) k Carbon Disulfide Carbon Tetrachloride 1 U 1 0.4 Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 1 U 1 6 Chloromethane 2 U 2 30 cis.1,3-Dichloropropene 1 U 1 100 Dibromochloromethane 1 U 1 5 0.4 Toluene 0.1 J 1 100 1000 Tetrachloroethane 1 U 1 5 1 Toluene 0.1 J 1 1000 1000 Trans-1,3-Dichloropropene 1 U 1 5 0.8 Toluene 1 U 1 5 0.3 Tetrachloroethane						Data	Reporting	Related R	Regulations
Carbon Disuffide 1 U 1 0.4 Chiorobenzene 1 U 1 100 4 Chiorobenzene 2 U 2 30 Chiorobenzene 1 U 1 6 Chioromethane 2 U 2 30 cis-1,3-Dichioropropene 1 U 1 700 Chioromethane 1 U 1 700 700 Missoza 2 U 2 2 2 Styrene 1 U 1 100 1000 Total Xylene 0.1 J 1 1000 1000 Trans-1,3-Dichioroptopene 1 U 1 5 1 Vinyl Chlonde 2 U 2 5 0.08 1,12-Trichioroethane 1 U 1 20 30 1,12-Zinchioroethane 1 U 1 70 1 1.2-Dichioroethane 1		Sampling Location	Date Collected	Analyte"	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 1 U 1 100 4 Chloroform 1 U 1 6 30 Cicl-3-Dichloropropene 1 U 1 10 1 Dibromochloromethane 1 U 1 100 100 Ethylbenzene 1 U 1 100 100 100 Tetrachloroethene 1 U 1 1000 100 100 Trans-1,3-Dichloropropene 1 U 1 5 1 Trickloroethane 1 U 1 200 30 1,1.2,2-Tetrachloroethane 1 U 1 70 10 1,1.2,2-Tetrachloroethane 1 U 1 70 10 1,2.2-Tetrachloroethane 1 U 1 5 0.5 2.1,2-Trichlor	-			Carbon Disulfide	1	υ	1		
Chlorobenzene 1 U 1 100 4 Chlorothane 2 U 2 30 Chlorotorm 1 U 1 6 Chlorotormethane 2 U 2 30 cis-1,3-Dichoropropene 1 U 1 700 Ethylbenzene 1 U 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 0.1 J 1 1000 40 Total Xylene 0.1 J 1 10000 40 Trans-13-Dichloropropene 1 U 1 5 1 Trichloroethane 1 U 1 20 30 1,1-2.2 Techoloroethane 1 U 1 2.0 30 1,1-2.2 Techoloroethane 1 U 1 70 1 1,2-2.Dichoroethene 1 U 1 5 .3				Carbon Tetrachloride	1	U	1		0.4
Chlorosthane 2 U 2 Chlorosthane 1 U 1 6 Chlorosthane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 700 700 Dibromochloromethane 1 U 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 1000 Total Xylene 0.1 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 0.4 Total Xylene 0 1 2 5 0.08 MISS02A 21-Nov-00 1,1.1-Trichloroethane 1 U 1 3/5 3 1,1.2-Trichloroethane 1 U 1 5 0.3 1,2-Dichloroppane 1 U 1 5 0.5 2-Butanone 5 U 5 .5<				Chlorobenzene	1	U	1	100	4
Charoform 1 U 1 6 Chloromethane 2 U 2 30 Cisl-3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 1000 Totarchoroethene 1 U 1 5 0.4 Touene 0.1 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Vinyl Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,1.1-Trichloroethane 1 U 1 70 1 1,1.2-Trichloroethane 1 U 1 30 3 1 1-Dichloroethane 1 U 1 7 1 1,2-Dichloroethane 1 U 1				Chloroethane	2	U	2		
Chromethane 2 U 2 30 cis-1,3-Dichioropropene 1 U 1 10 Dibromochioromethane 1 U 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 5 0.4 Toluene 0.1 J 1 100 1000 Totata Xylene 0.1 J 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 5 1 Vinyl Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,1-Trichloroethane 1 U 1 2 1,1.2-Tratachloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 7 1 1,2-Dichloropthane 1 U 1 5 0.3 3 2-Hexanone 4 4 5 3				Chloroform	1	U	1		6
cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.1 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Vinyl Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,1,1-Trichloroethane 1 U 1 20 30 1,1,2-Trichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 70 10 1,1,2-Trichloroethane 1 U 1 70 10 1 2.Dichloroethane 1 U 1 5 0.5 2.Bichloropropane 1				Chloromethane	2	U	2		30
Dibromochloromethane 1 U 1 700 700 Bethylbenzene 1 U 1 700 700 Methylene Chloride 2 U 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 0.1 J 1 10000 40 Trans. 13-Dichloropropene 1 U 1 5 1 Vinyl Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,1.1-Trichloroethane 1 U 1 35 3 1.1.2.2-Tetrachloroethane 1 U 1 35 3 3 1.1.2.2-Tetrachloroethane 1 U 1 70 10 1.2.2-Dichloroethane 1 U 1 70 10 1.2-Dichloroethane 1 U 1 5 0.3 1.2.2-Dichloroethane 1 U 1 5 0.2 2 100				cis-1.3-Dichloropropene	1	U	1		
Ethylenzene 1 U 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.1 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Trichloroethene 1 U 1 5 1 Vinyl Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,1,1-Trichloroethane 1 U 1 200 30 1,1,2-Tichloroethane 1 U 1 35 3 1,1-Dichloroethane 1 U 1 70 1,2-Dichloroethane 1 U 1 70 10 1,2-Dichloroethane 1 U 1 5 0.5 2-Butanone 5 U 5				Dibromochloromethane	1	υ	1		10
Methylene Chloride 2 U 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 0.1 J 1 100 1000 Total Xylene 0.1 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Vinyl Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,11-Tichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 3/5 3 3 1,1-Dichloroethane 1 U 1 70 1 1.2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethane 1 U 1 5 0.3 2-Hexanone 5 U 5 3 2-Hexanone 5 U 5 400 Acetone 10 0.3 3 2-Hexanone<				Ethvlbenzene	1	U	1	700	700
Styrene 1 U 1 100 100 Tetrachloroethene 1 J 1 100 100 Toluene 0.1 J 1 100 100 Tala Xylene 0.1 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 MISS02A 21-Nov-00 1,1,1-Trichloroethane 1 U 1 200 30 1,1,2-Trichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 70 1,1,2-Trichloroethane 1 U 1 70 1 1.Dichloroethane 1 U 1 70 1,1-Dichloroethane 1 U 1 70 10 1 2.Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethane 1 U 1 5 0.3 2.Hexanone 5 U 5 400 </td <td></td> <td></td> <td></td> <td>Methylene Chloride</td> <td>2</td> <td>U</td> <td>2</td> <td></td> <td>2</td>				Methylene Chloride	2	U	2		2
Tetrachloroethene 1 U 1 5 0.4 Totat Xylene 0.1 J 1 1000 10000 Trans-1,3-Dichloropropene 1 U 1 10000 40 Trans-1,3-Dichloroptene 1 U 1 5 1 Winy Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,1.1-Trichloroethane 1 U 1 20 30 1,1.2.2-Tetrachloroethane 1 U 1 70 1 1.70 70 1,1.2.2-Tichloroethane 1 U 1 70 1 1.2-Dichloroethane 1 U 1 70 1,1.2-Dichloroethane 1 U 1 70 10 1.2-Dichloroethane 1 U 1 5 0.5 2-Biothoroethane 1 U 1 5 0.2 8 700 Acetone 1 U 1 0 1				Styrene	1	Ŭ	1	100	100
Toluene 0.1 J 1 100 1000 Total Xylene 0.1 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 MISS02A 21-Nov-00 1,1,1-Trichloroethane 1 U 1 2 0.08 MISS02A 21-Nov-00 1,1,1-Trichloroethane 1 U 1 200 30 1,1,2-Trichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 70 1,1,2-Trichloroethane 1 U 1 70 1 1,2-Dichloroethane 1 U 1 70 1,1,2-Trichloroethane 1 U 1 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 0.2 0.2 0.0 <td< td=""><td></td><td></td><td></td><td>Tetrachloroethene</td><td>1</td><td>Ũ</td><td>1</td><td>5</td><td>0.4</td></td<>				Tetrachloroethene	1	Ũ	1	5	0.4
Total Xylene 0.1 J 1 10000 40 Trans.1,3-Dichloropropene 1 U 1 5 1 Trichloroethene 1 U 1 5 1 MISS02A 21-Nov-00 1,1.1-Trichloroethane 1 U 1 2 5 0.08 MISS02A 21-Nov-00 1,1.1-Trichloroethane 1 U 1 200 30 1.1.2.2-Tetrachloroethane 1 U 1 3/5 3 1.1-Dichloroethane 1 U 1 70 1.1.2-Dichloroethane 1 U 1 5 0.3 1.2-Dichloroethane 1 U 1 5 0.3 1.2-Dichloroethane 1 U 1 5 3 2 - 400 Acetone 10 5 70 1 1 0.3 3 2-Hexanone 5 U 5 700 3 3 2 - 40				Toluene	0.1	J	1	100	1000
Trans-1,3-Dichloropropene 1 U 1 5 1 Vinyl Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,1-Trichloroethane 1 U 1 2 30 MISS02A 21-Nov-00 1,1-Trichloroethane 1 U 1 200 30 1,12_Trichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 70 1 1,1-Dichloroethane 1 U 1 7 1 1 2-Dichloroethane 1 U 1 5 0.5 2-Dichloroethane 1 U 1 5 0.5 2 30 1,2-Dichloroethane 5 U 5 400 Acetone 1 0.2 1 0.5 2-Butanone 5 U 5 400 Acetone 1 0.2 1 0.2 Bromodichloromethane 1 U				Total Xvlene	0.1	Ĵ	1	10000	40
Trichloroethene 1 0 1 5 1 Vinyl Chloride 2 U 2 5 0.08 MISS02A 21-Nov-00 1,1.1-Trichloroethane 1 U 1 200 30 1,1.2.2-Tetrachloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 70 1,1.2-Trichloroethane 1 U 1 70 1 1,2-Dichloroethane 1 U 1 70 10 1,2-Dichloroethane 1 U 1 70 10 1 5 0.3 1,2-Dichloroethane 1 U 1 70 10 1 5 0.3 1,2-Dichloroethane 1 U 1 5 0.3 3 2-bichloroethane 1 U 1 5 0.5 2-Butanone 5 U 5 700 3 2-bichloroethane 1 U 1 0.3				Trans-1 3-Dichloropropene	1	ũ	1		
Individuality 1 0 1 2 5 0.08 MISS02A 21-Nov-00 1,1,1-Trichloroethane 1 U 1 200 30 1,1,2,2-Tetrachloroethane 1 U 1 3/5 3 1,1,2-Trichloroethane 1 U 1 70 1,1,2-Trichloroethane 1 U 1 70 1 1 70 1 1,1-Dichloroethane 1 U 1 7 1 1 70 10 1,2-Dichloroethane 1 U 1 70 10 1 70 10 1,2-Dichloroethane 1 U 1 5 0.5 2 8 100 Acetone 1 1 5 0.2 8 700 Bernere 1 U 1 5 0.2 8 700 Bernere 1 1 1 1 1 1 1 1 1 1 1 1				Trichloroethene	1	Ű	1	5	1
Mily Chloride 2 0 1 2 0 1 MISS02A 21-Nov-00 1,1,1-Trichloroethane 1 U 1 200 30 1,1,2-Trichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 7 1 1,2-Dichloroethane 1 U 1 7 1 1,2-Dichloroethane 1 U 1 70 10 1,2-Dichloroethane 1 U 1 70 10 1,2-Dichloroethane 1 U 1 5 0.5 2-Butanone 5 U 5 3 3 2-Hexanone 5 U 5 700 Benzene 1 U 1 0.3 Bromodichloromethane 2 U 2 10 Carbon Disulide 1 U				Vinyl Chloride	2	Ŭ	2	5	0.08
MISS02A 21-Nov-00 1,1,1-Trichloroethane 1 U 1 200 30 1,1,2-Tetrachloroethane 1 U 1 3/5 3 1,1,2-Trichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 7 1 1,2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethane 1 U 1 5 0.5 2-Butanone 4 J 5 3 3 2-Hexanone 5 U 5 400 Acetone 10 5 0.2 8 Benzene 1 U 1 5 0.2 Bromodichloromethane 2 U 2 10 0.4 Carbon Disulfide 1 U 1 0.4 1 0.4 Chlorobenzene 1 U <td>-</td> <td></td> <td></td> <td>Viriyi Chilonde</td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td>	-			Viriyi Chilonde					0.00
1,1,2,2-Terichloroethane 1 U 1 3/5 3 1,1,2-Trichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 70 1 1,2-Dichloroethane 1 U 1 7 1 1,2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethane 1 U 1 5 0.5 2-Butanone 4 J 5 3 3 2-Hexanone 5 U 5 400 Acetone 10 5 0.2 700 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 4 Bromodichloromethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chlorobenzene 1 U 1 0 Chlorobenzene 1 U 1 10 Chlorobenzene 1 U 1 <td< td=""><td>1</td><td>MISS02A</td><td>21-Nov-00</td><td>1,1,1-Trichloroethane</td><td>1</td><td>U</td><td>1</td><td>200</td><td>30</td></td<>	1	MISS02A	21-Nov-00	1,1,1-Trichloroethane	1	U	1	200	30
1,1,2-Trichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 70 1,1-Dichloroethane 1 U 1 7 1 1,2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethane 1 U 1 70 10 1,2-Dichloroethane 1 U 1 70 10 1,2-Dichloroppane 1 U 1 5 0.5 2-Butanone 5 U 5 400 Acetone 10 5 0.2 Bromodichloromethane 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 3 Bromodichloromethane 1 U 1 0.4 3 Carbon Disulfide 1 U 1 0.4 3 Carbon Disulfide 1 U 1 0.4 3 Chloroform 1 U 1 0.4 3 3				1,1,2,2-Tetrachloroethane	1	U	1		2
1,1-Dichloroethane 1 U 1 70 1,1-Dichloroethane 1 U 1 7 1 1,2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroppane 1 U 1 5 0.5 2-Butanone 4 J 5 3 2-Hexanone 5 U 5 400 Acetone 10 5 0.2 8 Bromodichloromethane 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 3 Bromodichloromethane 1 U 1 0.3 3 Bromodichloromethane 2 U 2 10 1 Carbon Disulfide 1 U 1 0.4 1 0.4 Chlorobetnane 2 U 2 30 30 3				1,1,2-Trichloroethane	1	U	1	3/5	3
1,1-Dichloroethene 1 U 1 7 1 1,2-Dichloroethene (total) 1 U 1 5 0.3 1,2-Dichloroethene (total) 1 U 1 70 10 1,2-Dichloropropane 1 U 1 5 0.5 2-Butanone 4 J 5 3 2-Hexanone 5 U 5 400 Acetone 10 5 0.3 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 5 0.2 Bromodichloromethane 1 U 1 4 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 2 U 2 10 Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 1 U 1 10 Chlorobenzene 1 U 1 10				1,1-Dichloroethane	1	U	1		70
1,2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethene (total) 1 U 1 70 10 1,2-Dichloropropane 1 U 1 5 0.5 2-Butanone 4 J 5 3 2-Hexanone 5 U 5 400 Acetone 10 5 700 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 1 U 1 4 Bromodichloromethane 1 U 1 4 Bromodichloromethane 2 U 2 10 Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chloroethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene				1,1-Dichloroethene	1	U	1	7	1
1,2-Dichloroethene (total) 1 U 1 70 10 1,2-Dichloropropane 1 U 1 5 0.5 2-Butanone 4 J 5 3 2-Hexanone 5 U 5 400 Acetone 10 5 400 Acetone 10 5 700 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 5 0.2 Bromodorm 1 U 1 4 0.3 Bromoform 1 U 1 4 1 0.4 Carbon Disulfide 1 U 1 0.4 1 0.4 Chlorobenzene 1 U 1 100 4 Chloroform 1 U 1 100 4 Chloroethane 2 U 2 30 cis-1, 3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 1				1,2-Dichloroethane	1	U	1	5	0.3
1,2-Dichloropropane 1 U 1 5 0.5 2-Butanone 4 J 5 3 2-Hexanone 5 U 5 400 Acetone 10 5 700 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 3 Bromodichloromethane 1 U 1 4 4 Bromodichloromethane 2 U 2 10 1 4 Carbon Disulifide 1 U 1 0.4 1 0.4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 1 U 1 0.4 1 0.4 Chlorobenzene 1 U 1 100 4 1 1 1 0.4 1 1 0.4 1 1 1 1 1 1 1 1				1,2-Dichloroethene (total)	1	U	1	70	10
2-Butanone 4 J 5 3 2-Hexanone 5 U 5 400 Acetone 10 5 700 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromoform 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 1 U 1 100 4 Chloroberthane 2 U 2 30	-			1,2-Dichloropropane	1	U	1	5	0.5
2-Hexanone 5 U 5 4-Methyl-2-pentanone 5 U 5 400 Acetone 10 5 700 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 2 U 2 10 Carbon Disulfide 1 U 1 4 Bromodichloromethane 2 U 2 10 Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chloroform 1 U 1 6 Chloropethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Ethylbenzene 0.1 J 100 100 Ethylbenzene 0.6 JB 2 2 Styrene 1 U 1 100 1000 Tetrachloroethene 0.6 J 1 100 4				2-Butanone	4	J	5		3
4-Methyl-2-pentanone 5 U 5 400 Acetone 10 5 700 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chloroform 1 U 1 0.4 Chloroform 1 U 1 0.4 Chloroform 1 U 1 6 Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.6 JB 2 2 2 Styrene 1 U 1 5 0.4 <td></td> <td></td> <td></td> <td>2-Hexanone</td> <td>5</td> <td>U</td> <td>5</td> <td></td> <td></td>				2-Hexanone	5	U	5		
Acetone 10 5 700 Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromoform 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chlorobenzene 2 U 2 30 cis-1,3-Dichloropropene 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 2 Styrene 1 U 1 5<				4-Methyl-2-pentanone	5	U	5		400
Benzene 1 U 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromoform 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1				Acetone	10		5		700
Bromodichloromethane 1 U 1 0.3 Bromoform 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1				Benzene	1	U	1	5	0.2
Bromoform 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 2 U 2 6 6 Chloroform 1 U 1 6 6 Chloroform 1 U 1 10 1 Dibromochloromethane 1 U 1 10 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 2 Styrene 1 U 1 100 1000 Tetrachloroethene 0.8				Bromodichloromethane	1	U	1		0.3
Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Carbon Tetrachloride 1 U 1 100 4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 2 U 2				Bromoform	1	U	1		4
Carbon Disulfide 1 U 1 0.4 Carbon Tetrachloride 1 U 1 100 4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 2 U 2 2 Chloroethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 1000 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1				Bromomethane	2	U	2		10
Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 2 U 2 2 Chloroethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 JB 2 2 2 Styrene 1 U 1 100 100 Total Xylene 0.8 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1				Carbon Disulfide	1	U	1		
Chlorobenzene 1 U 1 100 4 Chloroethane 2 U 2 2 Chloroform 1 U 1 6 Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 1000 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1				Carbon Tetrachloride	1	U	1		0.4
Chloroethane 2 U 2 Chloroform 1 U 1 6 Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 700 700 Methylenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1				Chlorobenzene	1	Ū	1	100	4
Chloroform 1 U 1 6 Chloroform 1 U 2 30 Cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 1000 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1				Chloroethane	2	Ū	2		
Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 1000 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1				Chloroform	1	Ū	1		6
cis-1,3-Dichloropropene 1 U 1 Dibromochloromethane 1 U 1 Dibromochloromethane 1 U 1 Ethylbenzene 0.1 J 1 700 Methylene Chloride 0.6 JB 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 100 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1				Chloromethane	2	Ū	2		30
Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 100 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1				cis-1 3-Dichloropropene	1	ū	1		
Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 0.6 JB 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 100 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Trichloroethene 1 U 1 5 1				Dibromochloromethane	1	Ū	1		10
Methylene Chloride 0.6 JB 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 100 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Trichloroethene 1 U 1 5 1				Ethylbenzene	0.1	J	1	700	700
Styrene 1 U 1 100 100 Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 100 1000 Total Xylene 0.8 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Trichloroethene 1 U 1 5 1				Methylene Chloride	0.6	JB	2		2
Tetrachloroethene 1 U 1 5 0.4 Toluene 0.6 J 1 100 1000 Total Xylene 0.8 J 1 10000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Trichloroethene 1 U 1 5 1				Styrene	1	Ű	-	100	100
Toluene 0.6 J 1 100 1000 Total Xylene 0.8 J 1 1000 40 Trans-1,3-Dichloropropene 1 U 1 5 1 Trichloroethene 1 U 1 5 1				Tetrachioroethene	1	ŭ	1	5	0.4
Total Xylene0.8J11000040Trans-1,3-Dichloropropene1U1Trichloroethene1U151				Toluene	0 6	.1	1	100	1000
Trans-1,3-Dichloropropene1U1Trichloroethene1U151				Total Xvtene	0.8	.1	1	10000	40
Trichloroethene 1 U 1 5 1				Trans-1 3-Dichloropropene	1	Ŭ	1		
				Trichloroethene	1	Ŭ	1	5	1
Vinyl Chloride 2 U 2 5 0.08				Vinyl Chloride	2	Ū	2	5	0.08

_

٠

				Data	Reporting	Related F	Regulations
Sampling Location	Date Collected	Analyte*	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
	OC Nev 00	1.1.1 Trichloroothono	1		1	200	30
MISSUSA	00-1107-00	1,1,1,1-Inchioroethane	1	U U	1	200	2
		1,1,2,2-1 eu achioroeu lane	1		1	3/5	2
		1,1,2-Thenloroeutane	1		1	5/5	70
		1, 1-Dichloroethane	1	0	1	7	1
		1,1-Dichloroethene	4	U	1	5	0,3
				0	4	70	10
		1,2-Dichloroethene (total)		0	1	70	10
		1,2-Dichloropropane	1	U		5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		400
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	3	JB	5	_	700
		Benzene	1	U	1	5	0.2
		Bromodichloromethane	1	U	1		0.3
		Bromoform	1	U	1		4
		Bromomethane	2	U	2		10
		Carbon Disulfide	1	U	1		
		Carbon Tetrachloride	1	U	1		0.4
		Chlorobenzene	1	U	1	100	4
		Chloroethane	2	U	2		
		Chloroform	1	U	1		6
		Chloromethane	2	U	2		30
		cis-1.3-Dichloropropene	1	U	1		
		Dibromochloromethane	1	Ū	1		10
		Ethylbenzene	1	ŭ	1	700	700
		Methylene Chloride	2	ŭ	2		2
		Styrene	1	ŭ	1	100	100
		Tetrachloroethene	1	ŭ	1	5	0.4
		Toluene	1	U U	1	100	1000
		Trans 1.2 Dichloropropene	1	U U	1	100	1000
		Trichleroothono	1	U U	1	5	1
		Visul Chlorido	2	U U	2	5	ດ ດ
·····			<u>∠</u>		L		0.00
MISS06A	21-Dec-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	1	U	1		70
		1,1-Dichloroethene	1	U	1	7	1
		1,2-Dichloroethane	1	U	1	5	0.3
		1,2-Dichloroethene (total)	1	U	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	Ü	5		
		4-Methyl-2-pentanone	5	Ŭ	5		400
		Acetone	1	.]	5		700
		Benzene	1	ŭ	1	5	0.2
					•		
		Bromodichloromethane	1	Ŭ	1	-	0.3

-

7

				Data	Reporting	Related Regulation	
Sampling Location	Date Collected	Analyte*	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
		Bromomethane	2	U	2		10
		Carbon Disulfide	1	Ū	1		
		Carbon Tetrachloride	1	Ū	1		0.4
		Chlorobenzene	1	Ŭ	1	100	4
		Chloroethane	2	Ŭ	2		
		Chloroform	0.3	J	1		6
		Chloromethane	2	Ū	2		30
		cis-1 3-Dichloropropene	1	Ŭ	1		
		Dibromochloromethane	1	บั	1		10
		Ethylbenzene	1	Ŭ	1	700	700
		Methylene Chloride	2	ŭ	2		2
		Styrene	1	ŭ	1	100	100
		Tetrachloroethene	1	ŭ	1	5	0.4
		Toluene	1	ŭ	1	100	1000
		Total Xylene	1	ŭ	1	10000	40
		Trans-1 3-Dichloropropene	1	ŭ	1		••
		Trichloroethene	1	ц Ц	1	5	1
		Vinyl Chloride	2	Ŭ	2	5	0.08
		Villyl Chiolide	<u> </u>	U	<u> </u>		0.00
ISS07A	27-Nov-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	1	U	1		70
		1,1-Dichloroethene	1	U	1	7	1
		1,2-Dichloroethane	1	U	1	5	0.3
		1,2-Dichloroethene (total)	1	U	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	5	U	5		700
		Benzene	1	U	1	5	0.2
		Bromodichloromethane	1	Ū	1		0.3
		Bromoform	1	Ū	1		4
		Bromomethane	2	Ū	2		10
		Carbon Disulfide	1	Ū	1		
		Carbon Tetrachloride	1	Ū	1		0.4
		Chlorobenzene	1	ŭ	1	100	4
		Chloroethane	2	ŭ	2		
		Chloroform	- 1	ŭ	- 1		6
		Chloromethane	2	ŭ	2		30
		cis-1 3-Dichloronronene	1	ŭ	1		
		Dibromochloromethane	1	11	1		10
		Ethylhenzene	1	11	1	700	700
		Mathylene Chlorida	0.5		2	100	, uu 2
		Shrono	0.5	JD 11	<u>د</u> 1	100	100
		Jurielle Tatrachlaraathana	1	0	1	5	001
			1	0	1	100	1000
			1	U	1	100	1000
			1	U	1	10000	40
		I rans-1,3-Dichloropropene	1	U	1	E	4
		Irichloroethene	1	U	1	5	1
		Vinvl Chloride	2	U	2	5	0.08

_

				Data	Reporting	Related R	Regulations
Sampling Location	Date Collected	Analyte [*]	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
•						- 0	
Monitoring	wells comp	leted in bedrock:					
B38W02D	08-Nov-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	1	U	1		70
		1,1-Dichloroethene	1	U	1	7	1
		1,2-Dichloroethane	1	U	1	5	0.3
		1,2-Dichloroethene (total)	1	U	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	1	JB	5		700
		Benzene	0.7	J	1	5	0.2
		Bromodichloromethane	1	U	1		0.3
		Bromoform	1	U	1		4
		Bromomethane	2	U	2		10
		Carbon Disulfide	1	U	1		
		Carbon Tetrachloride	1	Ŭ	1		0.4
		Chlorobenzene	0.2	J	1	100	4
		Chloroethane	2	ū	2		
		Chloroform	1	ŭ	1		6
		Chloromethane	2	ŭ	2		30
		cis-1 3-Dichloropropene	1	ŭ	1		
		Dibromochloromethane	1	ŭ	1		10
		Ethylbenzene	0 1	J.	1	700	700
		Methylene Chloride	2	ŭ	2		2
		Shirene	1	Ŭ	1	100	100
		Tetrachloroethene	1	Ŭ	1	5	04
		Toluene	ດ່ຄ	Ŭ	1	1000	1000
		Trans-1 3-Dichloropropene	0.0	Ц	1	1000	1000
		Trichloroethene	1	U U	1	5	1
		Themoroeurene	I	0	. <u> </u>		I
B38W02D	08-Nov-00	1,1,1-Trichloroethane	1	U	1	200	30
Duplicate		1.1.2.2-Tetrachloroethane	1	Ú	1		2
		1.1.2-Trichloroethane	1	Ũ	1	3/5	3
		1 1-Dichloroethane	1	ŭ	1		70
		1 1-Dichloroethene	1	Ŭ	1	7	1
		1.2-Dichloroethane	1	U U	1	5	03
		1.2-Dichloroethene (total)	1	ŭ	1	70	10
		1.2-Dichloropropage	1	Ŭ	1	5	0.5
		2-Butanone	5	П	5	J	3
		2 Hovenono	5	U U	5		5
		4 Mothyl 2 postanona	5	0	5		400
		4-weinyi-z-pentanone	5	0	ວ F		400
		Acetone	5	0	5	F	700
			0.3	J		э	0.2
		Bromodicnioromethane	1	0	1		0.3
		Bromotorm	1	U	1		4

_

	Table 13
2000 Groundwater	Analytical Results - Volatile Organic Compounds
	Maywood Interim Storage Site

				Data	Reporting	Related R	egulations
Sampling Location	Date Collected	Analyte*	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
-		Bromomethane	2	U	2		10
		Carbon Disulfide	1	Ŭ	1		
		Carbon Tetrachloride	1	Ŭ	1		0.4
		Chlorobenzene	1	U	1	100	4
		Chloroethane	2	Ū	2		
		Chloroform	1	Ŭ	1		6
		Chloromethane	2	ū	2		30
		cis-1.3-Dichloropropene	1	Ŭ	1		
		Dibromochloromethane	1	Ū	1		10
		Ethylbenzene	0.1	J	1	700	700
		Methylene Chloride	2	Ŭ	2		2
		Styrene	1	ŭ	1	100	100
		Tetrachloroethene	1	ŭ	1	5	0.4
		Toluene	0.7	U I	1	100	1000
		Trans-1 3-Dichloropropene	1	ŭ	1		
		Trichloroethene	1	ŭ	1	5	1
		Vinyl Chloride	2	ŭ	2	5	0.08
		Viriyi Chionde	<u> </u>		۲		0.00
B38W14D	16-Nov-00	1 1 1-Trichloroethane	2		1	200	30
0000140	101101 00	1 1 2 2-Tetrachloroethane	1	IJ	1		2
		1 1 2-Trichloroethane	1	ŭ	1	3/5	3
		1 1-Dichloroethane	1	U	1	0.0	70
		1 1-Dichloroethene	77.0 A.C.		1	7	1
		1.2-Dichloroethane	1	11	1	5	0.3
		1.2-Dichloroethene (total)	SE FOR		10	70	10
		1.2-Dichloropropage	Λ <u>4</u>		1	5	0.5
		2-Butanone	5	ŭ	5	Ū	3
		2-Hevenone	5	Ŭ	5		•
		A-Methyl-2-pentanone	5	ŭ	5		400
		Acetone	5	ŭ	5		700
		Benzene	0.1	Ŭ	1	5	0.2
		Bromodichloromethane	1	J U	1	0	0.3
		Bromoform	1	U U	1		4
		Bromomethane	2		2		10
		Carbon Disulfide	1	ы П	<u>د</u> 1		10
		Carbon Tetrachloride	1		1		04
		Chlorobenzene	1	ŭ	1	100	<u>4</u>
		Chloroethane	2	1	2	100	-4
		Chloroform	2	0	1		6
		Chloromethane	2	11	2		30
		cis-1 3-Dichloropropene	1		1		00
		Dibromochloromethane	1	11	' 1		10
		Ethylbanzana	1	11	1	700	700
		Euryidenzene Mathylana Chlorida	۱ ۵	о в 1	і Э	100	2
			0.0	11	<u>۲</u>	100	100
		Totrachloroothono	1		10	5	0.4
		Teluene	0.0	ט _ו	10	100	1000
		Trong 1.2 Dichloropropage	U.Z 1	J	1	100	1000
		Trichloroethene	200 A		10	5	1

_

10

•

Sampling Location Date Collected Analyte* Result (ug/L) Qualifiers ^b S&W Umit (ug/L) Federal ⁴ (ug/L) State ⁴ (ug/L) B38W15D 09-Nov-00 1,1.1-Trichloroethane 0.6 J 1 20 30 1.12.2-Tertachloroethane 1 U 1 3/5 3 1.1.2-Trichloroethane 1 U 1 5 0.3 1.2-Dichloroethane 1 U 1 5 0.5 1.2-Dichloroethane 1 U 1 5 0.5 2Dichloroethane 5 U 5 3 2.Heanone 5 U 5 700 1.2-Dichloroethane 1 U 1 0.3 2.Heanone 5 U 5 700 Benzane 0.7 J 1 5 0.2 Bromodichloromethane 2 U 2 10 0 Carbon Disulfide 1 U 1 0.4 0 </th <th></th> <th></th> <th></th> <th></th> <th>Data</th> <th>Reporting</th> <th>Related R</th> <th>Regulations</th>					Data	Reporting	Related R	Regulations
B38W15D 09-Nov-00 1,1,1-Trichloroethane 0.6 J 1 200 30 1,1,2-Tetrachloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 U 1 3/5 3 1,1-Dichloroethane 1 T 1 70 1 1,2-Dichloroethane 1 T 1 70 10 1,2-Dichloroethane 1 5 0.5 3 2-Dichloroethane 5 U 5 3 2-Hexanone 5 U 5 700 Benzene 0.7 J 5 0.2 Bromodichloromethane 1 U 1 4 Bromoderm 1 U 1 0.4 Chloroebnarene 1 U 1 0.4 Chloroebnarene 2 U 2 30 Carbon Disulfide 1 U 1 0 4 Chloroebnare <t< th=""><th>Sampling Location</th><th>Date Collected</th><th>Analyte*</th><th>Result (ug/L)</th><th>Qualifiers^b S&W</th><th>Limit (ug/L)</th><th>Federal^c (ug/L)</th><th>State^d (ug/L)</th></t<>	Sampling Location	Date Collected	Analyte*	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
B38W15D 09-Nov-00 1,1,1-Inchoroethane 1 20 30 1,1,2-Tretachloroethane 1 U 1 35 3 1,1,2-Tricholoroethane 1 U 1 35 3 1,1-Dichloroethane 1 70 1 70 1 1,2-Dichloroethane 1 70 10 1 2-Dichloroethane 1 70 10 1,2-Dichloroethane 1 1 70 10 1 5 0.5 2-Bitanone 5 U 5 3 2 4 4 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 1 U 1 0.4 Chloroethane 2 U 2 10 0 10 10 0 10 10 10 10 10 10						4	200	20
1,1,2-1 fick/protectanane 1 0 1 35 3 1,1-Dichloroethane 2 1 70 1 1,1-Dichloroethane 1 7 1 1,2-Dichloroethane 1 70 10 1,2-Dichloroethane 1 70 10 1,2-Dichloroethane 0.3 1 5 0.5 2-Butanone 5 U 5 3 2-Hexanone 5 U 5 700 Berzene 0.7 J 1 5 0.2 Bromoform 1 U 1 4 4 Bromoform 1 U 1 4 Bromoform 2 U 2 30 Carbon Disulfide 1 U 1 04 Chloroethane 2 U 2 30 cis-1.3-Dichloropropene 1 U 1 10 Dibromochloromethane 2 U 2	B38W15D	09-Nov-00	1,1,1-1 richloroethane	0.6	J	1	200	30
1,1,2-1 Inchloroethane 1 0 1 3/3 3 1,1-Dichloroethane 1 70 1 70 1,1-Dichloroethane 1 7 1 1,2-Dichloroethane 1 70 10 1,2-Dichloroethane 0.3 1 70 10 1,2-Dichloroethane 5 0 5 3 2-Butanone 5 0 5 30 2-Hexanone 5 0 5 700 Acetone 5 0 5 700 Bromodichloromethane 1 0 1 0.3 Bromoform 1 0 1 0 4 Bromomethane 2 0 2 10 Caton Tetrachloride 1 0 1 0 4 Chlorobenzene 1 0 1 100 4 Chlorobenzene 1 1 100 4 1 Chlorobenzene			1,1,2,2-1 etrachioroethane	1	U	1	0/5	2
1,1-Dichloroethene 2 1 7 1 1,1-Dickloroethene 1 7 1 5 0.3 1,2-Dickloroethene 1 70 10 5 0.5 1,2-Dickloropropane 0,3 J 1 5 0.5 2-Butanone 5 U 5 3 2-Hexanone 5 U 5 700 Acetone 5 U 5 0.2 Bromotichloromethane 1 U 1 400 Acetone 5 U 5 0.2 Bromotorm 1 U 1 4 Bromotorm 1 U 1 0.4 Choroethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Choroethane 2 U 2 30 Cisi 1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 0			1,1,2-Trichloroethane	1	U	1	3/5	3
1,1-Dichloroethane 1 / 1 / 1 / 1 1,2-Dichloroethane 1 U 1 5 0.3 1,2-Dichloroethane 5 U 5 3 2-Butanone 5 U 5 3 2-Hexanone 5 U 5 700 Benzene 0.7 J 1 5 0.2 Bromodichloromethane 1 U 1 0.3 3 Bromodichloromethane 2 U 2 10 0.3 Garbon Tetrachloride 1 U 1 0.4 0.4 Chlorobenzene 1 U 1 0.4 0.4 0.4 Chlorobenzene 1 U 1 100 4 10 Chlorobenzene 1 U 1 100 4 10 100 100 Chlorobenzene 1 U 1 10 10 10 10			1,1-Dichloroethane	2	ł	1	-	70
1,2-Dichloroethene (tota) 1 5 0.3 1,2-Dichloropropane 0.3 J 1 5 0.5 2-Butanone 5 U 5 3 2-Hexanone 5 U 5 700 2-Hexanone 5 U 5 700 Benzene 0.7 J 1 5 0.2 Bromodichloromethane 1 U 1 0.3 3 Bromodichloromethane 1 U 1 0.3 3 Bromodichloromethane 1 U 1 0.3 3 400 Acetone 2 U 2 10 3 3 400 Carbon Disulfide 1 U 1 0.4 4 4 Bromochloromethane 2 U 2 30 3 3 Carbon Disulfide 1 U 1 100 100 3 Dibromochloromethane 1 U			1,1-Dichloroethene			1	<u>′</u>	1
1,2-Dichloropropane 0,3 J 1 70 10 1,2-Dichloropropane 5 U 5 3 2-Hexanone 5 U 5 3 2-Hexanone 5 U 5 400 Acetone 5 U 5 700 Benzene 0,7 J 1 5 0.2 Bromodichloromethane 1 U 1 4. Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 1 U 1 0.4 Carbon Disulfide 1 U 1 0.4 Chlorobertane 2 U 2 0 Chlorobertane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 2 U 2 2 2 2 2 2 2 2 2 2 2 30 cis-1,3-Dich			1,2-Dichloroethane	1	U	1	5	0.3
1,2-Dichloropropane 0.3 J 1 5 0.5 2-Butanone 5 U 5 3 2-Hexanone 5 U 5 400 A-Methyl-2-pentanone 5 U 5 400 Acetone 5 U 5 700 Benzene 0.7 J 1 5 0.2 Bromodichloromethane 1 U 1 4 Bromodichloromethane 2 U 2 10 Carbon Disufide 1 U 1 0.4 Chiorobenzene 1 U 1 0.4 Chiorobenzene 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 100 Totuene 0.6 J 1 100 100 Tetrachloroethene I U 1 100 100 <t< td=""><td></td><td></td><td>1,2-Dichloroethene (total)</td><td></td><td></td><td>1</td><td>70</td><td>10</td></t<>			1,2-Dichloroethene (total)			1	70	10
2-Butanone 5 U 5 3 2-Hexanone 5 U 5 400 Acatone 5 U 5 700 Benzene 0.7 J 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 1 U 1 4 Bromodichloromethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chloroform 0.2 J 1 6 Chloroform 0.2 J 1 6 Chloroform 0.2 J 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 1 U 1 10 Dibromochloromethane 1 U 1 100 Teachloroethene 0.6 J 1 <td></td> <td></td> <td>1,2-Dichloropropane</td> <td>0.3</td> <td>J</td> <td>1</td> <td>5</td> <td>0.5</td>			1,2-Dichloropropane	0.3	J	1	5	0.5
2-Hexanone 5 U 5 4-Methyl-2-pentanone 5 U 5 700 Acetone 5 U 5 700 Benzene 0.7 J 1 5 0.2 Bromodichloromethane 1 U 1 4 Bromodichloromethane 2 U 2 10 Carbon Disulide 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chloroform 0.2 J 1 6 Chloroform 0.2 J 1 6 Chloroform 0.2 J 1 700 Chloroform 0.2 J 1 10 Dibromochloromethane 2 U 2 2 Chloroform 0.2 J 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700			2-Butanone	5	U	5		3
4-Methyl-2-pentanone 5 U 5 400 Acetone 5 U 5 700 Bernzene 0.7 J 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chorobenzene 1 U 1 0.4 Chlorobenzene 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 2 U 2 2 Styrene 1 U 1 100 Ethylbenzene 0.6 J 1 100 Tockenhane 1 U 1 100 Methylene Chloride 2 U 2 2 Styrene 1 U 1 100 100 Teachloroethene 0.6			2-Hexanone	5	U	5		
Acetone 5 U 5 700 Benzene Bernzene 0,7 J 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromodichloromethane 1 U 1 0.3 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 1000 Taras-1,3-Dichloropropene 1 U 1 5 1 Toluene 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane			4-Methyl-2-pentanone	5	U	5		400
Benzene 0.7 J 1 5 0.2 Bromodichloromethane 1 U 1 0.3 Bromoform 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disufide 1 U 1 0.4 Chorobenzene 1 U 1 0.4 Chlorobenzene 2 U 2 30 Chloroform 0.2 J 1 6 Chloroform 0.2 J 1 700 Dibromochloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 2 0.33 1,1-2-Trichloroethane 10 U 10 30 <			Acetone	5	U	5		700
Bromodichloromethane 1 U 1 0.3 Bromoform 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Chorobenzene 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 2 U 2 30 Chloroform 0.2 J 1 6 Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 J 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 <tr< td=""><td></td><td></td><td>Benzene</td><td>0.7</td><td>J</td><td>1</td><td>5</td><td>0.2</td></tr<>			Benzene	0.7	J	1	5	0.2
Bromoform 1 U 1 4 Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 0.4 Chlorobenzene 2 U 2 30 Chlorobenzene 2 U 2 30 cis-1.3-Dichloropropene 1 U 1 10 Dibromochloromethane 2 U 2 2 Styrene 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 100 1000 Trans-1,3-Dichloroptropene 1 U 1 20 30 1,1,2-Trichloroethane 10 U 10 2/5 3.3 1,1,2-Dichloroethane 10 U			Bromodichloromethane	1	U	1		0.3
Bromomethane 2 U 2 10 Carbon Disulfide 1 U 1 0.4 Carbon Disulfide 1 U 1 0.4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 2 U 2 30 6 Chloroform 0.2 J 1 6 6 Chloromethane 2 U 2 30 6::::::::::::::::::::::::::::::::::::			Bromoform	1	U	1		4
Carbon Disulfide 1 U 1 Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 0.0 Chlorobenzene 2 U 2 - Chloroform 0.2 J 1 6 Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 1 1 Vinyl Chloroethane 10 U 10 20 30 1,1,2-Trichloroethane 10 U 10 <td></td> <td></td> <td>Bromomethane</td> <td>2</td> <td>U</td> <td>2</td> <td></td> <td>10</td>			Bromomethane	2	U	2		10
Carbon Tetrachloride 1 U 1 0.4 Chlorobenzene 1 U 1 100 4 Chlorobenzene 2 U 2 2 Chloroform 0.2 J 1 6 Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 . 1 5 1 Tokuene 0.6 J 1 00 1000 Trans-1,3-Dichloropropene 1 . 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 1,1,2-Zrietrachloroethane			Carbon Disulfide	1	U	1		
Chlorobenzene 1 U 1 100 4 Chloroethane 2 U 2			Carbon Tetrachloride	1	U	1		0.4
Chloroethane 2 U 2 Chloroform 0.2 J 1 6 Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 1000 Tetrachloroethene #2002 5 0.4 70100 Toluene 0.6 J 1 100 1000 Trichloroethene #2002 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 20 30 1,1,2-Trichloroethane 10 U 10 3/5 3 3			Chlorobenzene	1	U	1	100	4
Chloroform 0.2 J 1 6 Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 1 2 0.4 1000 1000 Trans-1,3-Dichloropropene 1 . U 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2-Trichloroethane 10 U 10 3/5 3 3 1,1-Dichloroethane 10 U 10 7 1 1,2-Dichloroethane 10 U <t< td=""><td></td><td></td><td>Chloroethane</td><td>2</td><td>U</td><td>2</td><td></td><td></td></t<>			Chloroethane	2	U	2		
Chloromethane 2 U 2 30 cis-1,3-Dichloropropene 1 U 1 10 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 Styrene 1 U 1 100 100 Tetrachloroethene 12000 E 1 5 0.4 Toluene 0.6 J 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 100 1000 Trichloroethene 1 5 1 1 10 1000 Trichloroethene 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2-Trichloroethane 10 U 10 70 1 1,2-Dichloroethane 10			Chloroform	0.2	J	1		6
cis-1,3-Dichloropropene 1 U 1 Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene Image: Construct of the construction of the consthe construction of the construction of the construction of the co			Chloromethane	2	U	2		30
Dibromochloromethane 1 U 1 10 Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 Styrene 1 U 1 100 100 Tetrachloroethene I U 1 100 100 Tras-1,3-Dichloropropene 1 U 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1-Trichloroethane 10 U 10 200 30 1,1,2-Z-Tetrachloroethane 10 U 10 3/5 3 1 1,1-Dichloroethane 10 U 10 70 1 1 2-Dichloroethane 10 U 10 70 1,1-Dichloroethane 10 U 10 7 1 1 2-Dichloroethane </td <td></td> <td></td> <td>cis-1,3-Dichloropropene</td> <td>1</td> <td>U</td> <td>1</td> <td></td> <td></td>			cis-1,3-Dichloropropene	1	U	1		
Ethylbenzene 0.1 J 1 700 700 Methylene Chloride 2 U 2 2 2 Styrene 1 U 1 100 100 Tetrachloroethene Image: Construct Styrene E 1 5 0.4 Toluene 0.6 J 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 1 100 Trichloroethene Image: Construct Styrene 1 5 1 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 20 30 1,1,2,2-Tetrachloroethane 10 U 10 3/5 3 1 1-Dichloroethane 10 U 10 70 1,1,2-Trichloroethane 10 U 10 7 1 1 2-Dichloroethane 10 U 10 5 0.3			Dibromochloromethane	1	U	1		10
Methylene Chloride 2 U 2 2 Styrene 1 U 1 100 100 Tetrachloroethene E 1 5 0.4 Toluene 0.6 J 1 100 1000 Trans-1,3-Dichloropropene 1 U 1 1 Trichloroethene 1 5 1 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2,2-Tetrachloroethane 10 U 10 3/5 3 1,1-Dichloroethane 10 U 10 70 1 1,2-Dichloroethane 10 U 10 70 10 1,2-Dichloroethene 10 U 10 70 10 1,2-Dichloroethene 10 U 10 5 0.5 2-Butanone 50 U 5			Ethvibenzene	0.1	J	1	700	700
Styrene 1 U 1 100 100 Tetrachloroethene E 1 5 0.4 Toluene 0.6 J 1 100 1000 Trans-1,3-Dichloropropene 1 ,U 1 100 1000 Trans-1,3-Dichloropropene 1 ,U 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2.2-Tetrachloroethane 10 U 10 200 30 3 <t< td=""><td></td><td></td><td>Methylene Chloride</td><td>2</td><td>U</td><td>2</td><td></td><td>2</td></t<>			Methylene Chloride	2	U	2		2
Tetrachloroethene E 1 5 0.4 Toluene 0.6 J 1 100 1000 Trans-1,3-Dichloropropene 1 J 1 100 1000 Trans-1,3-Dichloropropene 1 J 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 20 30 1,1,2,2-Tetrachloroethane 10 U 10 3/5 3 1 1,1-Dichloroethane 10 U 10 70 1 2 1 1,2-Dichloroethane 10 U 10 70 1 1,2-Dichloroethane 10 U 10 70 1 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethane 10 U 10 5 0.5 3 2 -Hexanone 50 U 50 3 2 -Hexanone			Styrene	1	Ŭ	1	100	100
Toluene 0.6 J 1 100 1000 Trans-1,3-Dichloropropene 1 U 1			Tetrachloroethene	SH20	Ē	1	5	0.4
Trans-1,3-Dichloropropene 1 U 1 Trichloroethene 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2,2-Tetrachloroethane 10 U 10 2 1 1 5 3 1,1,2,2-Tetrachloroethane 10 U 10 3/5 3 3 1			Toluene	0.6	• — J	1	100	1000
Trichloroethene 1 5 1 Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2,2-Tetrachloroethane 10 U 10 2 1,1,2 1 5 3 1,1,2-Trichloroethane 10 U 10 3/5 3 3 1 1 5 0.3 3 1,1,2-Trichloroethane 10 U 10 70 1 1 2 3			Trans-1 3-Dichloropropene	1	Ŭ	1		
Vinyl Chloride 0.6 J 2 5 0.08 B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2,2-Tetrachloroethane 10 U 10 2 1 1,2,2-Tetrachloroethane 10 U 10 2 1,1,2-Trichloroethane 10 U 10 3/5 3 3 1,1-Dichloroethane 10 U 10 70 1,1-Dichloroethane 10 U 10 7 1 1 1,2-Dichloroethane 10 U 10 70 10 1,2-Dichloroethane 10 U 10 70 10			Trichloroethene	a santa	ľ	1	5	1
B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2,2-Tetrachloroethane 10 U 10 2 1,1,2-Trichloroethane 10 U 10 2 1,1,2-Trichloroethane 10 U 10 3/5 3 1 1,1-Dichloroethane 10 U 10 70 1 1 1,2-Dichloroethane 10 U 10 7 1 1,2-Dichloroethane 10 U 10 7 1 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethene (total) 10 U 10 5 0.5 2-Butanone 50 U 50 3 3 2-Hexanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10			Vinyl Chloride	0.6	, .l	2	5	0.08
B38W17B 01-Nov-00 1,1,1-Trichloroethane 10 U 10 200 30 1,1,2,2-Tetrachloroethane 10 U 10 10 2 1,1,2-Trichloroethane 10 U 10 3/5 3 1,1,2-Trichloroethane 10 U 10 3/5 3 1,1-Dichloroethane 10 U 10 70 1 1,2-Dichloroethane 10 U 10 7 1 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethane 10 U 10 70 10 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethane 10 U 10 5 0.5 2-Butanone 50 U 50 3 3 2-Hexanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10<			villy officiae	0.0				
1,1,2,2-Tetrachloroethane 10 U 10 2 1,1,2-Trichloroethane 10 U 10 3/5 3 1,1-Dichloroethane 10 U 10 70 1 1,1-Dichloroethane 10 U 10 7 1 1,1-Dichloroethane 10 U 10 7 1 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethane 10 U 10 70 10 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethane 10 U 10 5 0.5 2-Butanone 50 U 50 3 2-Hexanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 0.3 Bromoferm 10 U 10 4	B38W17B	01-Nov-00	1,1,1-Trichloroethane	10	U	10	200	30
1,1,2-Trichloroethane 10 U 10 3/5 3 1,1-Dichloroethane 10 U 10 70 1,1-Dichloroethane 10 U 10 7 1 1,2-Dichloroethane 10 U 10 7 1 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethene (total) 10 U 10 5 0.5 2-Butanone 50 U 50 3 3 2-Hexanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 0.3 Bromofichloromethane 10 U 10 4			1,1,2,2-Tetrachloroethane	10	U	10		2
1,1-Dichloroethane 10 U 10 70 1,1-Dichloroethene 10 U 10 7 1 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethane 10 U 10 70 10 1,2-Dichloroethene (total) 10 U 10 70 10 1,2-Dichloropropane 10 U 10 5 0.5 2-Butanone 50 U 50 3 2-Hexanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 5 0.2 Bromodichloromethane 10 U 10 4 4			1,1,2-Trichloroethane	10	U	10	3/5	3
1,1-Dichloroethene 10 U 10 7 1 1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethene (total) 10 U 10 70 10 1,2-Dichloroethene (total) 10 U 10 70 10 1,2-Dichloropropane 10 U 10 5 0.5 2-Butanone 50 U 50 3 2-Hexanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 0.3			1,1-Dichloroethane	10	U	10		70
1,2-Dichloroethane 10 U 10 5 0.3 1,2-Dichloroethene (total) 10 U 10 70 10 1,2-Dichloroethene (total) 10 U 10 70 10 1,2-Dichloropropane 10 U 10 5 0.5 2-Butanone 50 U 50 3 2-Hexanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 5 0.2 Bromoferm 10 U 10 4			1,1-Dichloroethene	10	U	10	7	1
1,2-Dichloroethene (total) 10 U 10 70 10 1,2-Dichloropropane 10 U 10 5 0.5 2-Butanone 50 U 50 3 2-Hexanone 50 U 50 400 A-Methyl-2-pentanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 4			1.2-Dichloroethane	10	ບ	10	5	0.3
1,2-Dichloropropane 10 U 10 5 0.5 2-Butanone 50 U 50 3 2-Hexanone 50 U 50 400 4-Methyl-2-pentanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 4			1,2-Dichloroethene (total)	10	U	10	70	10
2-Butanone 50 U 50 3 2-Hexanone 50 U 50 400 4-Methyl-2-pentanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 4			1.2-Dichloropropane	10	U	10	5	0.5
2-Hexanone 50 U 50 4-Methyl-2-pentanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 4			2-Butanone	50	Ū	50		3
4-Methyl-2-pentanone 50 U 50 400 Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 0.3 Bromoform 10 U 10 4			2-Hexanone	50	Ū	50		
Acetone 350 B 50 700 Benzene 10 U 10 5 0.2 Bromodichloromethane 10 U 10 0.3 Bromoform 10 U 10 4			4-Methyl-2-pentanone	50	ū	50		400
Benzene10U1050.2Bromodichloromethane10U100.3Bromoform10U104			Acetone	350	B	50		700
Bromodichloromethane 10 U 10 0.3 Bromoform 10 U 10 4			Benzene	10	U U	10	5	0.2
Bromoform 10 11 10 4			Bromodichloromethane	10	ŭ	10	2	0.3
=			Bromoform	10	ii ii	10		4

-

.....

	Table 13
2000 Groundwater	Analytical Results - Volatile Organic Compounds
	Maywood Interim Storage Site
	•

-					Data	Reporting	Related R	Regulations
	Sampling Location	Date Collected	Analyte [*]	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
			Bromomethane	20	U	20		10
			Carbon Disulfide	10	ŭ	10		
			Carbon Tetrachloride	10	ŭ	10		0.4
			Chlorobenzene	10	ŭ	10	100	4
			Chloroethane	20	ŭ	20		
			Chloroform	10	ŭ	10		6
			Chloromethane	20	ŭ	20		30
			cis-1 3-Dichloropropene	10	ŭ	10		
			Dibromochloromethane	10	Ŭ	10		10
			Ethylbenzene	2	.1	10	700	700
			Methylene Chloride	25	B	20		2
			Styrene	10	Ŭ	10	100	100
			Tetrachloroethene	10	1	10	5	04
			Toluene	10	U U	10	100	1000
			Trans-1 3-Dichloropropene	10	11	10	100	1000
			Trichloroetheno	10		10	5	1
			Vind Chlorido	20	0	20	5	0.08
		· ·	Villyi Chionde	20	0	20		0.00
	B38W/18D	13-Nov-00	1 1 1-Trichloroethane	1	11	1	200	30
	D30W10D	10-1404-00	1 1 2 2 Tetrachloroethane	1	Ц	1	200	2
			1,1,2,2- retraction of the set of	1	ů –	1	3/5	2
			1 1 Dichloroothana	1		1	0,0	70
			1,1-Dichloroethane	1	U U	1	7	1
			1, 1-Dichloroethene	4	0	1	5	0.3
			1,2-Dichloroethane	1	0	1	5	10
				1	0	4	70	10
•			1,2-Dichloropropane	1	U	1	5	0.5
			2-Butanone	5	U	5		3
			2-Hexanone	5	U	5		400
			4-Methyl-2-pentanone	5	U	5		400
			Acetone	5	U	5	-	700
			Benzene	1	U	1	5	0.2
			Bromodichloromethane	1	U	1		0.3
			Bromoform	1	U	1		4
			Bromomethane	2	U	2		10
			Carbon Disulfide	1	U	1		
			Carbon Tetrachloride	1	U	1		0.4
			Chlorobenzene	1	U	1	100	4
			Chloroethane	2	U	2		_
			Chloroform	1	U	1		6
			Chloromethane	2	U	2		30
			cis-1,3-Dichloropropene	1	U	1		
			Dibromochloromethane	1	U	1		10
			Ethylbenzene	1	U	1	700	700
			Methylene Chloride	0.8	JB	2		2
			Styrene	1	U	1	100	100
			Tetrachloroethene	1	U	1	5	0.4
			Toluene	0.4	J	1	100	1000
			Trans-1,3-Dichloropropene	1	U	1		
			Trichloroethene	1	U	1	5	1
			Vinyl Chloride	2	U	2	5	0.08

-

مسمر

Table 13 2000 Groundwater Analytical Results - Volatile Organic Compounds Maywood Interim Storage Site

				Data	Reporting	Related R	egulations
Sampling Location	Date Collected	Analyte*	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
B38W19D	07-Nov-00	1.1.1-Trichloroethane	1	U	1	200	30
		1.1.2.2-Tetrachloroethane	1	Ŭ	1		2
		1 1 2-Trichloroethane	1	ŭ	1	3/5	3
		1 1-Dichloroethane	1	ŭ	1	0.0	70
		1 1-Dichloroethene	1	Ŭ	1	7	1
		1 2-Dichloroethane	1	ŭ	1	5	03
		1 2-Dichloroethene (total)	0.5	.1	1	70	10
		1 2-Dichloropropane	1	ŭ	1	5	0.5
		2-Butanone	5	ŭ	5	U	3
		2-Hexanone	5	ŭ	5		Ŭ
		4-Methyl-2-pentanone	5	1 1	5		400
		Acetone	1	IB	5		700
		Benzene		1	1	5	0.2
		Bromodichloromethane	1	I 11	1	5	0.2
		Bromoform	1	ŭ	1		0.0 A
		Bromomethane	2	U U	2		10
		Carbon Disulfide	۲ ۲		2		10
		Carbon Disunde	1		1		0.4
		Chlorobonzono	04	0	1	100	0.4 A
		Chloroothana	0.4	J	1	100	4
		Chloroform	2	0	2		6
		Chloromothene	1 2	0	1		20
			2	0	2		30
				U	1		10
			1	U	1	700	10
		Etnyidenzene Mathulaas Obtasida	0.1	J	1	700	700
			2	0	2	400	2
		Styrene	1	U	1	100	100
			1	Ů	1	5	0.4
		Toluene	0.4	J	1	100	1000
		Trans-1,3-Dichloropropene	1	U	1	-	
			1	U	1	5	1
		Vinyl Chloride	2	<u> </u>	2	5	0.08
338W24D	15-Nov-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	1	U	1		70
		1,1-Dichloroethene	1	U	1	7	1
		1,2-Dichloroethane	1	U	1	5	0.3
		1,2-Dichloroethene (total)	0.3	J	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	5	U	5		700
		Benzene	0.2	J	1	5	0.2
		Bromodichloromethane	1	U	1		0.3
		Bromoform	1	U	1		4
		Bromomethane	2	U	2		10

Table 13 2000 Groundwater Analytical Results - Volatile Organic Compounds Maywood Interim Storage Site

				Data	Reporting	<u>Related F</u>	Regulations
Sampling Location	Date Collected	Analyte [*]	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
		Carbon Tetrachloride	1	U	1		0.4
		Chlorobenzene	0.3	J	1	100	4
		Chioroethane	2	U	2		
		Chloroform	1	U	1		6
		Chloromethane	2	U	2		30
		cis-1,3-Dichloropropene	1	U	1		
		Dibromochloromethane	1	U	1		10
		Ethylbenzene	0.2	J	1	700	700
		Methylene Chloride	0.7	JB	2		2
		Styrene	1	U	1	100	100
		Tetrachloroethene	1	U	1	5	0.4
		Toluene	0.7	J	1	100	1000
		Trans-1,3-Dichloropropene	1	U	1		
		Trichloroethene	1	U	1	5	1
		Vinyl Chloride	2	Ū	2	5	0.08
B38W25D	27-Nov-00	1,1,1-Trichloroethane	1	Ū	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	1	U	1		70
		1,1-Dichloroethene	1	U	1	7	1
		1,2-Dichloroethane	1	U	1	5	0.3
		1,2-Dichloroethene (total)	1	U	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	5	U	5		700
		Benzene	0.4	J	1	5	0.2
		Bromodichloromethane	1	U	1		0.3
		Bromoform	1	U	1		4
		Bromomethane	2	U	2		10
		Carbon Disulfide	1	U	1		
		Carbon Tetrachloride	1	U	1		0.4
		Chlorobenzene	0.2	J	1	100	4
		Chloroethane	2	U	2		
		Chloroform	1	U	1		6
		Chloromethane	2	U	2		30
		cis-1,3-Dichloropropene	1	U	1		
		Dibromochloromethane	1	U	1		10
		Ethylbenzene	0.2	J	1	700	700
		Methylene Chloride	0.5	JB	2		2
		Styrene	1	U	1	100	100
		Tetrachloroethene	1	U	1	5	0.4
		Toluene	1		1	100	1000
		Total Xylene	0.9	J	1	10000	40
		Trans-1,3-Dichloropropene	1	U	1		
		Trichloroethene	1	U	1	5	1
		Vinyl Chloride	2	U	2	5	0.08

-

GWVOCs.xls06/22/2001

				Data	Reporting	Related R	legulations
Sampling Location	Date Collected	Analyte [*]	Resuit (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
MISS01B	21-Dec-00	1,1,1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1		2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	0.2	J	1		70
		1,1-Dichloroethene	0.2	J	1	7	1
		1,2-Dichloroethane	1	υ	1	5	0.3
		1.2-Dichloroethene (total)	1		1	70	10
		1.2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	Ū	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	5	Ū	5		700
		Benzene	1	ŭ	1	5	0.2
		Bromodichloromethane	1	ŭ	1	-	0.3
		Bromoform	1	ŭ	1		4
		Bromomothano	2	ŭ	2		10
		Corbon Digulfido	2	ŭ	1		10
		Carbon Disulide	1	0	1		04
		Carbon Tetrachioride	1	U	1	100	0. 4
		Chlorobenzene	1	U	2	100	-
		Chloroethane	2	0	2		e
		Chlorotorm	0.2	J	1		20
		Chloromethane	2	U	2		30
		cis-1,3-Dichloropropene	1	U	1		40
		Dibromochloromethane	1	U	1		10
		Ethylbenzene	1	U	1	700	700
		Methylene Chloride	2	υ	2		2
		Styrene	1	U U	1	100	100
		Tetrachloroethene	,以12量		1	5	0.4
		Toluene	0.3	J	1	100	1000
		Total Xylene	0.2	J	1	10000	40
		Trans-1,3-Dichloropropene	1	U	1		
		Trichloroethene	1		1	5	1
		Vinyl Chloride	2	U	2	5	0.08
					4	200	20
MISS02B	21-Nov-00	1,1,1-I richloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	U	1	0.15	2
		1,1,2-Trichloroethane	1	U	1	3/5	3
		1,1-Dichloroethane	1	U	1	_	70
		1,1-Dichloroethene	1	U	1	(1
		1,2-Dichloroethane	1	U	1	5	0.3
		1,2-Dichloroethene (total)	1	U	1	70	10
		1,2-Dichloropropane	1	U	1	5	0.5
		2-Butanone	4	J	5		3
		2-Hexanone	5	U	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	9		5		700
		• • • • • • • • •	0.6	.I.	1	5	0.2
		Benzene	0.0	~	-		
		Benzene Bromodichloromethane	1	Ŭ	1		0.3
		Benzene Bromodichloromethane Bromoform	1	U U	1		0.3 4

-

GWVOCs.xls06/22/2001

Table 13 2000 Groundwater Analytical Results - Volatile Organic Compounds Maywood Interim Storage Site

				Data	Reporting	Related F	Regulations
Sampling Location	Date Collected	Analyte*	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
		Carbon Disulfide	0.2	J	1		
		Carbon Tetrachloride	1	U	1		0.4
		Chlorobenzene	1	U	1	100	4
		Chloroethane	2	U	2		
		Chloroform	1	U	1		6
		Chloromethane	2	U	2		30
		cis-1,3-Dichloropropene	1	U	1		
		Dibromochloromethane	1	U	1		10
		Ethylbenzene	0.5	Ĵ	1	700	700
		Methylene Chloride	0.6	JB	2		2
		Styrene	1	Ū	1	100	100
		Tetrachloroethene	1	ŭ	1	5	0.4
		Toluene	3	Ū.	1	100	1000
		Total Xvlene	2		1	10000	40
		Trans-1.3-Dichloropropene	1	н	1	10000	40
		Trichloroethene	1	ŭ	1	5	1
		Vinvl Chloride	2	ŭ	2	5	0.09
							0.00
MISS05B	06-Nov-00	1.1.1-Trichloroethane	1	U	1	200	30
		1,1,2,2-Tetrachloroethane	1	ŭ	1	200	2
		1.1.2-Trichloroethane	1	ŭ	1	3/5	2
		1.1-Dichloroethane	0.2	1	: 1	3/3	70
		1.1-Dichloroethene	1	ŭ	1	7	10
		1.2-Dichloroethane	1	U U	1	7	
		1.2-Dichloroethene (total)	0.8	0	1	70	0.3
		1 2-Dichloropropage	1	U U	1	70	10
		2-Butanone	5	U U	5	5	0.5
		2-Hexanone	5	0	5 E		3
		4-Methyl-2-pentanone	5	, ,	5 F		400
		Acetone	330	J	5		400
		Benzene	2500	D	5	<i>r</i>	700
		Bromodichloromethane	3500		100	5	0.2
		Bromoform	1	U	1		0.3
		Bromomothana	1	U	1		4
		Carbon Disulfido	2	Ů	2		10
		Carbon Totrachlarida	0.3	J	1		
		Chlorobonzono		U	1		0.4
		Chloroothana	B		1	100	4
		Chloroform	2	U	2		
		Chloromothers	1	U	1		6
			2	U	2		30
		Dibase a blas	1	U	1		
			1	U	1		10
			0.9	J	1	700	700
		Methylene Chloride	2	U	2		2
		Styrene	1	U	1	100	100
		l etrachloroethene	1	U	1	5	0.4
		loluene	6		1	100	1000
		Irans-1,3-Dichloropropene	1	U	1		
		Irichloroethene	1	U	1	5	1
		Vinyl Chloride	0.2	J	2	5	0.08

Table 13 2000 Groundwater Analytical Results - Volatile Organic Compounds Maywood Interim Storage Site

				Data	Reporting	Related F	Regulations
Sampling Location	Date Collected	Analyte [•]	Result (ug/L)	Qualifiers ^b S&W	Limit (ug/L)	Federal ^c (ug/L)	State ^d (ug/L)
MISSOZB	06 Nov.00	1 1 1 Trichloroethana	0.2		1	200	20
W10007B	00-1404-00	1,1,2,2 Tetrachloroothane	1	J	1	200	30
		1 1 2 Trichloroothono	1	0	1	2/5	2
		1,1,2-Thenloroethane		0	1	3/5	3
		1 1 Dichloroethane	0.8	J	1	7	10
		1.2 Dichloroethene	0.7	J	1	, ,	
		1,2-Dichloroethane	1	U	1	5	0.3
			6		1	70	10
		1,2-Dichioropropane	1	U	1	5	0.5
		2-Butanone	5	U	5		3
		2-Hexanone	5	U	5		
		4-Methyl-2-pentanone	5	U	5		400
		Acetone	3	JB	5		700
		Benzene	0.2	J	1	5	0.2
		Bromodichloromethane	1	U	1		0.3
		Bromoform	1	U	1		4
		Bromomethane	2	U	2		10
		Carbon Disulfide	0.2	J	1		
		Carbon Tetrachloride	1	U	1		0.4
		Chlorobenzene	0.2	J	1	100	4
		Chloroethane	2	U	2		
		Chloroform	1	U	1		6
		Chloromethane	2	Ū	2		30
		cis-1.3-Dichloropropene	1	ŭ	-		
		Dibromochloromethane	1	ŭ	1		10
		Ethylbenzene	1	ů.	1	700	700
		Methylene Chloride	2	Ŭ	2	100	2
		Styrene	1	U U	1	100	100
		Tetrachloroethene	Q.		1	5	04
		Toluene	0.3	.1	, 1	100	1000
		Trans-1 3-Dichloropropene	1	5	1	100	1000
		Trichloroethene		l U	1	5	1
		Vinyl Chloride	1	i t	2	5	0.08

^a All analytes were reported, detected and undetected.

^D S&W and laboratory data qualifier flags:

U= Analyte was analyzed for but not detected.

J = Reported as an estimated value. Data quality evaluation indicates that the analytical result is an estimate of the actual value.

D = Diluted out.

B= The analyte is found in the associated blank as well as in the sample. It indicates possible blank contamination. UJ= Analyte was analyzed for but not detected, it must be estimated due to quality control consideration.

^c Federal SDWA MCLs, 40 CFR 141 (October 1999).

^a New Jersey Class IIA Groundwater Quality Standards, NJAC 7:9-6 (October 1999). Analytes for which the published PQL is greater than the GWQC are noted as such: GWQC / PQL.

f Monitoring well B38W01S is the background location for wells that are completed in unconsolidated sediment. Monitoring well B38W02D is the background location for wells that are completed in bedrock.

No VOCs were detected during 1999 sampling of this monitoring well. ⁹ Limits for cis-isomer/trans-isomer; PQL is 2 mg/L.

Table 142000 List of Analytes and Detection Limits for
Metals and Volatile Organic Compounds
Maywood Interim Storage Site

	Detection Limit				
	Groundwater	Sediment			
Metals	(µg/L)	(mg/kg)			
Aluminum, Total	10.5	2.1			
Antimony, Total	2.1	0.42			
Arsenic, Total	2	0.4			
Barium, Total	0.2	0.04			
Beryllium, Total	0.2	0.04			
Boron, Total	2	0.22			
Cadmium, Total	0.4	0.08			
Calcium, Total	4.3	0.86			
Chromium, Total	1	0.2			
Cobalt, Total	0.5	0.1			
Copper, Total	1	0.2			
Iron, Total	10.5	2.1			
Lead, Total	1.3	0.26			
Magnesium, Total	7	1.4			
Manganese, Total	0.2	0.04			
Mercury, Total	0.1	0.22			
Nickel, Total	1	0.2			
Potassium, Total	98	19.6			
Selenium, Total	3.4	0.68			
Silver, Total	1	0.2			
Sodium, Total	19.5	3.9			
Thallium, Total	3.8	0.76			
Vanadium, Total	1	0.2			
Zinc, Total	0.4	0.08			

Note: The detection limit listed is the maximum sample quantitation limit from all nondetects of the specified analyte. If there were no nondetects, then the maximum sample quantitation limit is provided.

Groundwater Volatile Organic Compounds	Detection Limit (µg/L)
1,1,1-Trichloroethane	1
1,1,2,2-Tetrachloroethane	1
1,1,2-Trichloroethane	1
1,1-Dichloroethane	1
1,1-Dichloroethene	1
1,2-Dichloroethane	1
1,2-Dichloroethene (total)	1
1,2-Dichloropropane	1
2-Butanone	5
2-Hexanone	5
4-Methyl-2-pentanone	5
Acetone	5
Benzene	1
Bromodichloromethane	1
Bromoform	1
Bromomethane	2
Carbon Disulfide	1
Carbon Tetrachloride	1
Chlorobenzene	1
Chloroethane	2
Chloroform	1
Chloromethane	2
cis-1,3-Dichloropropene	1
Dibromochloromethane	1
Ethylbenzene	1
Methylene Chloride	2
Styrene	1
Tetrachloroethene	1
Toluene	1
Total Xylene	1
Trans-1,3-Dichloropropene	1
Trichloroethene	1
Vinyl Chloride	2

FIGURES

Figure 1 Maywood Interim Storage Site, Site Location and Site Map

RAIL ROAD SPUR

LODI BROOK

HON HON

METERS

300 FEET

90

SCALE 150 45

0

0

Maywood Interim Storage Site Environmental Monitoring Sampling Locations: External Gamma Radiation, Radon–222/Radon–220, and Groundwater

1

٠,

VMd, of the odd To

٥ B

\p\04/

G		1	H [j	
ROUNDW		R LEVEL MI	EASUREMENTS	;	
(OV	ERB	SURDEN)			
JANU	JAR	Y 19, 2000			
Well I	D	G.W. Elev.			
		FT MSL			
B38W0	19	54 86			
B38W1	24	44.32*			
B38W1	45	NG			
B38W1	55	NG			
B38W1	7A	44.59			
B38W1	<u>9</u> S	44.61			
B38W2	4S	45.89			
B38W2	5S	50.44	1		
MISS 1	AA	NG			\vdash
MISS 2	'A	53.17	Ţ		
MISS 3	A	51.12]		
MISS 4	A	49.35]		
MISS 5	iΑ	48.33			
MISS 6	<u>A</u>	47.93			
MISS 7	<u>'A</u>	47.10			
LEGEND -50 GROUNDWATER CONTOUR					
* 1	NOT C	ONTOURED DUE	TO LACK OF CONTROL		\vdash
DITIONS AS OF OCTOBER 1999 BASED ON ED BY GEOD CORP. AND GROUND SURVEY BY ING SURVEYING AND PLANNING.					
	IGVD ·	1929.		•	
FERENCED T E SYSTEM N/	O NEV	N JERSEY 17.			
DI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS A HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT ASE MAPPING SHOWN ON THIS SHEET.					
ONMENTAL		GROUNDWATER	CONTOUR MAP	Contract Number: DACW41-98-R-0034	
ICES	G	ROUNDWATER REA		Job Number 08575 WAD# 3	
Date:		PHASE I - IN	TERIM REPORT	WBS# 10	
		MAYWOO ROCHELLE PA	D, LODI, AND RK, NEW JERSEY	Figure Number:	
6					

200

	G	<u> </u>	н		
R	OUNDWATE (OVERB	R LEVEL MI URDEN) 27-2000	EASUREMENTS		
		CW Elow	ſ		
	Well ID	G.W. Elev.			
	D2014/04C	55.21			
	D300013	35.21 AA 77*		•	
	D30VV12A	44.77 NG			
	D30VV 145	NG	-		
	B3000133	45.28			
	B38W/10S	45 17			
	B38W24S	47.39	†		
	B38W25S	51 48			
	MISS 1AA	48 19	1	-	
	MISS 2A	54.14	1		
	MISS 3A	51.67	1		
	MISS 4A	45.70	1		
	MISS 5A	47.22	1		
	MISS 6A	49.99			
	MISS 7A	47.45	-		
			-		
		-			
	LEGENL	2			
_	. 50 — GROUN	NDWATER CONTO	DUR		
		SURDEN WELL			
	GROU	NDWATER FLOW	DIRECTION		
	NG NOT G	AUGED			
	* NOT C	ONTOURED DUE	TO LACK OF CONTROL		
	IDITIONS AS OF OCTOBER 1999 BASED ON ED BY GEOD CORP. AND GROUND SURVEY BY RING SURVEYING AND PLANNING.				
F	RENCED TO NGVD 1929.				
				L	

LOCATION OF HISTORIC LODI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS BEEN TRANSFERRED FROM HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT CORRELATE WELL WITH BASE MAPPING SHOWN ON THIS SHEET.

RONMENTAL	GROUNDWATER CONTOUR MAP OVERBURDEN - 03/27/00	Contract Number: DACW41-98-R-0034 Job Number 08575
Dote:	GROUNDWATER REMEDIAL INVESTIGATION	WAD# 3
	FUSRAP MAYWOOD SUPERFUND SITE	WBS# 10
	ROCHELLE PARK, NEW JERSEY	Figure Number:
		# 7

26-Mar

F

10/9/

	G		H
iF	ROUNDWATE (OVERE	ER LEVEL M BURDEN)	EASUREMENTS
	JUNE	12, 2000	
	Well ID	G.W. Elev.	
		FT MSL	
	B38W01S	55.06	
	B38W12A	44.66 *	
	B38W14S	39.44	
	B38W15S	40.40	•
	B38W17A	44.98	
	B38W19S	44.89	
	B38W24S	46.02	
	B38W25S	51.52	
	MISS 1AA	48.34	
	MISS 2A	52.82	
	MISS 3A	51.12	
	MISS 4A	48.72	
	MISS 5A	46.41	
	MISS 6A	48.49	
	MISS 7A	47.20	

LEGEND

-50-
-
-
*

GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NOT CONTOURED DUE TO LACK OF CONTROL

1. THIS SURVEY SHOWS CONDITIONS AS OF OCTOBER 1999 BASED ON AERIAL MAPPING PREPARED BY GEOD CORP. AND GROUND SURVEY BY GARDEN STATE ENGINEERING SURVEYING AND PLANNING.

4. LOCATION OF HISTORIC LODI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS BEEN TRANSFERRED FROM HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT CORRELATE WELL WITH BASE MAPPING SHOWN ON THIS SHEET.

NONMENTAL VICES	GROUNDWATER CONTOUR MAP OVERBURDEN - 06/12/00	Contract Number: DACW41-86-R-0034 Job Number 08575	
Date:	GROUNDWATER REMEDIAL INVESTIGATION PHASE I - INTERIM REPORT	WAD# 3	
	FUSRAP MAYWOOD SUPERFUND SITE	WBS# 10	
	ROCHELLE PARK, NEW JERSEY	Figure Number:	
		# 8	

ß

mk/b/07

	G		<u>H</u>	
iF	ROUNDWATE (OVERE SEPTEMB	ER LEVEL M BURDEN) ER 22, 2000	EASUREMENT	ſS
	Well ID	G.W. Elev.		
		FT MSL		
	B38W01S	54.52		
	B38W12A	43.85*		
	B38W14S	39.00		
	B38W15S	39.90		
	B38W17A	44.17		
	B38W19S	44.31		
	B38W24S	45.53		
	B38W25S	51.43		
	MISS 1AA	47.78	l	
	MISS 2A	51.77		
	MISS 3A	50.20		
	MISS 4A	47.62	L	
	MISS 5A	45.65	L	
	MISS 6A	50.21		
	MISS 7A	46.89		

LEGEND

∕-50 ∳	
*	

GROUNDWATER CONTOUR OVERBURDEN WELL **GROUNDWATER FLOW DIRECTION** NOT CONTOURED DUE TO LACK OF CONTROL

1. THIS SURVEY SHOWS CONDITIONS AS OF OCTOBER 1999 BASED ON AERIAL MAPPING PREPARED BY GEOD CORP. AND GROUND SURVEY BY GARDEN STATE ENGINEERING SURVEYING AND PLANNING.

4. LOCATION OF HISTORIC LODI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS BEEN TRANSFERRED FROM HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT CORRELATE WELL WITH BASE MAPPING SHOWN ON THIS SHEET.

ONMENTAL /ICES	GROUNDWATER CONTOUR MAP OVERBURDEN - 09/22/00	Controct Number: DACW41-98-R-0034 Job Number 08575
Date:	GROUNDWATER REMEDIAL INVESTIGATION PHASE I - INTERIM REPORT	WAD# 3
	FUSRAP MAYWOOD SUPERFUND SITE	WBS# 10
	ROCHELLE PARK, NEW JERSEY	Figure Number:
		# 9

10

NOVEMBER 29 2000 Well ID G.W. Elev. FT MSL B38W01S 54.49 B38W12A 43.46* B38W12A 43.46* B38W15S 39.90 B38W17A 43.61 B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40	(0	VERE	BURDEN)	
Well ID G.W. Elev. FT MSL B38W01S 54.49 B38W12A 43.46* B38W14S NG B38W15S 39.90 B38W17A 43.61 B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40		EMB	ER 29 2000	ſ
Imstand Imstand B38W01S 54.49 B38W12A 43.46* B38W12S 39.90 B38W15S 39.90 B38W17A 43.61 B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 5A 44.79 MISS 5A 44.79 MISS 7A 47.40	Wei		G.W. Elev.	
B38W01S 54.49 B38W12A 43.46* B38W14S NG B38W15S 39.90 B38W17A 43.61 B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40			FI MOL	
B38W12A 43.46 ° B38W14S NG B38W15S 39.90 B38W17A 43.61 B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40	B38M	<u>/015</u>	54.49	
B38W14S NG B38W15S 39.90 B38W17A 43.61 B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40	B38W	<u>112A</u>	43.46	
B38W15S 39.90 B38W17A 43.61 B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR • OVERBURDEN WELL • OVERBURDEN WELL • GROUNDWATER FLOW DIRECTION NG NOT GAUGED	B38W	<u>/145_</u>	NG	
B38W17A 43.61 B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 S0- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	B38W	155	39.90	
B38W19S 43.80 B38W24S 44.86 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 4A 46.76 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	<u>B38N</u>	<u>/17A</u> _	43.61	
B38W24S 44.80 B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 5A 44.79 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR • OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	B38M	195	43.80	
B38W25S 51.39 MISS 1AA 45.92 MISS 2A 51.77 MISS 3A 49.46 MISS 4A 46.76 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 MISS 7A 47.40 GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NOT GAUGED	R38M	1245	44.80	
MISS 1AA 40.92 MISS 2A 51.77 MISS 3A 49.46 MISS 3A 49.46 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	R38M	1255	51.39	
MISS 2A D1.11 MISS 3A 49.46 MISS 4A 46.76 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	MISS	1AA	40.92	
MISS 3A 49.40 MISS 4A 46.76 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	MISS	<u>2A</u>	51.//	-
MISS 4A 40.70 MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	MISS	<u>3A</u>	49.40	
MISS 5A 44.79 MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	MISS	<u>4A</u>	40.70	
MISS 6A 50.02 MISS 7A 47.40 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	MISS	<u>5A</u>	44.79	
LEGEND 50- GROUNDWATER CONTOUR ↓ OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	MISS		50.02	
50- GROUNDWATER CONTOUR • OVERBURDEN WELL • GROUNDWATER FLOW DIRECTION NG NOT GAUGED	MI33	<u> /A</u>	47.40]
LEGEND 50- GROUNDWATER CONTOUR • OVERBURDEN WELL • GROUNDWATER FLOW DIRECTION NG NOT GAUGED				
LEGEND 50- GROUNDWATER CONTOUR • OVERBURDEN WELL • GROUNDWATER FLOW DIRECTION NG NOT GAUGED				
LEGEND 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED				
LEGEND 50- GROUNDWATER CONTOUR OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED				
50- GROUNDWATER CONTOUR • OVERBURDEN WELL • GROUNDWATER FLOW DIRECTION NG NOT GAUGED	LE	GENI	2	
OVERBURDEN WELL GROUNDWATER FLOW DIRECTION NG NOT GAUGED	50-	GROU	NDWATER CONTO	UR
GROUNDWATER FLOW DIRECTION	•	OVERE	BURDEN WELL	
NG NOT GAUGED	r 📰	GROU	NDWATER FLOW	DIRECTION
	NG	NOT G	AUGED	
* NOT CONTOURED DUE TO LACK OF CONTROL	*	NOT C	ONTOURED DUE	TO LACK OF CONTROL

4. LOCATION OF HISTORIC LODI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS BEEN TRANSFERRED FROM HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT CORRELATE WELL WITH BASE MAPPING SHOWN ON THIS SHEET.

ONMENTAL VICES	GROUNDWATER CONTOUR MAP OVERBURDEN - 11/29/00	Conta DAC Job
Date:	GROUNDWATER REMEDIAL INVESTIGATION PHASE 1 - INTERIM REPORT	WA
	FUSRAP MAYWOOD SUPERFUND SITE	WB
	ROCHELLE PARK, NEW JERSEY	Figur
		#

tract Number: CW41-08-R-0034 Number 08575 AD# 3

S# 10 e Number: 10

SYNOPTIC GROUNDWATER LEVEL MEASUREMENTS (DEEP AND SHALLOW BEDR0CK) **JANUARY 19, 2000**

н

Well ID	G.W. Elev.
	FT MSL
B38W02D	52.15
B38W03B	48.93
B38W04B	56.15
B38W05B	59.58
B38W06B	NG
B38W07B	45.91
B38W12B	44.48*
B38W14D	NG
B38W15D	NG
B38W17B	44.53
B38W18D	53.90
B38W19D	44.40
B38W24D	46.36
B38W25D	50.34
MISS 1B	45.95
MISS 2B	50.74
MISS 3B	48.36
MISS 4B	NG
MISS 5B	44.56
MISS 7B	45.22

LEGEND

-50-	
•	
÷	
NG	

GROUNDWATER CONTOUR BEDROCK WELL

OPEN HOLE WELL

GROUNDWATER FLOW DIRECTION

NOT GAUGED

NOT CONTOURED DUE TO LACK OF CONTROL

1. THIS SURVEY SHOWS CONDITIONS AS OF OCTOBER 1999 BASED ON AERIAL MAPPING PREPARED BY GEOD CORP. AND GROUND SURVEY BY GARDEN STATE ENGINEERING SURVEYING AND PLANNING.

LOCATION OF HISTORIC LODI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS BEEN TRANSFERRED FROM HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT CORRELATE WELL WITH BASE MAPPING SHOWN ON THIS SHEET.

ONMENTAL VICES	GROUNDWATER CONTOUR MAP SHALLOW & DEEP BEDROCK-01/19/00	Contract Number: DACW41-98-R-0034 Job Number 08575	
Date:	GROUNDWATER REMEDIAL INVESTIGATION PHASE I - INTERIM REPORT	WAD# 3	
	FUSRAP MAYWOOD SUPERFUND SITE	WBS# 10	
	ROCHELLE PARK, NEW JERSEY	Figure Number:	

G

Well ID	G.W. Elev.
	FT MSL
B38W02D	53.02
B38W03B	49.52
B38W04B	56.95
B38W05B	61.32
B38W07B	46.60
B38W12B	44.96*
B38W14D	NG
B38W15D	NG
B38W17B	45.20
B38W18D	54.44
B38W19D	45.08
B38W24D	46.98
B38W25D	51.86
MISS 1B	45.85
MISS 2B	51.14
MISS 3B	48.84
MISS 4B	46.66
MISS 5B	45.10
MISS 7B	45.59

LEGEND

_50- ♦ ♦
NG

GROUNDWATER CONTOUR BEDROCK WELL

OPEN HOLE WELL

GROUNDWATER FLOW DIRECTION

NOT GAUGED

NOT CONTOURED DUE TO LACK OF CONTROL

1. THIS SURVEY SHOWS CONDITIONS AS OF OCTOBER 1999 BASED ON AERIAL MAPPING PREPARED BY GEOD CORP. AND GROUND SURVEY BY GARDEN STATE ENGINEERING SURVEYING AND PLANNING.

LOCATION OF HISTORIC LODI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS BEEN TRANSFERRED FROM HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT CORRELATE WELL WITH BASE MAPPING SHOWN ON THIS SHEET.

NMENTAL ICES	GROUNDWATER CONTOUR MAP SHALLOW & DEEP BEDROCK-03/27/00	Contract Number: DACW41-98-R-0034 Job Number 08575	
Date:	GROUNDWATER REMEDIAL INVESTIGATION PHASE I - INTERIM REPORT	WAD# 3	
	FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, LODI, AND ROCHELLE PARK, NEW JERSEY	WBS# 10	
		Figure Number:	
J		# 12	

SYNOPTIC GROUNDWATER LEVEL MEASUREMENTS (DEEP AND SHALLOW BEDR0CK) JUNE 12, 2000

	· · · · · · · · · · · · · · · · · · ·
Well ID	G.W. Elev.
	FT MSL
B38W02D	53.08
B38W03B	49.42
B38W04B	57.15
B38W05B	60.85
B38W06B	45.01
B38W07B	46.03
B38W12B	44.94 *
B38W14D	39.79
B38W15D	41.22
B38W17B	44.96
B38W18D	54.45
B38W19D	44.74
B38W24D	<u>46.</u> 46
B38W25D	51.84
MISS 1B	46.21
MISS 2B	50.87
MISS 3B	48.76
MISS 4B	46.37
MISS 5B	44.86
MISS 7B	45.55

LEGEND

-50-	
•	
ф.	

GROUNDWATER CONTOUR

OPEN HOLE WELL

BEDROCK WELL

GROUNDWATER FLOW DIRECTION

NOT CONTOURED DUE TO LACK OF CONTROL

1. THIS SURVEY SHOWS CONDITIONS AS OF OCTOBER 1999 BASED ON AERIAL MAPPING PREPARED BY GEOD CORP. AND GROUND SURVEY BY GARDEN STATE ENGINEERING SURVEYING AND PLANNING.

LOCATION OF HISTORIC LODI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS BEEN TRANSFERRED FROM HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT CORRELATE WELL WITH BASE MAPPING SHOWN ON THIS SHEET.

NMENTAL ICES	GROUNDWATER CONTOUR MAP SHALLOW & DEEP BEDROCK-06/12/00	Contract Number: DACW41-86-R-0034 Job Number 08575	
Date:	GROUNDWATER REMEDIAL INVESTIGATION PHASE I - INTERIM REPORT	WAD# 3	
	FUSRAP MAYWOOD SUPERFUND SITE	WBS# 10	
	ROCHELLE PARK, NEW JERSEY	Figure Number:	
	l J	# 13	

			-		-	
G				Н		٦
RC	UNDW	ATE	R LEVEL M	EASUREMENT	ſS	
EEF	PAND	SHA		ROCK)		
	SEPTE	EMB	ER 29, 2000			
Γ	Well I	D	G.W. Elev.			
		_	FT MSL			
	B38W0	2D	50.85	ł		
	B38W0	3B	48.47			F
	B38W0	4B	55,70			
	B38W0	5B	58.30			
	B38W0	6B	43.87			
	B38W0	7B	45.13			
	B38W1	2B	44.03*			
Γ	B38W14	4D	40.11			
	B38W1	5D	41.09			\vdash
	B38W1	7B	44.18	•		
	B38W1	8D	52.87			
	B38W1	9D	44.18			
	B38W24	4D	45.87			
	B38W2	5D	51.64			
	MISS 1	В	45.59			
	MISS 2	B	50.30			
	MISS 3	B	47.96			
Ľ	MISS 4	B	45.62			\vdash
H	MISS 5	5	44.21			
	MISS /I	8	44.87			
	LEGI	END				
			_			
-50) GI	ROUN	DWATER CONTOL	JR		
-€)- B€	EDRO	CK WELL			
ŧ)- O	PEN H	OLE WELL			
	G	ROUN	DWATER FLOW D	RECTION		
*	N	OT CO	NTOURED DUE TO	D LACK OF CONTROL		_
סודומ						
D B	GEOD CO	DRP. A	ND GROUND SUF	RVEY BY		
ING	SURVEYIN	G ANI) PLANNING.			
RENC	ED TO NG	VD 19	29.			
FERE	NCED TO	NEW	JERSEY			
SYS	STEM NAD	1927.				
DI BI A HIS	ROOK SHO	OWN C	ON THIS MAP IS AF	PROXIMATE ONLY. I BASE MAPPING THAT	T HAS L DOES NOT	\vdash
SEN	APPING S	SHOW	N ON THIS SHEET			
NM		CT A	GROUNDWATER	CONTOUR MAP	Contract Number: DACW41-98-R-0034	
ICES		GRO	UNDWATER REME	DIAL INVESTIGATION	Job Number 08575 WAD# 3	
Uat	•	F	PHASE I - INTE	RIM REPORT SUPERFUND SITE	WBS# 10	
			MAYWOOD, I ROCHELLE PARK	LODI, AND , NEW JERSEY	Figure Number:	
	J	l		j	 # 14 	

SYNOPTIC GROUNDWATER LEVEL MEASUREMENTS (DEEP AND SHALLOW BEDR0CK) **NOVEMBER 29, 2000**

	- ,
Well ID	G.W. Elev.
	FT MSL
B38W02D	50.85
B38W03B	48.07
B38W04B	54.25
B38W05B	55.94
B38W06B	43.72
B38W07B	44.81
B38W12B	47.53*
B38W14D	NG
B38W15D	40.53
B38W17B	43.61
B38W18D	53.33
B38W19D	43.71
B38W24D	45.33
B38W25D	51.59
MISS 1B	45.29
MISS 2B	52.16
MISS 3B	47.60
MISS 4B	45.36
MISS 5B	43.67
MISS 7B	44.55

LEGEND

-50-
•
÷.

GROUNDWATER CONTOUR BEDROCK WELL

OPEN HOLE WELL

GROUNDWATER FLOW DIRECTION

NOT GAUGED NG

NOT CONTOURED DUE TO LACK OF CONTROL

1. THIS SURVEY SHOWS CONDITIONS AS OF OCTOBER 1999 BASED ON AERIAL MAPPING PREPARED BY GEOD CORP. AND GROUND SURVEY BY GARDEN STATE ENGINEERING SURVEYING AND PLANNING.

LOCATION OF HISTORIC LODI BROOK SHOWN ON THIS MAP IS APPROXIMATE ONLY. IT HAS BEEN TRANSFERRED FROM HISTORIC RECORDS THAT UTILIZED BASE MAPPING THAT DOES NOT CORRELATE WELL WITH BASE MAPPING SHOWN ON THIS SHEET.

ONMENTAL VICES	GROUNDWATER CONTOUR MAP SHALLOW & DEEP BEDROCK-11/29/00	Contract Number: DACW41-88-R-0034 Job Number 08575 WAD# 3
Date:	GROUNDWATER REMEDIAL INVESTIGATION PHASE I - INTERIM REPORT	
	FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, LODI, AND ROCHELLE PARK, NEW JERSEY	WBS# 10
		Figure Number:
		# 15

R01F092.DGN

Contour Map of the Top of Bedrock in the Maywood Area

Figure 16

Excerpted from Remedial Investigation Report (DOE 1992)

Historical Results for Radioactive Parameters in Sediment at MISS

		RESULT				DETECTION
STATION	DATE	ANALYTE	(pCi/g)	(ug/g)	QUALIFIER	LIMIT(pCi/g)
SWSD002	04/10/92	Radium-226	0.55		J	0.00
SWSD002	10/26/92	Radium-226	0.25			0.18
SWSD002	04/21/93	Radium-226	0.44			0.27
SWSD002	10/07/93	Radium-226	0.57		J	0.28
SWSD002	05/30/94	Radium-226	0.47			0.23
SWSD002	05/08/95	Radium-226	0.48			0.09
SWSD002	11/13/95	Radium-226	0.30			0.09
SWSD002	05/08/96	Radium-226	0.41			0.13
SWSD002	10/15/96	Radium-226	0.57			0.11
SWSD002	05/05/97	Radium-226	0.67			0.13
SWSD002	06/02/98	Radium-226	0.31			1.00
SWSD002	11/03/98	Radium-226	0.52			1.00
SWSD002	05/21/99	Radium-226	0.36			0.18
SWSD002	07/24/00	Radium-226	0.58		J	0.12
SWSD003	04/10/92	Radium-226	0.52		J	0.00
SWSD003	10/26/92	Radium-226	0.45			0.16
SWSD003	04/21/93	Radium-226	0.35			0.33
SWSD003	10/07/93	Radium-226	0.39		J	0.30
SWSD003	05/30/94	Radium-226	0.46			0.29
SWSD003	05/08/95	Radium-226	0.55			0.08
SWSD003	11/13/95	Radium-226	0.29			0.05
SWSD003	05/08/96	Radium-226	0.52			0.12
SWSD003	10/15/96	Radium-226	0.70			0.10
SWSD003	05/05/97	Radium-226	0.49			0.10
SWSD003	06/02/98	Radium-226	0.28			1.00
SWSD003	11/03/98	Radium-226	0.28			1.00
SWSD003	05/21/99	Radium-226	0.3			0.19
SWSD005	04/10/92	Radium-226	0.51		J	0.00
SWSD005	10/26/92	Radium-226	0.44			0.16
SWSD005	04/21/93	Radium-226	0.35		UJ	0.35
SWSD005	10/07/93	Radium-226	0.00		UJ	0.44
SWSD005	05/30/94	Radium-226	0.76			0.26
SWSD005	05/30/94	Radium-226	0.87		J	0.25
SWSD005	08/31/94	Radium-226	1.30		U	0.11
SWSD005	05/08/95	Radium-226	1.50			0.09
SWSD005	05/08/95	Radium-226	1.70			0.12
SWSD005	11/13/95	Radium-226	1.28			0.16
SWSD005	11/13/95	Radium-226	2.79			0.09
SWSD005	05/08/96	Radium-226	0.50			0.09
SWSD005	10/15/96	Radium-226	0.97			0.07
SWSD005	05/05/97	Radium-226	0.90			0.15
SWSD005	06/02/98	Radium-226	1.26			1.00
SWSD005	11/03/98	Radium-226	1.01			1.00
SWSD005	05/21/99	Radium-226	1.44			0.16

			RES	ULT		DETECTION
STATION	DATE	ANALYTE	(pCi/g)	(ug/g)	QUALIFIER	LIMIT(pCi/g)
SWSD006	05/30/94	Radium-226	3.10			0.99
SWSD006	08/31/94	Radium-226	2.90			0.14
SWSD006	05/08/95	Radium-226	1.30			0.12
SWSD006	11/13/95	Radium-226	4.45			0.15
SWSD006	05/08/96	Radium-226	0.99			0.09
SWSD006	10/15/96	Radium-226	4.50			0.08
SWSD006	05/05/97	Radium-226	3.50			0.15
SWSD006	06/02/98	Radium-226	4.65			1.00
SWSD006	11/03/98	Radium-226	3.86			1.00
SWSD006	05/21/99	Radium-226	8.04			0.28
SWSD006	07/20/00	Radium-226	0.64		J	0.17
SWSD007	08/31/94	Radium-226	0.99		U	0.11
SWSD007	05/08/95	Radium-226	5.40			0.12
SWSD007	11/13/95	Radium-226	3.32			0.12
SWSD007	05/08/96	Radium-226	3.70			0.05
SWSD007	05/08/96	Radium-226	3.29			0.18
SWSD007	10/15/96	Radium-226	5.05			0.14
SWSD007	10/15/96	Radium-226	4.04			0.11
SWSD007	05/05/97	Radium-226	4.25			0.18
SWSD007	05/05/97	Radium-226	5.23			0.20
SWSD007	06/02/98	Radium-226	6.97			1.00
SWSD007	11/03/98	Radium-226	2.22			1.00
SWSD007	05/21/99	Radium-226	1.07			0.12
SWSD007	07/20/00	Radium-226	-0.07		R	0.18
SWSD002	04/10/92	Radium-228	0.98		J	0.00
SWSD002	10/26/92	Radium-228	0.29		J	0.32
SWSD002	04/21/93	Radium-228	0.44		UJ	0.44
SWSD002	10/07/93	Radium-228	0.00		UJ	0.71
SWSD002	05/30/94	Radium-228	0.81		J	0.41
SWSD002	11/13/95	Radium-228	1.60			0.42
SWSD002	05/08/96	Radium-228	0.60			0.16
SWSD002	10/15/96	Radium-228	0.72			0.13
SWSD002	05/05/97	Radium-228	0.56			0.17
SWSD002	06/02/98	Radium-228	0.55			1.00
SWSD002	11/03/98	Radium-228	0.54			1.00
SWSD002	05/21/99	Radium-228	0.74			0.17
SWSD002	07/24/00	Radium-228	0.31		J	0.66
SWSD003	04/10/92	Radium-228	0.74		J	0.00
SWSD003	10/26/92	Radium-228	0.65		J	0.29
SWSD003	04/21/93	Radium-228	0.77			0.31
SWSD003	10/07/93	Radium-228	0.00		UJ	0.61
SWSD003	11/13/95	Radium-228	0.90			0.50
SWSD003	05/08/96	Radium-228	0.40		U	0.11
SWSD003	10/15/96	Radium-228	0.43			0.14
SWSD003	05/05/97	Radium-228	0.45			0.14
SWSD003	06/02/98	Radium-228	0.4			1.00
SWSD003	11/03/98	Radium-228	0.65			1.00
SWSD003	05/21/99	Radium-228	0.35			0.19

			RESULT				
STATION	DATE	ANALYTE	(pCi/g)	(ug/g)	QUALIFIER	LIMIT(pCi/g)	
SWSD005	04/10/92	Radium-228	0.73		J	0.00	
SWSD005	10/26/92	Radium-228	0.47		J	0.29	
SWSD005	04/21/93	Radium-228	0.69			0.24	
SWSD005	10/07/93	Radium-228	0.00		UJ	0.76	
SWSD005	05/30/94	Radium-228	3.00		J	0.44	
SWSD005	05/30/94	Radium-228	3.60		J	0.46	
SWSD005	11/13/95	Radium-228	1.60			0.58	
SWSD005	11/13/95	Radium-228	13.60			0.69	
SWSD005	05/08/96	Radium-228	0.90			0.13	
SWSD005	10/15/96	Radium-228	3.34			0.11	
SWSD005	05/05/97	Radium-228	2.84			0.16	
SWSD005	06/02/98	Radium-228	2.32			1.00	
SWSD005	11/03/98	Radium-228	4.41			1.00	
SWSD005	05/21/99	Radium-228	3.13			0.19	
SWSD005	07/20/00	Radium-228	2.39		J	0.59	
SWSD006	05/30/94	Radium-228	19.60		I	1 70	
SWSD006	11/13/95	Radium-228	9.60		5	0.53	
SWSD006	05/08/96	Radium-228	5.15			0.15	
SWSD006	10/15/96	Radium-228	20 33			0.10	
SWSD006	05/05/97	Radium-228	17 33			0.13	
SWSD006	06/02/98	Radium-228	16.22		г	1.00	
SWSD006	11/03/98	Radium-228	17.74		5	1.00	
SWSD006	05/21/99	Radium-228	7.67			0.26	
SWSD006	07/20/00	Radium-228	0.39		J	0.20	
SWSD007	11/13/95	Radium-228	11.70			0.56	
SWSD007	05/08/96	Radium-228	14.22			0.30	
SWSD007	05/08/96	Radium-228	8.16			0.12	
SWSD007	10/15/96	Radium-228	22.41			0.10	
SWSD007	10/15/96	Radium-228	16.79			0.23	
SWSD007	05/05/97	Radium-228	8.75			0.17	
SWSD007	05/05/97	Radium-228	8.78			0.18	
SWSD007	06/02/98	Radium-228	16.46		I	1.00	
SWSD007	11/03/98	Radium-228	8.49		0	1.00	
SWSD007	05/21/99	Radium-228	1.79			0.17	
SWSD007	07/20/00	Radium-228	1.42		J	0.55	
SWSD002	05/08/96	Thorium-230	1.11		T I	0.09	
SWSD002	10/15/96	Thorium-230	0.67		0	0.09	
SWSD002	05/05/97	Thorium-230	0.80		ŦI	0.03	
SWSD002	06/02/98	Thorium-230	0.52		U U	1.00	
SWSD002	11/03/98	Thorium-230	0.91		0	1.00	
SWSD002	05/21/99	Thorium-230	0.55		I I	0.17	
SWSD002	07/24/00	Thorium-230	0.90		I	0.17	
SWSD003	05/08/96	Thorium 220	1.22		J	0.03	
SWSD003	10/15/06	Thorium 220	1.33		U	0.15	
SWSD003	05/05/07	Thorium 220	0.4/		T I	0.06	
SWSD003	06/02/98	Thorium 220	0.00		U	0.09	
SWSD003	11/03/08	Thorium 220	0.52		U	1.00	
SWSD003	05/21/00	Thorium 220	0.04			1.00	
5 11 5 10 00 5	03/21/99	Thorium-230	0.96			0.15	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				RES	ULT		DETECTION
SWSD005 05/08/96 Thorium-230 0.97 U 0.08 SWSD005 05/05/97 Thorium-230 1.33 0.06 SWSD005 05/05/97 Thorium-230 2.08 0.16 SWSD005 05/02/98 Thorium-230 1.42 1.00 SWSD005 05/21/99 Thorium-230 1.42 0.10 SWSD005 05/21/99 Thorium-230 1.48 U 0.12 SWSD006 05/08/96 Thorium-230 1.48 U 0.12 SWSD006 05/08/97 Thorium-230 3.24 0.05 SWSD006 05/08/97 Thorium-230 3.28 J 1.00 SWSD006 05/02/98 Thorium-230 3.27 J 0.11 SWSD006 05/08/96 Thorium-230 1.81 0.05 SWSD007 SWSD007 05/08/96 Thorium-230 1.81 0.18 0.09 SWSD007 05/08/96 Thorium-230 1.81 0.18 0.16	STATION	DATE	ANALYTE	(pCi/g)	(ug/g)	QUALIFIER	LIMIT(pCi/g)
SWSD005 10/15/96 Thorium-230 1.33 0.06 SWSD005 05/05/97 Thorium-230 2.08 0.16 SWSD005 11/03/98 Thorium-230 1.42 1.00 SWSD005 05/21/99 Thorium-230 1.42 1.01 SWSD005 05/21/99 Thorium-230 1.44 U 0.12 SWSD005 07/20/00 Thorium-230 1.48 U 0.11 SWSD006 05/05/97 Thorium-230 3.54 0.05 0.05 SWSD006 05/05/97 Thorium-230 4.29 1.00 SWSD006 05/02/98 Thorium-230 2.27 J 0.11 SWSD006 05/21/99 Thorium-230 3.19 0.09 SWSD007 05/08/96 Thorium-230 3.11 0.04 SWSD007 05/08/96 Thorium-230 3.27 J 0.16 SWSD007 05/08/97 Thorium-230 2.09 0.09 SWSD007 05/08/97 Thorium-230 2.04 0.16	SWSD005	05/08/96	Thorium-230	0.97		U	0.08
SWSD005 05/05/97 Thorium-230 2.08 0.16 SWSD005 06/02/98 Thorium-230 0.7 U 1.00 SWSD005 05/21/99 Thorium-230 1.42 1.00 SWSD005 05/21/99 Thorium-230 1.42 0.12 SWSD006 05/08/96 Thorium-230 0.64 J 0.12 SWSD006 05/08/96 Thorium-230 3.54 0.05 0.05 SWSD006 05/05/97 Thorium-230 3.28 J 1.00 SWSD006 05/05/97 Thorium-230 3.28 J 0.05 SWSD006 05/02/98 Thorium-230 3.27 J 0.11 SWSD007 05/08/96 Thorium-230 3.19 0.09 SWSD007 05/08/96 Thorium-230 3.31 0.14 SWSD007 05/08/96 Thorium-230 3.37 J 1.00 SWSD007 05/05/97 Thorium-230 3.37 J 1.00 SWSD002 <td>SWSD005</td> <td>10/15/96</td> <td>Thorium-230</td> <td>1.33</td> <td></td> <td></td> <td>0.06</td>	SWSD005	10/15/96	Thorium-230	1.33			0.06
SWSD005 06/02/98 Thorium-230 0.7 U 1.00 SWSD005 11/03/98 Thorium-230 1.42 1.00 SWSD005 07/20/00 Thorium-230 1.81 0.10 SWSD005 07/20/00 Thorium-230 1.48 U 0.12 SWSD006 05/08/96 Thorium-230 3.54 0.05 SWSD006 06/02/98 Thorium-230 4.72 0.11 SWSD006 06/02/98 Thorium-230 4.29 1.00 SWSD006 06/21/99 Thorium-230 4.29 0.22 SWSD006 07/20/00 Thorium-230 3.19 0.09 SWSD007 05/08/96 Thorium-230 3.11 0.16 SWSD007 10/15/96 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 2.42 0.20 <	SWSD005	05/05/97	Thorium-230	2.08			0.16
SWSD005 11/03/98 Thorium-230 1.42 1.00 SWSD005 05/21/99 Thorium-230 1.81 0.12 SWSD006 05/08/96 Thorium-230 1.48 U 0.12 SWSD006 05/08/96 Thorium-230 3.54 0.05 SWSD006 05/05/97 Thorium-230 3.28 J 1.00 SWSD006 06/02/98 Thorium-230 3.28 J 1.00 SWSD006 05/02/98 Thorium-230 1.62 0.22 SWSD006 05/02/98 Thorium-230 1.62 0.22 SWSD007 05/08/96 Thorium-230 1.81 0.05 SWSD007 05/08/96 Thorium-230 3.31 0.14 SWSD007 05/05/97 Thorium-230 3.37 J 1.00 SWSD007 05/05/97 Thorium-230 3.37 J 1.00 SWSD007 05/05/97 Thorium-230 3.37 J 0.09 SWSD007 05/05/97 <td< td=""><td>SWSD005</td><td>06/02/98</td><td>Thorium-230</td><td>0.7</td><td></td><td>U</td><td>1.00</td></td<>	SWSD005	06/02/98	Thorium-230	0.7		U	1.00
SWSD005 05/21/99 Thorium-230 1.81 0.10 SWSD005 07/20/00 Thorium-230 0.64 J 0.12 SWSD006 01/05/96 Thorium-230 1.48 U 0.11 SWSD006 05/05/97 Thorium-230 3.54 0.05 SWSD006 06/02/98 Thorium-230 3.28 J 1.00 SWSD006 06/02/98 Thorium-230 1.62 0.22 SWSD006 05/01/99 Thorium-230 0.27 J 0.11 SWSD007 05/08/96 Thorium-230 3.19 0.09 SWSD007 SWSD007 10/15/96 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/02/98 Thorium-230 2.42 0.13 SWSD007 05/02/98 Thorium-230 2.42 0.25 SWSD007 07/20/00 Thorium-232 0.50 0.00 SWSD002	SWSD005	11/03/98	Thorium-230	1.42			1.00
SWSD005 07/20/00 Thorium-230 0.64 J 0.12 SWSD006 05/08/96 Thorium-230 1.48 U 0.12 SWSD006 10/15/96 Thorium-230 3.74 0.05 SWSD006 05/05/97 Thorium-230 3.28 J 1.00 SWSD006 06/02/98 Thorium-230 1.22 0.22 SWSD006 07/20/00 Thorium-230 1.22 0.22 SWSD006 07/20/00 Thorium-230 1.62 0.22 SWSD006 07/20/00 Thorium-230 1.81 0.05 SWSD007 05/08/96 Thorium-230 1.81 0.05 SWSD007 05/05/97 Thorium-230 2.41 0.16 SWSD007 05/05/97 Thorium-230 3.37 J 1.00 SWSD007 05/05/97 Thorium-230 3.41 0.13 SWSD007 05/05/97 Thorium-230 3.37 J 1.00 SWSD007 05/02/98 Thorium-230 0.41 SWSD002 0.40 SWSD002	SWSD005	05/21/99	Thorium-230	1.81			0.10
SWSD006 65/08/96 Thorium-230 1.48 U 0.12 SWSD006 10/15/96 Thorium-230 3.54 0.05 SWSD006 05/05/97 Thorium-230 3.28 J 1.00 SWSD006 05/02/98 Thorium-230 4.29 1.00 SWSD006 05/21/99 Thorium-230 1.62 0.22 SWSD006 05/21/99 Thorium-230 1.81 0.09 SWSD007 05/08/96 Thorium-230 1.81 0.05 SWSD007 10/15/96 Thorium-230 2.64 0.14 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 1.18 0.13 SWSD007 05/05/97 Thorium-230 1.48 0.13 SWSD007 05/02/98 Thorium-230 1.18 0.13 SWSD002 04/10/92 Thorium-232 0.51 J 0.09<	SWSD005	07/20/00	Thorium-230	0.64		J	0.12
SWSD006 10/15/96 Thorium-230 4.72 0.11 SWSD006 05/05/97 Thorium-230 3.54 0.05 SWSD006 06/02/98 Thorium-230 3.28 J 1.00 SWSD006 01/10/398 Thorium-230 4.29 1.00 SWSD006 07/20/07 Thorium-230 1.62 0.22 SWSD006 07/20/07 Thorium-230 1.81 0.05 SWSD007 05/08/96 Thorium-230 3.31 0.14 SWSD007 10/15/96 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 2.42 0.25 SWSD007 05/21/98 Thorium-230 0.51 J 0.09 SWSD007 07/20/00 Thorium-232 0.70 0.20 SWSD002 04/10/92 Thorium-232 0.42 0.25 S	SWSD006	05/08/96	Thorium-230	1.48		U	0.12
SWSD006 05/05/97 Thorium-230 3.54 0.05 SWSD006 06/02/98 Thorium-230 3.28 J 1.00 SWSD006 05/21/99 Thorium-230 1.62 0.22 SWSD006 07/20/00 Thorium-230 0.27 J 0.11 SWSD007 05/08/96 Thorium-230 3.19 0.09 SWSD007 05/08/96 Thorium-230 3.13 0.14 SWSD007 10/15/96 Thorium-230 3.31 0.14 SWSD007 05/08/96 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 3.13 0.13 SWSD007 05/21/99 Thorium-230 1.18 0.13 SWSD007 05/21/99 Thorium-232 0.51 J 0.09 SWSD007 07/20/00 Thorium-232 0.59 0.40 SWSD002 04/10/92 Thorium-232 0.70 0.20	SWSD006	10/15/96	Thorium-230	4.72			0.11
SWSD006 06/02/98 Thorium-230 3.28 J 1.00 SWSD006 11/03/98 Thorium-230 4.29 1.00 SWSD006 05/21/99 Thorium-230 0.27 J 0.11 SWSD006 05/08/96 Thorium-230 3.19 0.09 0.05 SWSD007 05/08/96 Thorium-230 1.81 0.05 0.05 SWSD007 10/15/96 Thorium-230 3.31 0.14 0.05 SWSD007 10/15/96 Thorium-230 2.64 0.16 0.09 SWSD007 05/05/97 Thorium-230 2.42 1.00 0.99 SWSD007 05/05/97 Thorium-230 1.18 0.13 0.13 SWSD007 05/21/99 Thorium-232 0.42 0.25 0.99 SWSD002 04/10/92 Thorium-232 0.80 0.00 0.00 SWSD002 01/26/92 Thorium-232 0.70 0.20 0.20 SWSD002 01/26/92 Thorium-232	SWSD006	05/05/97	Thorium-230	3.54			0.05
SWSD006 11/03/98 Thorium-230 4.29 1.00 SWSD006 05/21/99 Thorium-230 1.62 0.22 SWSD006 05/21/99 Thorium-230 0.27 J 0.11 SWSD007 05/08/96 Thorium-230 3.19 0.09 SWSD007 05/08/96 Thorium-230 1.81 0.05 SWSD007 10/15/96 Thorium-230 3.31 0.14 SWSD007 05/05/97 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/02/98 Thorium-230 1.48 0.13 SWSD007 05/21/99 Thorium-232 0.51 J 0.09 SWSD002 04/10/92 Thorium-232 0.70 0.20 SWSD002 04/10/92 Thorium-232 0.71 0.36 SWSD002 10/07/93 Thorium-232 0.71 0.36 SWSD002	SWSD006	06/02/98	Thorium-230	3.28		J	1.00
SWSD006 05/21/99 Thorium-230 1.62 0.22 SWSD006 07/20/00 Thorium-230 0.27 J 0.11 SWSD007 05/08/96 Thorium-230 3.19 0.09 SWSD007 05/08/96 Thorium-230 1.81 0.05 SWSD007 10/15/96 Thorium-230 4.52 0.18 SWSD007 05/05/97 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 2.42 1.00 SWSD007 05/21/98 Thorium-230 1.18 0.13 SWSD007 07/20/00 Thorium-232 0.80 0.00 SWSD002 04/10/92 Thorium-232 0.42 0.25 SWSD002 10/26/92 Thorium-232 0.59 0.40 SWSD002 10/26/92 Thorium-232 0.59 0.40 SWSD002 10/26/92 Thorium-232 0.50 0.08 SW	SWSD006	11/03/98	Thorium-230	4.29			1.00
SWSD006 07/20/00 Thorium-230 0.27 J 0.11 SWSD007 05/08/96 Thorium-230 3.19 0.09 SWSD007 05/08/96 Thorium-230 1.81 0.05 SWSD007 10/15/96 Thorium-230 4.52 0.18 SWSD007 10/15/96 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.09 0.09 SWSD007 06/02/98 Thorium-230 2.42 1.00 SWSD007 05/05/97 Thorium-230 1.18 0.13 SWSD007 05/02/92 Thorium-230 1.18 0.13 SWSD007 07/20/00 Thorium-232 0.42 0.25 SWSD002 10/07/93 Thorium-232 0.70 0.20 SWSD002 05/30/94 Thorium-232 0.59 0.40 SWSD002 05/08/95 Thorium-232 0.59 0.40 SWSD002 05/08/96 Thorium-232 0.50 0.08 SW	SWSD006	05/21/99	Thorium-230	1.62			0.22
SWSD007 05/08/96 Thorium-230 3,19 0.09 SWSD007 05/08/96 Thorium-230 1.81 0.05 SWSD007 10/15/96 Thorium-230 3.31 0.14 SWSD007 05/05/97 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.09 0.09 SWSD007 05/05/97 Thorium-230 3.37 J 1.00 SWSD007 05/02/98 Thorium-230 3.37 J 1.00 SWSD007 05/02/98 Thorium-230 1.18 0.13 0.99 SWSD007 07/20/00 Thorium-232 0.80 0.00 0.09 SWSD002 04/10/92 Thorium-232 0.70 0.20 0.20 SWSD002 10/26/92 Thorium-232 0.59 0.40 0.51 SWSD002 05/08/95 Thorium-232 0.59 0.40 0.55 SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 05/08/95 </td <td>SWSD006</td> <td>07/20/00</td> <td>Thorium-230</td> <td>0.27</td> <td></td> <td>J</td> <td>0.11</td>	SWSD006	07/20/00	Thorium-230	0.27		J	0.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SWSD007	05/08/96	Thorium-230	3.19			0.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SWSD007	05/08/96	Thorium-230	1.81			0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SWSD007	10/15/96	Thorium-230	4.52			0.18
SWSD007 05/05/97 Thorium-230 2.64 0.16 SWSD007 05/05/97 Thorium-230 2.09 0.09 SWSD007 06/02/98 Thorium-230 2.02 0.09 SWSD007 06/02/98 Thorium-230 3.37 J 1.00 SWSD007 05/21/99 Thorium-230 2.42 1.00 SWSD002 04/10/92 Thorium-230 0.51 J 0.09 SWSD002 04/10/92 Thorium-232 0.80 0.00 0.20 SWSD002 04/10/92 Thorium-232 0.70 0.20 0.20 SWSD002 04/21/93 Thorium-232 0.59 0.40 0.80 SWSD002 05/30/94 Thorium-232 0.50 0.08 0.88 SWSD002 05/08/95 Thorium-232 0.50 0.08 0.95 SWSD002 05/08/95 Thorium-232 0.33 0.06 0.88 SWSD002 05/05/97 Thorium-232 0.33 1.00 0.95 SWSD002 05/05/97 Thorium-232 0.35 J 0	SWSD007	10/15/96	Thorium-230	3.31			0.14
SWSD007 05/05/97 Thorium-230 2.09 0.09 SWSD007 06/02/98 Thorium-230 3.37 J 1.00 SWSD007 05/21/99 Thorium-230 1.18 0.13 SWSD007 07/20/00 Thorium-230 0.51 J 0.09 SWSD002 04/10/92 Thorium-232 0.80 0.00 SWSD002 04/21/93 Thorium-232 0.42 0.20 SWSD002 04/21/93 Thorium-232 0.70 0.20 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.59 0.40 SWSD002 05/08/95 Thorium-232 0.44 0.15 SWSD002 05/08/96 Thorium-232 0.44 0.15 SWSD002 05/08/96 Thorium-232 0.42 0.08 SWSD002 05/08/96 Thorium-232 0.42 0.15	SWSD007	05/05/97	Thorium-230	2.64			0.16
SWSD007 06/02/98 Thorium-230 3.37 J 1.00 SWSD007 11/03/98 Thorium-230 2.42 1.00 SWSD007 05/21/99 Thorium-230 1.18 0.13 SWSD007 07/20/00 Thorium-230 0.51 J 0.09 SWSD002 04/10/92 Thorium-232 0.42 0.25 SWSD002 04/21/93 Thorium-232 0.59 0.40 SWSD002 04/21/93 Thorium-232 0.59 0.40 SWSD002 05/30/94 Thorium-232 0.59 0.40 SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 05/08/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.62 0.08 SWSD002 05/08/96 SWSD002 05/05/97 Thorium-232 0.33 1.00 SWSD002 05/02/98 Thorium-232 0.35 J 0.12 SWSD002 05/21/99 Thori	SWSD007	05/05/97	Thorium-230	2.09			0.09
SWSD007 11/03/98 Thorium-230 2.42 1.00 SWSD007 05/21/99 Thorium-230 1.18 0.13 SWSD007 07/20/00 Thorium-230 0.51 J 0.09 SWSD002 04/10/92 Thorium-232 0.80 0.00 SWSD002 04/21/93 Thorium-232 0.42 0.25 SWSD002 04/21/93 Thorium-232 0.70 0.20 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.44 0.15 SWSD002 05/08/96 SWSD002 05/08/96 Thorium-232 0.62 0.08 SWSD002 05/08/96 1horium-232 0.33 1.00 SWSD002 05/08/96 Thorium-232 0.33 1.00 SWSD002 05/21/99 Thorium-232 0.35 J 0.12 SWSD002 05/21/99 Thorium-232 0.35 <td< td=""><td>SWSD007</td><td>06/02/98</td><td>Thorium-230</td><td>3.37</td><td></td><td>J</td><td>1.00</td></td<>	SWSD007	06/02/98	Thorium-230	3.37		J	1.00
SWSD007 05/21/99 Thorium-230 1.18 0.13 SWSD007 07/20/00 Thorium-230 0.51 J 0.09 SWSD002 04/10/92 Thorium-232 0.80 0.00 SWSD002 10/26/92 Thorium-232 0.42 0.25 SWSD002 04/21/93 Thorium-232 0.70 0.20 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 05/08/96 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.33 0.06 SWSD002 05/05/97 Thorium-232 0.33 1.00 SWSD002 05/02/98 Thorium-232 0.35 J 0.12 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD002 07/24/00 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232	SWSD007	11/03/98	Thorium-230	2.42			1.00
SWSD007 07/20/00 Thorium-230 0.51 J 0.09 SWSD002 04/10/92 Thorium-232 0.80 0.00 SWSD002 10/26/92 Thorium-232 0.42 0.25 SWSD002 04/21/93 Thorium-232 0.70 0.20 SWSD002 10/07/93 Thorium-232 0.59 0.40 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 05/08/96 Thorium-232 0.44 0.15 SWSD002 05/08/96 Thorium-232 0.62 0.08 SWSD002 05/05/97 Thorium-232 0.33 0.06 SWSD002 06/02/98 Thorium-232 0.35 J 0.01 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.35 J 0.00 SWSD003 04/21/93 Thorium-232 0.65 <td>SWSD007</td> <td>05/21/99</td> <td>Thorium-230</td> <td>1.18</td> <td></td> <td></td> <td>0.13</td>	SWSD007	05/21/99	Thorium-230	1.18			0.13
SWSD002 04/10/92 Thorium-232 0.80 0.00 SWSD002 10/26/92 Thorium-232 0.42 0.25 SWSD002 04/21/93 Thorium-232 0.70 0.20 SWSD002 10/07/93 Thorium-232 0.59 0.40 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.44 0.15 SWSD002 05/05/97 SWSD002 05/05/97 Thorium-232 0.33 0.06 SWSD002 05/05/97 SWSD002 05/02/98 Thorium-232 0.33 1.00 SWSD002 05/21/99 Thorium-232 0.35 J 0.12 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.35 J 0.00 SWSD003 04/10/92 Thorium-232 0.35 J 0.15 SWSD003	SWSD007	07/20/00	Thorium-230	0.51		J	0.09
SWSD002 10/26/92 Thorium-232 0.42 0.25 SWSD002 04/21/93 Thorium-232 0.70 0.20 SWSD002 10/07/93 Thorium-232 0.59 0.40 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 11/13/95 Thorium-232 0.39 U 0.05 SWSD002 10/15/96 Thorium-232 0.44 0.15 SWSD002 10/15/96 Thorium-232 0.33 0.06 SWSD002 05/05/97 Thorium-232 0.33 1.00 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 05/05/97 Thorium-232 0.35 J 0.12 SWSD002 05/02/98 Thorium-232 0.35 J 0.00 SWSD002 05/21/99 Thorium-232 0.35 J 0.00 SWSD003 04/10/92 Thorium-232 0.65 0.23 0.00 SWSD003 04/21/93 Thorium-232	SWSD002	04/10/92	Thorium-232	0.80			0.00
SWSD002 04/21/93 Thorium-232 0.70 0.20 SWSD002 10/07/93 Thorium-232 0.59 0.40 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 05/08/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.44 0.15 0.08 SWSD002 05/08/96 Thorium-232 0.33 0.06 0.08 SWSD002 05/05/97 Thorium-232 0.33 1.00 0.05 SWSD002 06/02/98 Thorium-232 0.33 1.00 0.12 SWSD002 05/02/97 Thorium-232 0.35 J 0.15 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.35 J 0.00 SWSD003 04/10/92 Thorium-232 0.65 0.23 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 0.49	SWSD002	10/26/92	Thorium-232	0.42			0.25
SWSD002 10/07/93 Thorium-232 0.59 0.40 SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 05/08/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.44 0.15 SWSD002 05/05/97 Thorium-232 0.62 0.08 SWSD002 05/05/97 Thorium-232 0.33 0.06 SWSD002 05/02/98 Thorium-232 0.33 1.00 SWSD002 05/21/99 Thorium-232 0.35 U 1.00 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 04/10/92 Thorium-232 0.66 0.24 0.23 SWSD003 04/26/92 Thorium-232 0.65 0.23 0.49 SWSD003 04/21/93 Thorium-232 0.65 0.10 0.49 SWSD003 05	SWSD002	04/21/93	Thorium-232	0.70			0.20
SWSD002 05/30/94 Thorium-232 0.71 0.36 SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 11/13/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.44 0.15 0.08 SWSD002 05/08/96 Thorium-232 0.62 0.08 0.06 SWSD002 05/05/97 Thorium-232 0.33 0.06 0.06 SWSD002 06/02/98 Thorium-232 0.33 1.00 0.05 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 06/02/98 Thorium-232 0.35 U 1.00 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 04/10/92 Thorium-232 0.66 0.24 0.23 SWSD003 04/21/93 Thorium-232 0.65 UJ 0.65 SWSD003 05/30/94 Thorium-232 0.56 0.10 </td <td>SWSD002</td> <td>10/07/93</td> <td>Thorium-232</td> <td>0.59</td> <td></td> <td></td> <td>0.40</td>	SWSD002	10/07/93	Thorium-232	0.59			0.40
SWSD002 05/08/95 Thorium-232 0.50 0.08 SWSD002 11/13/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.44 0.15 SWSD002 10/15/96 Thorium-232 0.62 0.08 SWSD002 05/05/97 Thorium-232 0.33 0.06 SWSD002 05/05/97 Thorium-232 0.33 1.00 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 05/05/97 Thorium-232 0.39 U 0.12 SWSD002 05/21/99 Thorium-232 0.35 J 0.10 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 04/10/92 Thorium-232 0.65 0.23 0.23 SWSD003 04/21/93 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 0.10 SWSD003 <td>SWSD002</td> <td>05/30/94</td> <td>Thorium-232</td> <td>0.71</td> <td></td> <td></td> <td>0.16</td>	SWSD002	05/30/94	Thorium-232	0.71			0.16
SWSD002 11/13/95 Thorium-232 0.39 U 0.05 SWSD002 05/08/96 Thorium-232 0.44 0.15 SWSD002 10/15/96 Thorium-232 0.62 0.08 SWSD002 05/05/97 Thorium-232 0.33 0.06 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 05/21/99 Thorium-232 0.35 U 1.00 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD002 07/24/00 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 04/10/92 Thorium-232 0.65 0.23 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 0.49 SWSD003 05/08/95 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 0.10 S	SWSD002	05/08/95	Thorium-232	0.50			0.08
SWSD002 05/08/96 Thorium-232 0.44 0.15 SWSD002 10/15/96 Thorium-232 0.62 0.08 SWSD002 05/05/97 Thorium-232 0.33 0.06 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 05/05/97 Thorium-232 0.33 1.00 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 05/21/99 Thorium-232 0.35 U 1.00 SWSD002 07/24/00 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 04/10/92 Thorium-232 0.65 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 05/08/95 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 0.10 SWSD003 05/08/95 Thorium-232	SWSD002	11/13/95	Thorium-232	0.39		U	0.05
SWSD002 10/15/96 Thorium-232 0.62 0.08 SWSD002 05/05/97 Thorium-232 0.33 0.06 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 01/03/98 Thorium-232 0.39 U 0.12 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD002 07/24/00 Thorium-232 0.35 J 0.00 SWSD003 04/10/92 Thorium-232 0.65 J 0.00 SWSD003 10/26/92 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.57 0.10 SWSD003 05/08/96 Thorium-232 0.57 0.11 SWSD003	SWSD002	05/08/96	Thorium-232	0.44			0.15
SWSD002 05/05/97 Thorium-232 0.33 0.06 SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 11/03/98 Thorium-232 0.5 U 1.00 SWSD002 05/21/99 Thorium-232 0.39 U 0.12 SWSD002 05/21/99 Thorium-232 0.35 J 0.15 SWSD002 07/24/00 Thorium-232 0.85 J 0.00 SWSD003 04/10/92 Thorium-232 0.65 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.65 UJ 0.49 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 0.10 SWSD003 05/08/95 Thorium-232 0.57 0.11 0.04 SWSD003 05/08/96 Thorium-232 0.37 0.10 0.10 SWSD003 05/08/96 Thorium-232 0.37 0.10 0.10	SWSD002	10/15/96	Thorium-232	0.62			0.08
SWSD002 06/02/98 Thorium-232 0.33 1.00 SWSD002 11/03/98 Thorium-232 0.5 U 1.00 SWSD002 05/21/99 Thorium-232 0.39 U 0.12 SWSD002 07/24/00 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 04/10/92 Thorium-232 0.65 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.65 UJ 0.49 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 0.10 SWSD003 05/08/95 Thorium-232 0.57 0.11 0.04 SWSD003 05/08/96 Thorium-232 0.57 0.11 0.10 SWSD003 05/08/96 Thorium-232 0.37 0.10 0.10	SWSD002	05/05/97	Thorium-232	0.33			0.06
SWSD002 11/03/98 Thorium-232 0.5 U 1.00 SWSD002 05/21/99 Thorium-232 0.39 U 0.12 SWSD002 07/24/00 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 10/26/92 Thorium-232 0.65 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.49 SWSD003 05/30/94 Thorium-232 0.56 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.32 U 0.04 SWSD003 05/08/96 Thorium-232 0.37 0.10 SWSD003 05/08/96 Thorium-232 0.37 0.10 SWSD003 05/05	SWSD002	06/02/98	Thorium-232	0.33			1.00
SWSD002 05/21/99 Thorium-232 0.39 U 0.12 SWSD002 07/24/00 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 10/26/92 Thorium-232 0.65 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.49 SWSD003 05/08/95 Thorium-232 0.56 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.32 U 0.04 SWSD003 05/08/96 Thorium-232 0.37 0.10 0.11 SWSD003 05/08/96 Thorium-232 0.37 0.10 0.10 SWSD003 05/05/97 Thorium-232 0.37 0.10 0.10	SWSD002	11/03/98	Thorium-232	0.5		U	1.00
SWSD002 07/24/00 Thorium-232 0.35 J 0.15 SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 10/26/92 Thorium-232 0.65 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.49 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 0.10 SWSD003 05/08/96 Thorium-232 0.57 0.11 0.04 SWSD003 05/08/96 Thorium-232 0.37 0.10 0.11 SWSD003 05/05/97 Thorium-232 0.37 0.10 0.10 SWSD003 05/05/97 Thorium-232 0.39 1.00	SWSD002	05/21/99	Thorium-232	0.39		Ū	0.12
SWSD003 04/10/92 Thorium-232 0.85 J 0.00 SWSD003 10/26/92 Thorium-232 0.65 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 10/07/93 Thorium-232 0.00 UJ 0.49 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 0.10 SWSD003 05/08/95 Thorium-232 0.37 0.11 0.04 SWSD003 05/08/96 Thorium-232 0.37 0.10 0.11 SWSD003 05/08/96 Thorium-232 0.37 0.10 0.10 SWSD003 05/05/97 Thorium-232 0.37 0.10 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00 1.00	SWSD002	07/24/00	Thorium-232	0.35		J	0.15
SWSD003 10/26/92 Thorium-232 0.65 0.23 SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 10/07/93 Thorium-232 0.00 UJ 0.49 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 SWSD003 05/08/95 Thorium-232 0.32 U 0.04 SWSD003 05/08/96 Thorium-232 0.57 0.11 SWSD003 05/08/96 Thorium-232 0.30 0.06 SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 05/05/97 Thorium-232 0.39 1.00	SWSD003	04/10/92	Thorium-232	0.85		I	0.00
SWSD003 04/21/93 Thorium-232 0.66 0.24 SWSD003 10/07/93 Thorium-232 0.00 UJ 0.49 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 SWSD003 11/13/95 Thorium-232 0.32 U 0.04 SWSD003 05/08/96 Thorium-232 0.57 0.11 SWSD003 10/15/96 Thorium-232 0.30 0.06 SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00	SWSD003	10/26/92	Thorium-232	0.65		5	0.00
SWSD003 10/07/93 Thorium-232 0.00 UJ 0.49 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 SWSD003 11/13/95 Thorium-232 0.32 U 0.04 SWSD003 05/08/96 Thorium-232 0.57 0.11 SWSD003 10/15/96 Thorium-232 0.30 0.06 SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00	SWSD003	04/21/93	Thorium-232	0.66			0.23
SWSD003 05/30/94 Thorium-232 0.65 UJ 0.65 SWSD003 05/08/95 Thorium-232 0.56 0.10 0.10 SWSD003 11/13/95 Thorium-232 0.32 U 0.04 SWSD003 11/13/95 Thorium-232 0.32 U 0.04 SWSD003 05/08/96 Thorium-232 0.57 0.11 SWSD003 05/08/96 Thorium-232 0.30 0.06 SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00	SWSD003	10/07/93	Thorium-232	0.00		111	0.24
SWSD003 05/08/95 Thorium-232 0.56 0.10 SWSD003 11/13/95 Thorium-232 0.32 U 0.04 SWSD003 05/08/96 Thorium-232 0.57 0.11 SWSD003 10/15/96 Thorium-232 0.30 0.06 SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00	SWSD003	05/30/94	Thorium-232	0.65			0.49
SWSD003 11/13/95 Thorium-232 0.32 U 0.04 SWSD003 05/08/96 Thorium-232 0.57 0.11 SWSD003 10/15/96 Thorium-232 0.30 0.06 SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00	SWSD003	05/08/95	Thorium-232	0.56		05	0.05
SWSD003 05/08/96 Thorium-232 0.57 0.11 SWSD003 10/15/96 Thorium-232 0.30 0.06 SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00	SWSD003	11/13/95	Thorium-232	0.20		П	0.10
SWSD003 10/15/96 Thorium-232 0.30 0.06 SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00	SWSD003	05/08/96	Thorium-232	0.57		U	0.04
SWSD003 05/05/97 Thorium-232 0.37 0.10 SWSD003 06/02/98 Thorium-232 0.39 1.00	SWSD003	10/15/96	Thorium-232	0.30			0.11
SWSD003 06/02/98 Thorium-232 0.39 1.00 SWSD003 11/02/08 Thorium-232 0.39 1.00	SWSD003	05/05/97	Thorium-232	0.37			0.00
	SWSD003	06/02/98	Thorium-232	0.39			1.00
5W5D003 E1/03/98 Thorium-232 () 57 E1 1.00	SWSD003	11/03/98	Thorium-232	0.57		I I	1.00
SWSD003 05/21/99 Thorium-232 0.48 U 0.11	SWSD003	05/21/99	Thorium-232	0.48		Ŭ	0.11

Historical Results for Radioactive Parameters in Sediment at MISS

			RES	ULT		DETECTION
STATION	DATE	ANALYTE	(pCi/g)	(ug/g)	QUALIFIER	LIMIT(pCi/g)
SWSD005	04/10/92	Thorium-232	0.76		I	0.00
SWSD005	10/26/92	Thorium 232	0.70		J	0.00
SWSD005	04/21/93	Thorium-232	0.55			0.23
SWSD005	10/07/93	Thorium-232	0.05		TIT	0.19
SWSD005	05/30/94	Thorium-232	3 20		UJ	0.60
SWSD005	05/30/94	Thorium-232	3.60		J	0.38
SWSD005	08/31/94	Thorium 232	1.00			0.39
SWSD005	05/08/05	Thorium 232	2.40			0.05
SWSD005	05/08/95	Thorium 222	2.40			0.08
SWSD005	11/13/05	Thorium 232	2.20			0.05
SWSD005	11/13/05	Thorium 232	2.55			0.06
SWSD005	05/08/96	Thorium 232	12.02			0.10
SWSD005	10/15/96	Thorium 222	0.92			0.10
SWSD005	05/05/07	Thorium 232	2.18			0.11
SWSD005	06/02/08	Thorium 232	2.94			0.13
SWSD005	11/03/08	Thorium 222	2.33			1.00
SWSD005	05/21/00	Thorium 222	4			1.00
SWSD005	03/21/99	Thomum-232	3.30			0.15
<u>3₩3D003</u>	07/20/00	Thorium-232	1./3			0.12
SWSD006	05/30/94	Thorium-232	20.90			1.50
SWSD006	08/31/94	Thorium-232	16.80			0.04
SWSD006	05/08/95	Thorium-232	2.50			0.04
SWSD006	11/13/95	Thorium-232	11.47			0.04
SWSD006	05/08/96	Thorium-232	4.93			0.13
SWSD006	10/15/96	Thorium-232	21.66			0.11
SWSD006	05/05/97	Thorium-232	17.34			0.09
SWSD006	06/02/98	Thorium-232	15.78		J	1.00
SWSD006	11/03/98	Thorium-232	17.97			1.00
SWSD006	05/21/99	Thorium-232	8.13			0.15
SWSD006	07/20/00	Thorium-232	0.33		J	0.08
SWSD007	08/31/94	Thorium-232	1.10			0.10
SWSD007	05/08/95	Thorium-232	14.60			0.07
SWSD007	11/13/95	Thorium-232	9.49			0.04
SWSD007	05/08/96	Thorium-232	14.75			0.05
SWSD007	05/08/96	Thorium-232	7.63			0.08
SWSD007	10/15/96	Thorium-232	18.47			0.14
SWSD007	10/15/96	Thorium-232	22.50			0.21
SWSD007	05/05/97	Thorium-232	7.39			0.07
SWSD007	05/05/97	Thorium-232	8.54			0.07
SWSD007	06/02/98	Thorium-232	17.08		Ĭ	1.00
SWSD007	11/03/98	Thorium-232	8.76		•	1.00
SWSD007	05/21/99	Thorium-232	1.9			0.11
SWSD007	07/20/00	Thorium-232	0.33		T	0.08
SWSD002	04/10/92	Total Uranium	2.00	4 20		0.00
SWSD002	10/26/92	Total Uranium	2.90	7.27		0.00
SWSD002	04/21/93	Total Uranium	1.42	2.10	т	0.10
SWSD002	10/07/93	Total Uranium	0.02	2.40	J	0.10
SWSD002	05/30/04	Total Uranium	0.00	1.50	U	0.10
SWSD002	05/08/05	Total Uranium	0.00	1.30		0.10
SWSD002	11/12/05	Total Uronium	0.74	1.10	U	0.10
SWSD002	05/08/06	Total Uronium	1.10	1.02	U	0.10
SWSD002	10/15/06	Total Uranium	1.10	1.72	11	0.10
SWSD002	05/05/07	Total Uranium	1.20	1.//	U	0.10
SWSD002	05/05/97	Total Uranium	0.93	1.38		0.10
SWSD002	11/02/98	Total Uranium	1.23	1.91		1.00
3WSD002	11/03/98	Total Uranium	2.01	3.12	U	1.00
SWSD002	03/21/99	Total Uranium	1.27	1.87		0.10
3W2D002	00/24/00	I otal Uranium	0.84	1.24		0.09

			RES	ULT		DETECTION
STATION	DATE	ANALYTE	(pCi/g)	(ug/g)	QUALIFIER	LIMIT(pCi/g)
SWSD003	04/10/92	Total Uranium	2 72	4 02		0.00
SWSD003	10/26/92	Total Uranium	2.72	3 10		0.00
SWSD003	04/21/93	Total Uranium	2.10	3.80	ĩ	0.10
SWSD003	10/07/93	Total Uranium	0.81	1 20	J	0.10
SWSD003	05/30/94	Total Uranium	0.61	1.20	U	0.10
SWSD003	05/08/95	Total Uranium	1.20	1.00	U	0.10
SWSD003	11/13/95	Total Uranium	1.29	1.90	U	0.10
SWSD003	05/08/06	Total Uranium	1.27	1.00	U	0.10
SWSD003	10/15/06	Total Uranium	1.02	1.50	U	0.10
SWSD003	05/05/07	Total Uranium	1.10	1.72	U	0.10
SWSD003	06/03/09/	Total Uranium	1.00	1.30		0.10
SWSD003	11/02/08	Total Uranium	1.11	1.72		1.00
SWSD003	05/21/00	Total Uranium	2.13	3.3	U	1.00
SWSD005	03/21/99		1.19	1./6		0.10
SWSD005	04/10/92	Total Uranium	2.94	4.34		0.00
SWSD005	10/26/92	Total Uranium	2.30	3.40		0.10
SWSD005	04/21/93	Total Uranium	2.71	4.00	J	0.10
SWSD005	10/07/93	Total Uranium	0.74	1.10	U	0.10
SWSD005	05/30/94	Total Uranium	1.42	2.10		0.10
SWSD005	05/30/94	Total Uranium	1.56	2.30		0.10
SWSD005	08/31/94	Total Uranium	1.49	2.20	U	0.10
SWSD005	05/08/95	Total Uranium	1.42	2.10	U	0.10
SWSD005	05/08/95	Total Uranium	1.22	1.80	U	0.10
SWSD005	11/13/95	Total Uranium	1.66	2.45	U	0.10
SWSD005	11/13/95	Total Uranium	3.22	4.76		0.10
SWSD005	05/08/96	Total Uranium	1.21	1.79		0.10
SWSD005	10/15/96	Total Uranium	1.79	2.64		0.10
SWSD005	05/05/97	Total Uranium	1.20	1.77		0.10
SWSD005	06/02/98	Total Uranium	1.24	1.92		1.00
SWSD005	11/03/98	Total Uranium	3.97	6.17		1.00
SWSD005	05/21/99	Total Uranium	1.18	1.75		0.10
SWSD005	07/20/00	Total Uranium	1.79	2.65		0.09
SWSD006	05/30/94	Total Uranium	7.04	10.40		0.10
SWSD006	08/31/94	Total Uranium	9.27	13 70		0.10
SWSD006	05/08/95	Total Uranium	1 35	2.00	II	0.10
SWSD006	11/13/95	Total Uranium	7 18	10.61	U	0.10
SWSD006	05/08/96	Total Uranium	2.86	10.01		0.10
SWSD006	10/15/96	Total Uranium	8.86	13.00		0.10
SWSD006	05/05/97	Total Uranium	7 30	10.03		0.10
SWSD006	06/02/98	Total Uranium	8.06	12.51		0.10
SWSD006	11/03/98	Total Uranium	10.05	15.61		1.00
SWSD006	05/21/99	Total Uranium	12 /1	18 22		1.00
SWSD006	07/20/00	Total Uranium	07	10.55		0.10
SWSD007	09/21/04	Total Utaniuni	0.7	1.05		0.09
SWSD007	08/31/94	Total Uranium	2.03	3.00	U	0.10
SWSD007	05/08/95	Total Uranium	6.16	9.10		0.10
SWSD007	11/13/95	Total Uranium	6.11	9.03		0.10
SWSD007	05/08/96	Total Uranium	5.84	8.62		0.10
2W2D007	05/08/96	Total Uranium	3.97	5.86		0.10
2W2D007	10/15/96	Total Uranium	8.88	13.12		0.10
SWSD007	10/15/96	Total Uranium	8.77	12.96		0.10
SWSD007	05/05/97	Total Uranium	5.29	7.82		0.10
SWSD007	05/05/97	Total Uranium	5.04	7.44		0.10
SWSD007	06/02/98	Total Uranium	5.13	8.02		1.00
SWSD007	11/03/98	Total Uranium	5.15	7.99		1.00
SWSD007	05/21/99	Total Uranium	2.00	3.00		0.10
SWSD007	07/20/00	Total Uranium	1.57	2.32		0.10

•

STATION_ID	DATE	ANALYTE NAME	RESULT	REV Q	ERROR	SQL	UNITS
B38W19D	23-JUL-93	RADIUM-226	0.04	UJ	0.08	0.21	PCI/L
B38W19D	16-May-94	RADIUM-226	1.3	U	0.37	0.15	PCI/L
B38W19D	10-MAY-95	RADIUM-226	0.09	UJ	0.1	0.16	PCI/L
B38W19D	16-MAY-96	RADIUM-226	0.19		0.12	0.14	PCI/L
B38W19D	16-MAY-97	RADIUM-226	0.29		0.16	0.16	PCI/L
B38W19D	17-JUN-98	RADIUM-226	0.15	UJ	0.2	0.41	PCI/L
B38W19D	27-May-99	RADIUM-226	0.33	U.J	0.26	0.38	PCI/I
B38W19D	12-JUL-00	RADIUM-226	0.16	U.I	0.13	0.00	PCI/I
					0.70	0.2	1 On L
B38W19S	27-MAY-94	RADIUM-226	0.78		0.28	0.11	PCI/L
B38W19S	17-MAY-95	RADIUM-226	0.11		0.09	0.05	PCI/L
B38W19S	10-MAY-96	RADIUM-226	0.11		0.09	0.09	PCI/L
B38W19S	29-JUN-98	RADIUM-226	0.32	UJ	0.24	0.34	PCI/L
B38W19S	14-May-99	RADIUM-226	0.35	UJ	0.3	0.4	PCI/L
B38W25S	03-010-03		0.34		0.22	0.00	
B38W25S	24-MAY-94	RADIUM-226	0.34		0.22	0.09	PCI/L
B38W259	15_MAV-05	RADIUM-220	0.37		0.19	0.13	
D30W233	15 MAY 06	RADIUM 226	0.10	1.4.4	0.12	0.09	PU/L
D3011233			0.26	0.0	0	0.26	PUI/L
D30W233	05-3010-97	RADIUM-220	0.13	UJ	0.1	0.14	PCI/L
B38W255	01-JUL-98	RADIUM-226	0.13	UJ	0.17	0.34	PCI/L
B38W25S	17-May-99	RADIUM-226	80.0	UJ	0.13	0.27	PCI/L
MISS02B	20-JUL-93	RADIUM-226	0.05	UJ	0.1	0.29	PCI/L
MISS02B	13-MAY-94	RADIUM-226	2	U	0.46	0.14	PCI/L
MISS02B	09-MAY-95	RADIUM-226	0.1		0.09	0.06	PCI/L
MISS02B	14-MAY-96	RADIUM-226	0.11	UJ	0.11	0.2	PCI/I
MISS02B	19-MAY-97	RADIUM-226	0.28		0.16	0.12	PCI/L
MISS02B	10-JUN-98	RADIUM-226	0.35		0.24	0.3	PCI/I
MISS02B	18-May-99	RADIUM-226	0.46		0.31	0.42	PCI/I
MISS02B	23-Jun-00	RADIUM-226	0.25	J	0.33	0.55	PCI/I
				-	0.00	0.00	
MISS05A	27-MAY-94	RADIUM-226	1.33		0.54	0.14	PCI/L
MISS05A	12-MAY-95	RADIUM-226	0.2	UJ	0.18	0.22	PCI/L
MISS05A	10-MAY-96	RADIUM-226	0.04	UJ	0.06	0.16	PCI/L
MISS05A	02-JUN-97	RADIUM-226	0.52		0.27	0.27	PCI/L
MISS05A	29-JUN-98	RADIUM-226	0.23	UJ	0.24	0.42	PCI/L
MISS05A	14-May-99	RADIUM-226	0.68		0.48	0.64	PCI/L
B38W19D	16-MAY-96	RADIUM-228	0 04	11.4	በ በጸ	0.24	PCI/
B38W19D	16-MAY-97	RADIUM-228	0.04 0.08		0.00	0.24	PCI/
B38W10D	17. IUN_98	RADIUM-228	0.00		0.1Z A 19	0.42	PCI/L
B38W/10D	27-May 00		0.04		0.10	0.40	
B38W/10D	12- kit 00	RADUUW-220	0.13	UJ	0.39	0.91	
03011190	12-00-00		0.43	U	0.4	0.06	PUI/L
B38W19S	10-MAY-96	RADIUM-228	0.11	UJ	0.15	0.31	PCI/L
B38W19S	29-JUN-98	RADIUM-228	0.26	UJ	0.27	0.41	PCI/L
B38W19S	14-May-99	RADIUM-228	0.48	UJ	0.15	0.48	PCI/L
B38W/255	15-MAY-96		n 91		0.10	0.10	
B38W/259	05_ INI_07	RADII IM-229	0.21		0.19	0.19	
D30W233	00-0014-97		0.13	00	0.15	0.26	
D30W233	17 May 00		0.3	0J	0.31	0.48	
D30VV233	17-IVIAY-99		0.12	UJ	0.22	0.44	PCI/L
63044722	<i>r-</i> Jui-00	RADIUM-228	0.17	U	0.42	U.71	PCI/L

STATION_ID	DATE	ANALYTE NAME	RESULT	REV Q	ERROR	SQL UNI	TS
		5 4 5 W W 4 4 4 4					
MISS02B	14-MAY-96	RADIUM-228	0.09	UJ	0.12	0.39 PCI/	L
MISS02B	19-MAY-97	RADIUM-228	0.05	UJ	0.14	0.34 PCI/	Ľ
MISS02B	10-JUN-98	RADIUM-228	0.01	UJ	0.12	0.37 PCI/	L
MISS02B	18-May-99	RADIUM-228	0.02	UJ	0.17	0.48 PCI/	L
MISS02B	23-Jun-00	RADIUM-228	0.32	U	0.33	0.55 PCI/	L
MISS05A	10-MAY-96	RADIUM-228	0 14	11.1	0.21		1
MISS05A	02-JUN-97	RADIUM-228	0.67	00	0.44	0.51 PCI/	ц. 1
MISS05A	29-JUN-98	RADIUM-228	0.55		0.42	0.57 PCI/	<u>ل</u> ــــــــــــــــــــــــــــــــــــ
MISS05A	14-May-99	RADIUM-228	0.16	UJ	0.42	0.55 PCI/	Ľ
B38W19D	16-MAY-96	THORIUM-228	0.04	UJ	0.08	0.24 PCI/	L
B38W19D	16-MAY-97	THORIUM-228	0.08	UJ	0.12	0.22 PCI/	L
B38W19D	17-JUN-98	THORIUM-228	0.04	UJ	0.18	0.46 PCI/	L
B38W19D	17-May-99	THORIUM-228	0.13	U	0.39	0.91 PCI/	L
D29W/100			0.44		0.45		
D30W193	20 11 11 09		0.11	01	0.15	0.31 PCI/	L
D30W 193	29-JUN-90		0.26	00	0.27	0.41 PCI/	L.
B38W192	14-May-99	THORIUM-228	0.48	U	0.15	0.48 PCI/	L
B38W25S	15-MAY-96	THORIUM-228	0.21		0 19	0 19 PCI/	1
B38W25S	15-MAY-96	THORIUM-228	0.21	U.J	0.19	0.33 PCI/	1
B38W25S	05-JUN-97	THORIUM-228	0.13	111	0.15		1
B38W25S	01-111-98	THORIUM-228	0.13	00	0.15	0.20 FCI/	۱. ۱
B38\//255	17-Max-90		0.3	03	0.31	0.48 PCI/	L ,
D30W255	07 10 00	THORIUM-220	0.12	01	0.22	0.44 PCI/	L
D30VV233	07-Jui-00	I HORIUM-228	0.46	J	0.32	0.38 PCI/	L
MISS02B	14-MAY-96	THORIUM-228	0.09	UJ	0.12	0.39 PCI/	L
MISS02B	19-MAY-97	THORIUM-228	0.05	UJ	0.14	0.34 PCI/	L
MISS02B	10-JUN-98	THORIUM-228	0.01	UJ	0.12	0.37 PCI/	1
MISS02B	18-May-99	THORIUM-228	0.02	Ū.J	0.17	0.48 PCI/	ī
MISS02B	23-Jun-00	THORIUM-228	0.04	Ŭ	0.09	0.2 PC//	- I
				-	0.00	0.2 / 0./	-
MISS05A	10-MAY-96	THORIUM-228	0.14	UJ	0.21	0.46 PCI/	L
MISS05A	02-JUN-97	THORIUM-228	0.67		0.44	0.51 PCI/	L
MISS05A	29-JUN-98	THORIUM-228	0.55		0.42	0.53 PCI/	L
MISS05A	14-May-99	THORIUM-228	0.16	UJ	0.31	0.66 PCI/	L
0000000						·	
B38W19D	10-MAY-95	THORIUM-230	0.37	U	0.23	0.09 PCI/	L
B38W19D	16-MAY-96	THORIUM-230	0.24		0.2	0.11 PCI/	L
B38W19D	16-MAY-97	THORIUM-230	0.5	U	0.3	0.25 PCI/	L
B38W19D	17-JUN-98	THORIUM-230	0.17	UJ	0.24	0.42 PCI/	L
B38W19D	27-May-99	THORIUM-230	0.67	UJ	0.57	0.76 PCI/	L
B38W19D	12-Jul-00	THORIUM-230	0.11	UJ	0.12	0.18 PCI/	L
B38W19S	17-MAY-95	THORIUM-230	0 35	11	0.25		
B38W19S	10-MAY-96	THORIUM-230	2.4		1.02	0.16 FC//	L_ 1
B38W/109	20_ II IN 02		J.4	5	1.03	0.14 PCI/I	L.
D30W 193	20 May 00		0.17	00	0.21	0.34 PCI/I	L
D3044182	29-may-99	THURIUM-230	0.07	UJ	0.17	0.4 PCI/I	L
B38W25S	15-MAY-95	THORIUM-230	0.14	UJ	0.16	0.21 PCI/I	L
B38W25S	15-MAY-96	THORIUM-230	0.5		0.3	0.19 PCI/I	L
B38W25S	05-JUN-97	THORIUM-230	0.44	υ	0.29	0.26 PCI/	L
B38W25S	01-JUL-98	THORIUM-230	0.14	Ū.I	0.2	0.33 PCI/	-
B38W25S	17-Mav-99	THORIUM-230	0.26	<u> </u>	0.26	0.36 PCI/	-
B38W25S	07-Jul-00	THORIUM-230	0.38	.1	0.20	0.28 PCI/	-

STATION_ID	DATE	ANALYTE NAME	RESULT	REV Q	ERROR	SQL	UNITS
MISS02B	09-MAY-95		0.08	111	0 4 2	0.40	
MISS02B	14-MAY-96	THORIUM-230	0.00	03	0.12	0.19	
MISSO2D	10 MAV 07		0.30		0.26	0.19	PCI/L
MISSUZD	10 1110 09		0.81		0.4	0.21	PCI/L
MISSUZB	10-3010-98	THORIUM-230	0.18	ÛĴ	0.22	0.32	PCI/L
MISSUZB	18-iviay-99	THORIUM-230	0.59		0.4	0.43	PCI/L
MISS02B	23-Jun-00	THORIUM-230	0.4	J	0.25	0.27	PCI/L
MISS05A	12-MAY-95	THORIUM-230	0.43	U	0.28	0.22	PCI/L
MISS05A	10-MAY-96	THORIUM-230	1.7	J	0.77	0.33	PCI/I
MISS05A	02-JUN-97	THORIUM-230	0.92	-	0.52	0.43	PCI/
MISS05A	29-JUN-98	THORIUM-230	0.28	U.I	0.3	0.40	
MISS05A	14-May-99	THORIUM-230	0.69	00	0.48	0.44	PCI/L
MISS07B	11-May-95	THORIUM-230	0.34	U	0.22	0.09	PCI/L
MISS07B	16-May-96	THORIUM-230	0.26	U	0.22	0.26	PCI/L
MISS07B	16-MAY-97	THORIUM-230	0.44	U	0.27	0.22	PCI/L
MISS07B	27-May-99	THORIUM-230	0.39	U	0.88	0.49	PCI/L
MISS07B	12-Jul-00	THORIUM-230	0.37	J	0.24	0.21	PCI/L
B38W/10D	23 11 11 02		0.44		0.00	0.40	5014
DOON IOD	23-JUL-93	THORIUM-232	0.14	UJ	0.29	0.43	PCI/L
B36W I9D	10-MAY-94	THORIUM-232	0.04	UJ	0.07	0.1	PCI/L
B38W19D	10-MAY-95	THORIUM-232	0.09	UJ		0.09	PCI/L
B38W19D	16-MAY-96	THORIUM-232	0.19	UJ	0	0.19	PCI/L
B38W19D	16-MAY-97	THORIUM-232	0.29	U	0.22	0.22	PCI/L
B38W19D	17-JUN-98	THORIUM-232	0.15	UJ	0.2	0.31	PCI/L
B38W19D	27-May-99	THORIUM-232	0.22	UJ	0.32	0.54	PCI/L
B38W19D	12-Jul-00	THORIUM-232	0.01	U	0.05	0.13	PCI/L
B38W19S	27-MAY-94	THORIUM-232	0.04	U.J	0.09	0 12	PCVI
B38W19S	17-MAY-95	THORIUM-232	-0.01		0.00	0.12	
B38W19S	10-MAY-96	THORIUM-232	0.24	111	0.02	0.21	
B38W19S	29-JUN-98	THORIUM-232	0.24	111	0.11	0.24	
B38W19S	14-May-99	THORIUM-232	0.03	00	0.11	0.32	
00000100	14-may-00	1101000-202	0.02	05	0.1	0.29	PCI/L
B38W25S	03-AUG-93	THORIUM-232	0.24		0.16	0.14	PCI/L
B38W25S	24-MAY-94	THORIUM-232	0.13	UJ	0	0.13	PCI/I
B38W25S	15-MAY-95	THORIUM-232	0.06	UJ	0 11	0.2	PCI/I
B38W25S	15-MAY-96	THORIUM-232	0.08	U.J	0.12	0.19	PCI/I
B38W25S	05-JUN-97	THORIUM-232	0.17		0.12	0.10	
B38W25S	01-101-98	THORIUM-232	0.04		0.10	0.2	
B38W25S	17-May-99	THORIUM-232	0.04		0.11	0.0	
B38W25S	07-Jul-00	THORIUM-232	0.13	11	0.10	0.3	
20011200			0.15	0	0.17	0.20	
MISS02B	20-JUL-93	THORIUM-232	0	UJ	0	0.2	PCI/L
MISS02B	09-MAY-95	THORIUM-232	0.07	UJ	0.12	0.22	PCI/L
MISS02B	14-MAY-96	THORIUM-232	0.25	UJ	0	0.25	PCI/L
MISS02B	19-MAY-97	THORIUM-232	0.14	UJ	0.16	0.12	PCI/L
MISS02B	10-JUN-98	THORIUM-232	0.05	ŲJ	0.11	0.14	PCI/L
MISS02B	18-May-99	THORIUM-232	0.04	UJ	0.11	0.3	PCI/L
MISS02B	23-Jun-00	THORIUM-232	0.02	U	0.06	0.14	PCI/L

STATION_ID	DATE	ANALYTE NAME	RESULT REV Q	ERROR	SQL UNITS
MICCOEA	27 MAX 04		0.4.1	0.00	0.04 50/4
MISSUSA	12 MAY 05		0.4 J	0.29	0.21 PCI/L
MISSUSA	12-10141-95	THORIUM-232	0.23	0.2	0.18 PCI/L
MISSUSA	10-IVIA 1-90		0.21 UJ	0.25	0.19 PCI/L
MISSUSA	02-JUN-97	THORIUM-232	0.13 UJ	0.19	0.51 PCI/L
MISSU5A	29-JUN-98	THORIUM-232	0.04 UJ	0.17	0.48 PCI/L
MISSUSA	14-May-99	THORIUM-232	0.17 UJ	0.26	0.47_PCI/L
B38W19D	23-JUL-93	TOTAL URANIUM	0.36	0.04	0.03.116/
B38W19D	16-MAY-94		0.35	0.04	
B38W19D	10-MAY-95	TOTAL URANIUM	0.00	0.04	0.03 UG/L
B38W/10D	16-MAY-96		1.23	0.03	
B38W/19D	16-MAV-97	TOTAL URANIUM	0.2	0.03	
B38W/10D	17- IFIN-08	TOTAL UPANIUM	0.3	0.01	
B39\A/10D	27-May-00		0.03 00	0 00	0.03 UG/L
B38W/19D	12- Jul 00		0.20 UJ 1 92	0.02	0.03 UG/L
D2000 19D	12-30-00	TOTAL URANIUM	1.02		UG/L
B38W19S	27-MAY-94	TOTAL URANIUM	0.38	0.04	0.03 UG/I
B38W19S	17-MAY-95	TOTAL URANIUM	1.4	0.15	0.03 UG/I
B38W19S	10-MAY-96	TOTAL URANIUM	0.58	0.01	0.03 UG/L
B38W19S	29-JUN-98	TOTAL URANIUM	0.03 UJ	0	0.03 UG/L
B38W19S	14-May-99	TOTAL URANIUM	0.02 UJ	0.01	0.03 UG/I
	•				0.00 00.2
B38W25S	03-AUG-93	TOTAL URANIUM	0.5	0.05	0.03 UG/L
B38W25S	24-MAY-94	TOTAL URANIUM	0.06	0.01	0.03 UG/L
B38W25S	15-MAY-95	TOTAL URANIUM	0.09	0.01	0.03 UG/L
B38W25S	15-MAY-96	TOTAL URANIUM	0.45	0.01	0.03 UG/L
B38W25S	05-JUN-97	TOTAL URANIUM	0.5	0.01	0.03 UG/L
B38W25S	01-JUL-98	TOTAL URANIUM	0.03 UJ	0	0.03 UG/L
B38W25S	17-May-99	TOTAL URANIUM	0.17 UJ	0.01	0.03 UG/L
B38W25S	07-Jul-00	TOTAL URANIUM	0.41		UG/L
MICCOOR	20 11 02	TOTAL LIDANUUMA	0.00		0.00.000
MISSUZD	20-JUL-93	TOTAL URANIUM	0.33	0.04	0.03 UG/L
MISSUZD	13-IVIA 1-94		0.29	0.03	0.03 UG/L
MISSU2B	14 MAX 06		0.29	0.03	0.03 UG/L
MISSUZE	14-IVIA 1-90		0.68	0.02	0.03 UG/L
MISSUZD	19-IVIA 1-97		0.28	0.02	0.03 UG/L
MISSUZB	10-JUN-98		0.03 00	0	0.03 UG/L
MISSUZB	10-May-99		0.12	0.01	0.03 UG/L
MISS02B	23-Jun-00	TOTAL URANIUM	0.48		UG/L
MISS05A	27-MAY-94	TOTAL URANIUM	86.8	10.3	0.03 LIG/
MISS05A	12-MAY-95	TOTAL URANIUM	41.2	4.8	0.03 UG/L
MISS05A	10-MAY-96	TOTAL URANIUM	140	4.0 8.6	0.03 UG/L
MISS05A	15-OCT-96	TOTAL URANIUM	139.05	8 95	0.03 UG/L
MISS05A	02-JUN-97	TOTAL URANIUM	96.15	6.03	0.03 UG/
MISS05A	29-JUN-98	TOTAL URANIUM	181 71	12 18	0.03 UG/L
MISS05A	14-May-99	TOTAL URANIUM	110.46	2.10	
			110.10	2.01	0.00 00/L

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev
NICCORA	22 Jun 00	PEC		260		
MISSUZA	22-JUN-00	REG		300		
B38W17B	19-Jun-00	REG	ALUMINUM	40.6		
B38W15D	06-JUL-98	REG	ANTIMONY	0.7		
B38W15D	26-Jun-00	REG	ANTIMONY	2.1		
B38W15S	06-JUL-98	REG	ANTIMONY	0.75		
B38W/17A	28, 1111 -93	REG		445	-	
B38W17A	02-JUL-98	REG	ANTIMONY	1	-	
B38W17A	19-Jun-00	REG	ANTIMONY	37.6		
B38W19S	29-JUN-98	REG	ANTIMONY	0.65		
B2914/24D	02-1111-08	PEG		0.6		
D3011240	02-302-38	REG		0.0		
B36VV245	02-JUL-98	REG		0.7		
B38W25D	12-MAY-95	REG	ANTIMONY	2.9	=	
B38W25D	10-MAT-97	REG		2		
B369925D	01-301-98	REG	ANTIMONT	0.65		
B38W255	15-MAY-95	REG	ANTIMONY	1.5	=	
B3877255	01-JUL-98	REG		U.6		
MISS02A	10-MAY-95	REG	ANTIMONY	2.4	Ŧ	
MISSUZA	10-MA1-9/	DUP	ANTIMONY	5.1		
MISSUZA	18-May-90			3.2		
NII 0005A	10-May-99		ANTIMONT	3.9	_	
MISSOSA	27-MAT-94	REG	ANTIMONY	36.4	=	
MISSOSA	29- ILIN-98	REG		1.0	-	
MISS05A	14-May-99	REG	ANTIMONY	0.7		
MISSORA	24-MAY-94	PEG		34.9	-	
MISS06A	01-JUL-98	REG	ANTIMONY	18	-	
MISS06A	17-May-99	REG	ANTIMONY	0.81		
MISS07B	18-MAY-94	REG		25.7	=	
MISS07B	16-JUN-98	REG	ARSENIC	57.3		
MISS07B	27-May-99	REG	ARSENIC	49,9		
MISS07B	12-Jul-00	REG	ARSENIC	52.6		
B38W02D	30-JUN-98	REG	ARSENIC	0.75		
B38W02D	20-May-99	REG	ARSENIC	0.61		
B38W14S	04-4UG-93	REG	ARSENIC	21	B	
B38W14S	04-JUN-97	REG	ARSENIC	4.7	0	•
B38W14S	17-May-99	REG	ARSENIC	0.52		
B38W15D	02-AUG-93	REG	ARSENIC	6.8	в	
B38W15D	26-MAY-94	REG	ARSENIC	2.6	=	
B38W15D	13-MAY-96	REG	ARSENIC	5.4	=	
B38W15D	03-JUN-97	REG	ARSENIC	5.7		
B38W15D	06-JUL-98	REG	ARSENIC	7.5		
B38W15D	26-Jun-00	REG	ARSENIC	11.1		
B38W15S	02-AUG-93	REG	ARSENIC	3.9	в	
B38W15S	19-MAY-95	REG	ARSENIC	4.9	=	
B38W15S	19-MAY-95	DUP	ARSENIC	4.8	=	
B38W15S	03-JUN-97	REG	ARSENIC	2.6		
B38W15S	06-JUL-98	REG	ARSENIC	3.1		
B38W17A	28-JUL-93	REG	ARSENIC	8.9	в	
B38W17A	02-JUL-98	REG	ARSENIC	2.9		
B38W17B	03-JUN-97	REG	ARSENIC	1.8		
B38W17B	02-JUL-98	REG	ARSENIC	1.3		
B38W17B	13-May-99	REG	ARSENIC	0.76		
338W18D	21-JUL-93	REG	ARSENIC	2.5	в	
B38W18D	08-JUN-98	REG	ARSENIC	1.7		
B38W18D	20-May-99	REG	ARSENIC	2.3		
B38W18D	06-Jul-00	REG	ARSENIC	8.2		•
338W19D	23-JUL-93	REG	ARSENIC	93	=	
338W19D	16-MAY-94	REG	ARSENIC	68.7	=	
338W19D	10-MAY-95	REG	ARSENIC	48.8	=	
338W19D	16-MAY-96	REG	ARSENIC	50.5	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W19D	16-MAY-97	REG	ARSENIC	59.5		
B38W19D	17-JUN-98	REG	ARSENIC	60.8		
B38W19D	27-May-99	REG	ARSENIC	55.1	=	J
B38W19D	12-Jul-00	REG	ARSENIC	70.3		
B38W19S	27-MAY-94	REG	ARSENIC	8.6	=	
B38W19S	10-MAY-96	REG	ARSENIC	5.4	=	
B38W19S	29-JUN-98	REG	ARSENIC	18.1		
B38W19S	14-May-99	REG	ARSENIC	17.8		
B38W24S	02-JUL-98	REG	ARSENIC	1.8		
B38W24D	22-Jun-00	REG	ARSENIC	2.1		J
B38W/25D	15-MAY-97	REG	ARSENIC	20		· · · · · · · · · · · · · · · · · · ·
B38W25D	01-101-98	REG	ARSENIC	2.3		
D2914/255	03 4110 93	BEC		2.0		
D3044233	15 MAY 95	REG	ARSENIC	3.9	в	J
B30W255	05. ILIN.07	DUP	ARSENIC	2.0	-	
B38W25S	01-111-98	REG	ARSENIC	1.3		
B38W25S	17-May-99	REG	ARSENIC	2.0		
B38W25S	07-Jul-00	REG	ARSENIC	13.4		
MISSO1AA	31 111 02	REC	ARGENIC			
MISSOIAA	18-MAV-05	REG	ARSENIC	2.0	в	J
MISSO1AA	23-MAV-97	REG	ARSENIC	10.7	-	
MISSO1AA	18- II IN-98	REG	ARGENIC	4.4		
MISS01AA	12-May-99	REG	ARSENIC	5.2		
MISSOAR	21 11 102		ARGENIC	0.5		
MISSUIB	21-JUL-93	REG	ARSENIC	3.0	в	
MISSOID	10-MAV.05	REG	ARSENIC	3.0	-	
MISS01B	18- II IN-98	REG	ARGENIC	2.7	-	J
MISS01B	25-May-99	REG	ARSENIC	2.1		1
MISSON	20 11 02	REC	ARGENIC	1.1		
MISSUZA	12 MAY 04	REG	ARSENIC	2840	=	
MISS02A	10-MAY-05	REG	ARSENIC	6000	-	J
MISS02A	16-MAY-96	PEG	ARGENIC	6360	-	J
MISS02A	15-MAY-97	REG	ARSENIC	5660	-	
MISS02A	15-MAY-97	DUP	ARSENIC	5580		
MISS02A	11-JUN-98	REG	ARSENIC	4310		
MISS02A	11-JUN-98	DUP	ARSENIC	5150		
MISS02A	18-May-99	DUP	ARSENIC	6350		
MISS02A	22-Jun-00	REG	ARSENIC	3520		
MISS05A	27-MAY-94	REG	ARSENIC	3.5		
MISS05A	12-MAY-95	REG	ARSENIC	3.8	=	
MISS05A	02-JUN-97	REG	ARSENIC	16.6		
MISS05A	29-JUN-98	REG	ARSENIC	16.4		
MISS05A	14-May-99	REG	ARSENIC	2		
MISS05B	23-JUL-93	REG	ARSENIC	16.6	=	
MISS05B	17-MAY-94	REG	ARSENIC	11.9	=	.1
MISS05B	11-MAY-95	REG	ARSENIC	10.9	=	
MISS05B	16-MAY-96	REG	ARSENIC	10.6	=	-
MISS05B	14-MAY-97	REG	ARSENIC	10.1		I,
MISS05B	30-JUN-98	REG	ARSENIC	9.9		-
MISS05B	11-Jul-00	REG	ARSENIC	20.5		
MISS06A	03-JUN-97	REG	ARSENIC	3.4		
MISS06A	01-JUL-98	REG	ARSENIC	5.4		
MISS06A	17-May-99	REG	ARSENIC	2.2		
MISS06A	10-Jul-00	REG	ARSENIC	4		J
D2914/046	22. MAY 04	DEC	DADUMA	47.0	_	·····
B3000013	23-11/04	REG	BARIUM	17.8	=	
030W013	21-1WAT-80	REG	BARIUM	13.1	=	
B381/010	04. 11 INL 07	REG	BARIUM BADILIA	14.4	=	
B38W/015	07.111.08	PEC	BARIUM	10.0		
D000013	07-002-00	REG	DARIUM	10.3		
B38W02D	27-JUL-93	REG	BARIUM	385	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W02D	19-MAY-94	REG	BARIUM	342	=	
B38W02D	20-MAY-95	REG	BARIUM	298	=	
B38W02D	17-MAY-96	REG	BARIUM	349	=	
B38W02D	04-JUN-97	REG	BARIUM	391		
B38W02D	30-JUN-98	REG	BARIUM	364		
B38W02D	20-May-99	REG	BARIUM	342		
B38W02D	13-Jul-00	REG	BARIUM	299		
MISS07B	16-JUN-98	REG	BARIUM	28.1	·	
MISS07B	27-May-99	REG	BARIUM	21.4		
B38W14D	04-AUG-93	REG	BARIUM	106	В	
B38W14D	20-MAY-95	REG	BARIUM	73.6	=	
B38W14D	17-MAY-96	REG	BARIUM	97.3	=	
B38W14D	04-JUN-97	REG	BARIUM	113		
838W14D	07-JUL-98	REG	BARIUM	111		
B38W14D	07-JUL-98	DUP	BARIUM	113		
B38W14D	17-May-99	DUP	BARIUM	116		
B38W14D	05-Jul-00	REG	BARIUM	105		
B38W14S	04-AUG-93	REG	BARIUM	106	в	
B38W14S	20-MAY-95	REG	BARIUM	61.6	=	
B38W14S	17-MAY-96	REG	BARIUM	85.2	=	
B38W14S	17-MAY-96	DUP	BARIUM	77.8	=	
B38W14S	04-JUN-97	REG	BARIUM	90		
B38W14S	07-JUL-98	REG	BARIUM	108		
B38W14S	17-May-99	REG	BARIUM	86.6		
B38W14S	05-Jul-00	REG	BARIUM	91.3		
B38W15D	02-41/6-93	PEG	BADILIM	32.4	P	
B38W15D	26-MAY-94	REG	BARIUM	30.3	=	
B38W/15D	19-MAY-95	REG	BARIUM	22.2	-	
B38W/15D	13-MAY-96	PEG	BADILIM	22.5	-	
B38W/15D	03. II IN-97	REG	BADILIM	27.5	-	
B38W15D	06-111-98	REG	BARILIM	27.5		
B38W15D	26-Jun-00	REG	BARIUM	30.2		
B38W15S	02-AUG-93	REG	BARILIM	50	B	
B38W15S	26-MAY-94	REG	BARILIM	34	-	
B38W15S	19-MAY-95	REG	BARILIM	50.9	-	
B38W15S	19-MAY-95	DUP	BARIUM	46.1	=	
B38W15S	13-MAY-96	REG	BARIUM	35.7	-	
B38W15S	03-JUN-97	REG	BARIUM	32.2	-	
B38W15S	06-101-98	REG	BARILIM	32.2		
B38W15S	26-Jun-00	REG	BARIUM	37.6		
B38W/17A	28. 11 11 - 93	PEG	BARILIM	200	-	
B38W17A	25-MAY-94	REG	BARIUM	299	-	
B3814/17A	20-MAY-95	PEC	BARIUM	40.9	-	
B38W17A	13-MAY-96	REG	BARILIM	50.4 60 3	-	
B38W17A	03-JUN-97	REG	BARIUM	00.5 AQ 2	-	
R38W174	02-111-98	REG	BARILIM	49.5 78.1		
B38W17A	13-May-99	PEG	RARIIM	10.1		
B38W17A	19-Jun-00	REG	BARILIM	94.1		
B28W/17B	20-1111-03	PEC	BADILIM	64.0		
B38W17B	25-MAY-94	REG	BARILIM	89.4	=	
B38W17B	20-MAY-95	REG	BARILIM	03.4 71 R	-	
B38W17R	13-MAY-96	REG	BARIEIM	0.8.3	-	
B38W17B	03-JUN-97	REG	BARILIM	06.5	-	
R38W/17R	02-111-98	PEC	BARILIM	71 E		
B38W/17P	13.Mav.99	PEC	BADILIM	/ I.U PO 1		
B38W17B	19. lun-00	PEG	BARIUM	03.1 60.4		
DOMINO	04 111 00		DANIUM	09.4		
B38W18D	21-JUL-93	REG	BARIUM	13.1	в	
B38W18D	13-MAY-94	REG	BARIUM	14.7	=	
B38W18D	15-MAY-95	REG	BARIUM	22.7	=	
B38W18D	14-MAY-96	REG	BARIUM	22.1	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W18D	09-MAY-97	REG	BARIUM	17.2		
B38W18D	08-JUN-98	REG	BARIUM	18.8		
B38W18D	20-May-99	REG	BARIUM	20.8		
B38W18D	06-Jul-00	REG	BARIUM	22.9		
B38W/19D	16-MAY-94	REG	BARIUM	30.8	=	
B38W19D	10-MAY-95	REG	BARILIM	22.4	=	
D30W 19D	16-MAY-96	REG	BARILIM	29.7	-	
D30W 19D	16-MAY-97	REG	BARIUM	29.7	-	
B30W I9D	17 11 10 08	REG	BADILIM	20.0		
B36W I9D	22 111.03	REG	BARIUM	22.4	•	
B38W19D	23-301-93	REG	DARIUM	23.9	D	
B38W19D	23-May-99	REG	BARIUM	28.0		
B38W19D	12-JUI-00	REG	BARIUM	20,9		
B38W19S	27-MAY-94	REG	BARIUM	50.2	=	
B38W19S	17-MAY-95	REG	BARIUM	47.5	=	
B38W19S	10-MAY-96	REG	BARIUM	43.1	=	
B38W19S	29-JUN-98	REG	BARIUM	42.7		
B38W19S	14-May-99	REG	BARIUM	43.2		
B38W24D	09-AUG-93	REG	BARIUM	49.6	в	
B38W24D	18-May-94	REG	BARIUM	41.2	=	
B38W24D	17-MAY-95	REG	BARIUM	24.6	=	
B38W24D	09-MAY-96	REG	BARIUM	56.2	=	
B38W24D	02-JUN-97	REG	BARIUM	50.6		
B38W24D	02-JUL-98	REG	BARIUM	96.5		
B38W24D	13-May-99	REG	BARIUM	45.6		
B38W24D	22-Jun-00	REG	BARIUM	240		J
P2914/245	05-4110-93	PEG	BARILIM	45	8	
D30W243	25-MAY-94	REG	BARILIM	46	=	
D30VV243	17-MAY-95	REG	BARILIM	45.6	_	
D30VV243	09.MAY.96	PEG	BARIUM	40.0	-	
D30VV245	02 111.07	REG	BARIUM	39.4 43.0	-	
D30VV243	02-0014-97	PEC	BADILIM	43.3		
DJOVV24J	02-001-90		BARIUM	40.0		
D30VV243	21- Jun-00	PEG	BARIUM	36.2		
B3677243	21-301-00	REG	BARIOM			
B38W25D	03-AUG-93	REG	BARIUM	49	В	
B38W25D	18-May-94	REG	BARIUM	51.7	=	
B38W25D	12-MAY-95	REG	BARIUM	62.7	=	
B38W25D	15-MAY-96	REG	BARIUM	54.5	Ξ	
B38W25D	15-MAY-97	REG	BARIUM	48.3		
B38W25D	01-JUL-98	REG	BARIUM	48.1		
B38W25D	26-May-99	REG	BARIUM	58.4		
B38W25D	07-Jul-00	REG	BARIUM	61.4		
B38W25S	03-AUG-93	REG	BARIUM	126	в	
B38W25S	24-MAY-94	REG	BARIUM	50.5	=	
B38W25S	15-MAY-95	REG	BARIUM	68.5	=	
B38W25S	15-MAY-95	DUP	BARIUM	43.1	=	
B38W25S	15-MAY-96	REG	BARIUM	39	=	
B38W25S	15-MAY-96	DUP	BARIUM	39.4	=	
B38W25S	05-JUN-97	REG	BARIUM	47		
B38W25S	01-JUL-98	REG	BARIUM	112		
B38W25S	17-May-99	REG	BARIUM	73.6		
B38W25S	07-Jul-00	REG	BARIUM	166		
MISS01AA	31-JUL-93	REG	BARIUM	159	в	
MISS01AA	23-MAY-94	REG	BARIUM	19.5	=	
MISS01AA	18-MAY-95	REG	BARIUM	10.6	=	
MISS01AA	09-MAY-96	REG	BARIUM	14.4	=	
MISS01AA	23-MAY-97	REG	BARIUM	7		
MISS01AA	18-JUN-98	REG	BARIUM	8.1		
MISS01AA	12-May-99	REG	BARIUM	8.7		
MISS01AA	20-Jun-00	REG	BARIUM	6.9		
MISSO1P	21.11.11.03	PEC	BARILIM	72.0	R	
MISCOID	21-002-00	DEC	RADIUM	12.3	R	
NIGGOID	18.MAY 04	DEC		09.0 80.0	-	
MISSUID	10-10-4	AEG.	DARION	02.3	-	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS01B	10-MAY-95	REG	BARIUM	66.9	=	
MISS01B	15-MAY-96	REG	BARIUM	98.3	=	
MISS01B	18-JUN-98	REG	BARIUM	80		
MISS01B	25-May-99	REG	BARIUM	73.5		
MISS01B	20-Jun-00	REG	BARIUM	66.7		
MISS02A	20-JUL-93	REG	BARIUM	10	=	
MISS02A	12-MAY-94	REG	BARIUM	10.1	=	J
MISS02A	10-MAY-95	REG	BARIUM	12	=	-
MISS02A	16-MAY-96	REG	BARIUM	9.5	=	
MISS02A	15-MAY-97	DUP	BARIUM	84		
MISS02A	11-JUN-98	DUP	BARIUM	6.2		
MISS02A	18-May-99	DUP	BARIUM	21		
MISS02A	22-Jun-00	REG	BARIUM	8.6		
MISSO2R	20-1111-93	REG	BARILIM	13.3	_	
MISSO2B	13-MAY-94	REG	BARILIM	7.8	_	
MISS02B	09-MAY-95	REG	BARIUM	18.1	=	
MISS02B	14-MAY-96	REG	BARIUM	9.7	=	
MISSO2B	19-MAY-97	REG	BARIUM	9		
MISS02B	10- II IN-98	REG	BARILIM	10		
MISSO2B	18-May-99	REG	BARILIM	11		
MISS02B	23- Jun-00	REG	BARIUM	11.4		
MICCOLD	27 MAY 04	PEC	DADILINA	29.2	-	
MISSUSA	27-IVIA 1-94	REG	DARIUM	20.2	-	
MISSUSA	12-IVIA 1-95	REG	BARIUM	37.0	-	
MISSUSA	02 1111 97	REG	BARIUM		-	
MISSUSA	20. 11 10 08	PEC	BARIUM	19.4		
MISSUSA	23-JUN-30	PEG	BARILIM	20.3		
MISSUSA	14-10/ay-33	REG	BARIUM	20.3		
MISS05B	23-JUL-93	REG	BARIUM	52.2	в	
MISS05B	17-MAY-94	REG	BARIUM	89.9	=	
MISS05B	11-MAY-95	REG	BARIUM	128	=	
MISS05B	16-MAY-96	REG	BARIUM	38.3	=	
MISSOSB	14-MAY-97	REG	BARIUM	37.9		
MISSUSB	30-1010-98	REG	BARIUM	20.3		
MISS056	11-30-00	REG	DARIUM	41.0		
MISS06A	04-AUG-93	REG	BARIUM	80.3	В	
MISS06A	24-MAY-94	REG	BARIUM	44.3	=	
MISS06A	16-MAY-95	REG	BARIUM	122	=	
MISS06A	10-MAY-96	REG	BARIUM	39.4	-	
MISSOBA	03-JUN-97	REG	BARIUM	57.9		
MISSUBA	01-JUL-98	REG	BARIUM	40.1		
MISSUBA	17-May-99	REG	BARIUM	40 51 A		
MISSUBA	12-10-00	REG	BARUM	20		
1100070	12-001-00			20		
B38W01S	28-JUL-93	REG	BERYLLIUM	4	в	
B38W01S	23-MAY-94	REG	BERYLLIUM	1.1	=	
B38W01S	21-MAY-95	REG	BERYLLIUM	3.1	=	
B38W01S	17-MAY-96	REG	BERYLLIUM	2.3	=	
B38W01S	04-JUN-97	REG	BERYLLIUM	2.7		
B38W01S	07-JUL-98	REG	BERYLLIUM	1.9		
B38W02D	04-JUN-97	REG	BERYLLIUM	0.24		
MISS07B	16-JUN-98	REG	BERYLLIUM	0.14		
B38W14D	04-JUN-97	REG	BERYLLIUM	0.2		
B38W14S	04-JUN-97	REG	BERYLLIUM	0.28		
B38W15D	26-MAY-94	REG	BERYLLIUM	0.5	=	
B38W15D	03-JUN-97	REG	BERYLLIUM	0.24		
B38W15S	03-JUN-97	REG	BERYLLIUM	0.2		
B38W/17A	28-11/1-93	PEC	BERYLLIUM	2.2	R	
D30MA IVA	20-306-93	REG	DERILLIUM	4.1	D	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W17A	03-JUN-97	REG	BERYLLIUM	0.2		
B38W17A	19-Jun-00	REG	BERYLLIUM	0.21		J
D301117R	03-111N-97	REG	BERYLLIUM	0.26		
B38W18D	15-MAY-95	REG	BERYLLIUM	1.1	=	
B38W/18D	14-MAY-96	REG	BERYLLIUM	0.84	=	
B38W18D	09-MAY-97	REG	BERYLLIUM	0.46		
B38W18D	08-JUN-98	REG	BERYLLIUM	0.86		
B38W18D	20-May-99	DUP	BERYLLIUM	0.99		
B38W18D	06-Jul-00	REG	BERYLLIUM	0.52		J
B38W24D	02-JUN-97	REG	BERYLLIUM	0.52		
B38W24D	02-JUL-98	REG	BERYLLIUM	0.82		
B38W24D	13-May-99	REG	BERYLLIUM	0.42		
B38W24S	25-MAY-94	REG	BERYLLIUM	1.5	=	
B38W24S	17-MAY-95	REG	BERYLLIUM	0.77	=	
B38W24S	09-MAY-96	REG	BERYLLIUM	2	=	
B38W24S	02-JUN-97	REG	BERYLLIUM	6.3		
B38W24S	02-JUL-98	REG	BERYLLIUM	4.5		
B38W24S	13-May-99	REG	BERYLLIUM	1.1		
B38W24S	21-Jun-00	REG	BERYLLIUM	1.1		
B38W25S	03-AUG-93	REG	BERYLLIUM	1.1	в	
B38W25S	05-JUN-97	REG	BERYLLIUM	0.3		
MISS02B	20-JUL-93	REG	BERYLLIUM	1.8	=	
MISS02B	14-MAY-96	REG	BERYLLIUM	0.68	=	
MISS02B	19-MAY-97	REG	BERYLLIUM	0.66		
MISS02B	10-JUN-98	REG	BERYLLIUM	0.74		
MISS02B	18-May-99	REG	BERYLLIUM	0.84		
MISS02B	23-Jun-00	REG	BERYLLIUM	0.57		J
MISS05A	02-JUN-97	REG	BERYLLIUM	0.48		
MISS05A	29-JUN-98	REG	BERYLLIUM	0.14		
B38W/015	28-111-93	REG	BORON	516	=	
B38W01S	23-MAY-94	REG	BORON	496	=	
B38W01S	21-MAY-95	REG	BORON	444	=	
B38W01S	04-JUN-97	REG	BORON	373		
B38W01S	07-JUL-98	REG	BORON	270		
B38W02D	20-MAY-95	REG	BORON	125	=	
B38W02D	04-JUN-97	REG	BORON	23.3		
B38W02D	30-JUN-98	REG	BORON	24.8		
B38W02D	20-May-99	REG	BORON	24.2		
B38W14D	04-AUG-93	REG	BORON	63.9	=	
B38W14D	20-MAY-95	REG	BORON	108	=	
B38W14D	04-JUN-97	REG	BORON	49.8		
B38W14D	07-JUL-98	DUP	BORON	49.8		
B38W14D	17-May-99	REG	BORON	47.5		
B38W14S	04-AUG-93	REG	BORON	68	=	
B38W14S	20-MAY-95	REG	BORON	142	=	
B38W14S	04-JUN-97	REG	BORON	40.6		
B38W14S	07-JUL-98	REG	BORON	39.3		
B38W14S	17-May-99	REG	BORÓN	38.6		
B38W15D	02-AUG-93	REG	BORON	297	=	
B38W15D	26-MAY-94	REG	BORON	520	=	
B38W15D	19-MAY-95	REG	BORON	338	=	
B38W15D	13-MAY-96	REG	BORON	521	=	
B38W15D	03-JUN-97	REG	BORON	415		
B38W15D	06-JUL-98	REG	BORON	235		
B38W15S	02-AUG-93	REG	BORON	532	=	
B38W15S	26-MAY-94	REG	BORON	425	=	
B38W15S	19-MAY-95	REG	BORON	608	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W15S	19-MAY-95	DUP	BORON	566	=	
B38W15S	13-MAY-96	REG	BORON	432	=	
B38W15S	03-JUN-97	REG	BORON	492		
B38W15S	06-JUL-98	REG	BORON	455		
B38W17A	20-MAY-95	REG	BORON	156	=	
B38W17A	13-MAY-96	REG	BORON	143	=	
B38W17A	03-JUN-97	REG	BORON	72.3		
B38W17A	02-JUL-98	REĞ	BORON	63.7		
B38W17A	13-May-99	REG	BORON	66.2		
B38W17B	29-JUL-93	REG	BORON	392	=	
B38W17B	25-MAY-94	REG	BORON	355	=	
B38W17B	20-MAY-95	REG	BORON	382	=	
B38W17B	13-MAY-96	REG	BORON	303	=	
B38W/17B	03-1UN-97	REG	BORON	365		
B29W/17B	02-111-98	REG	BORON	289		
B38W17B	13-May-99	REG	BORON	317		
B3000170	21 11 02	PEC	BORON	491		
B38W18D	21-JUL-93	REG	BORON	491	-	
B38W18D	13-MAT-94	REG	BORON	445	-	5
B38W18D	15-MAT-95	REG	BORON	425	-	
B38W18D	09-MA1-97	REG	BORON	405		
838W18D	08-JUN-98	REG	BORON	420		
B38W18D	20-May-99	REG	BORUN			
B38W19D	23-JUL-93	REG	BORON	2020	=	
B38W19D	16-MAY-94	REG	BORON	1020	=	
B38W19D	10-MAY-95	REG	BORON	885	=	
B38W19D	16-MAY-96	REG	BORON	762	=	J
B38W19D	16-MAY-97	REG	BORON	879		
B38W19D	17-JUN-98	REG	BORON	962		
B38W19D	27-May-99	REG	BORON	1120		
B38W19S	27-MAY-94	REG	BORON	1130	=	
B38W19S	17-MAY-95	REG	BORON	1240	=	
B38W19S	10-MAY-96	REG	BORON	1030	=	
B38W19S	29-JUN-98	REG	BORON	741		
B38W19S	14-May-99	REG	BORON	756		
B38W24D	09-AUG-93	REG	BORON	142	=	
B38W24D	09-MAY-96	REG	BORON	138	=	
B38W24D	02-JUN-97	REG	BORON	90.4		
B38W24D	02-JUL-98	REG	BORON	76.6		
B38W24D	13-May-99	REG	BORON	98.3		
B38W24S	05-AUG-93	REG	BORON	104	=	
B38W24S	17-MAY-95	REG	BORON	132	=	
B38W24S	09-MAY-96	REG	BORON	105	=	
B38W24S	02-JUN-97	REG	BORON	79.3		
B38W24S	02-JUL-98	REG	BORON	82		
B38W24S	13-May-99	REG	BORON	104		
B38W/25D	03-AUG-93	REG	BORÓN	168	=	
B38W25D	18-MAY-94	REG	BORON	172	=	
R38W25D	12-MAY-95	REG	BORON	236	=	J
B38W25D	15-MAY-96	REG	BORON	159	=	-
030W23D	15.MAY-97	REG	BORON	154		
D30W20D	01.111.08	PEG	BORON	138		
D30W25D	26-May-00	REG	BORON	146		
B301120D	20-Wdy-33	050	BODON			
B38W25S	03-AUG-93	REG	BORON	134	=	
B38W25S	24-MAY-94	REG	BORON	133	=	01
B38W25S	15-MAY-95	REG	ROKON	227	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W25S	15-MAY-95	DUP	BORON	171	=	
B38W25S	15-MAY-96	REG	BORON	150	=	
B38W25S	15-MAY-96	DUP	BORON	142	=	
B38W25S	05-JUN-97	REG	BORON	126		
B38W25S	01-JUL-98	REG	BORON	98.4		
B38W25S	17-May-99	REG	BORON	79.6		
MISS01AA	31-JUL-93	REG	BORON	189	=	
MISS01AA	23-MAY-94	REG	BORON	204	=	
MISSOLAA	18-MAY-95	REG	BORON	222	=	
MISS01AA	09-MAY-96	REG	BORON	178	=	
MISS01AA	23-MAY-97	REG	BORON	234		
MISSO1AA	18-JUN-98	REG	BORON	270		
MISSO1AA	12-May-99	REG	BORON	278		
MISSOIR	21-111-93	REG	BORON	106	=	
MISSUID	21-002-90	REG	BORON	85.3	=	
MISSUID	15 MAY-06	REG	BORON	94.9	=	
MISSUID	19.1110.08	REG	BORON	72 1	_	
MISSUIB	25 May 00	PEG	BORON	61.6		
MISSUID	20-iviay-99		BORON			
MISS02A	20-JUL-93	REG	BORON	1300	=	
MISS02A	12-MAY-94	REG	BORON	897	-	J
MISS02A	10-MAY-95	REG	BORON	1190	=	
MISS02A	16-MAY-96	REG	BORON	878	=	J
MISS02A	15-MAY-97	REG	BORON	1000		
MISS02A	15-MAY-97	DUP	BORON	910		
MISS02A	11-JUN-98	DUP	BORON	818		
MISS02A	18-May-99	REG	BORON	1680		
MISS02B	20-JUL-93	REG	BORON	2150	=	
MISS02B	13-MAY-94	REG	BORON	1260	=	J
MISS02B	09-MAY-95	REG	BORON	1220	=	
MISS02B	14-MAY-96	REG	BORON	1680	=	
MISS02B	19-MAY-97	REG	BORON	1450		
MISS02B	10-JUN-98	REG	BORÓN	1620		
MISS02B	18-May-99	REG	BORON	1580		
MISS05A	27-MAY-94	REG	BORON	420	=	
MISS05A	12-MAY-95	REG	BORON	588	=	J
MISS05A	10-MAY-96	REG	BORÓN	385	=	
MISS05A	02-JUN-97	REG	BORON	402		
MISS05A	29-JUN-98	REG	BORON	291		
MISS05A	14-May-99	REG	BORON	352		
MISS05B	17-MAY-94	REG	BORON	747	=	
MISS05B	11-MAY-95	REG	BORON	665	=	J
MISS05B	14-MAY-97	REG	BORON	662		
MISS05B	30-JUN-98	REG	BORON	281		
MISS05B	23-JUL-93	REG	BORON	806	=	
MISS06A	04-AUG-93	REG	BORON	1800	=	
MISSORA	24-MAY-94	REG	BORON	498	=	J
MISSORA	16-MAY-95	REG	BORON	2080	=	-
MISSORA	10-MAY-96	REG	BORON	326	=	
MISSORA	03. HINL97	REG	BORON	482		
MISSUGA	00-3014-37	REG	BORON	327		
MISSUDA	17-May-99	REG	BORON	352		
MISSUDA	22-11-03	PEG	BORON	1180	=	
MISSU/D	18.144.7.04	REG	BORON	757	=	
MISOU/D	11 MAY OF	PEC	BORON	1210	-	
W1000/D	1 1-1VIA 1-90	REG	DORON	1210	-	

•

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS07B	16-MAY-96	REG	BORON	963	=	
MISS07B	16-MAY-97	REG	BORON	1050		
MISS07B	16-JUN-98	REG	BORON	1260		
MISS07B	27-MAY-99	REG	BORON	1670		
D201401E	23-MAY-94	REG		24	=	
B30WUIS	04-11 IN-97	REG	CADMIUM	0.66		
B300015	07-1111-98	REG	CADMIUM	12		
B3699013	07-302-30	BEC	CADMILINA	0.7	_	1
B38W14D	04-AUG-93	REG	CADMIUM	5.7	-	5
B38W14D	04-JUN-97	REG	CADIMIUM	24		
838W14D	07-JUL-98	DUP	CADMIUM	2.4		
B38W14D	07-JUL-98	REG	CADMIUM	2.4		
B38W14D	05-30-00	REG	CADIVIDIV	2.5		
B38W14S	04-AUG-93	REG	CADMIUM	9.5	=	J
B38W14S	04-JUN-97	REG	CADMIUM	1.3		
B38W14S	07-JUL-98	REG	CADMIUM	11.9		
B38W14S	05-Jul-00	REG	CADMIUM	1.1		
B38W15D	02-AUG-93	REG	CADMIUM	6.4	=	
B38W15D	06-JUL-98	REG	CADMIUM	0.44		
B38W15S	03-JUN-97	REG	CADMIUM	2.6		
B38W15S	06-JUL-98	REG	CADMIUM	2.2		
B38W17A	02-JUL-98	REG	CADMIUM	0.79		
B38W17B	03-JUN-97	REG	CADMIUM	0.33		
B38W17B	02-JUL-98	REG	CADMIUM	0.36		
B38W19D	16-MAY-97	REG	CADMIUM	0.44		
B38W19D	17-JUN-98	REG	CADMIUM	0.26		
B2814/105	29- II IN-98	REG	CADMIUM	0.54		
B36W 193	02 111 08	BEC	CADMIUM	2.6		
B38W240	02-JUL-96	REG	CADMION	2.0		
B38W24S	02-JUL-98	REG	CADMIUM	0.79		
B38W25S	05-JUN-97	REG	CADMIUM	0.4		
B38W25S	01-JUL-98	REG	CADMIUM	1.4		
B38W25S	07-Jul-00	REG	CADMIUM	1.4		
MISS01AA	31-JUL-93	REG	CADMIUM	7	=	
MISS01AA	23-MAY-97	REG	CADMIUM	1.4		
MISS01AA	18-JUN-98	REG	CADMIUM	0.82		
MISS02A	12-MAY-94	REG	CADMIUM	7.9	=	
MISS02A	15-MAY-97	REG	CADMIUM	0.46		
MISS02A	15-MAY-97	DUP	CADMIUM	0.32		
MISS02B	23-Jun-00	REG	CADMIUM	0.97		
MISS05A	29-JUN-98	REG	CADMIUM	0.98		
MISS05B	30-JUN-98	REG	CADMIUM	0.48		
MISS06A	24-MAY-94	REG	CADMIUM	4.2	=	UJ
MISS06A	03-JUN-97	REG	CADMIUM	2.6		
MISS06A	01-JUL-98	REG	CADMIUM	2.2		
MISS06A	10-Jul-00	REG	CADMIUM	1.5		
B38W01S	28-JUI -93	REG	CALCIUM	427000	=	
B38W01S	23-MAY-94	REG	CALCIUM	392000	=	
B38W01S	21-MAY-95	REG	CALCIUM	371000	=	
B38W01S	17-MAY-96	REG	CALCIUM	420000	z	
B38W01S	04-JUN-97	REG	CALCIUM	433000		
B38W01S	07-JUL-98	REG	CALCIUM	404000		
	27. 11 11 -93	REG	CALCIUM	89000	= =	
0300020	21-002-00		0/120/0/11	00000		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W02D	19-MAY-94	REG	CALCIUM	77700	×	
B38W02D	20-MAY-95	REG	CALCIUM	73700	=	
B38W02D	17-MAY-96	REG	CALCIUM	87700	=	
B38W02D	04-JUN-97	REG	CALCIUM	88700		
B38W02D	30-JUN-98	REG	CALCIUM	84700		
B38W02D	20-Mav-99	REG	CALCIUM	95600		
B38W02D	13-Jul-00	REG	CALCIUM	86300		
B38W/14D	04-406-93	REG	CALCIUM	97900	=	
B38\//14D	20-MAY-95	REG	CALCIUM	77400	=	•
B38W/14D	17-MAY-96	REG	CALCIUM	111000	=	
B38W14D	04-JUN-97	REG	CALCIUM	110000		
B38\//14D	07-1111-98	DUP	CALCIUM	109000		
B38W/14D	17-May-99	DUP	CALCIUM	119000		
B38W14D	05-Jul-00	REG	CALCIUM	102000		
B38W14S	04-AUG-93	REG	CALCIUM	47800	=	
B38W14S	20-MAY-95	REG	CALCIUM	70800	=	-
B38W14S	17-MAY-96	REG	CALCIUM	99700	=	
B38W14S	17-MAY-96	DUP	CALCIUM	90600	=	
B38W14S	04-JUN-97	REG	CALCIUM	90500		
B38W14S	07-JUL-98	REG	CALCIUM	85200		
B38W14S	17-May-99	REG	CALCIUM	95600		
B38W14S	05-Jul-00	REG	CALCIUM	94600		
B38W/15D	02-4116-93	REG	CALCIUM	48600	-	
B38\A/15D	26-MAY-94	REG	CALCIUM	92800	=	
B38W/15D	19-MAY-95	REG	CALCIUM	58700	=	
B38W/15D	13-MAY-96	REG	CALCIUM	98600	-	J
B38W15D	03-JUN-97	REG	CALCIUM	71300		•
B38W15D	06-JUL-98	REG	CALCIUM	44400		
B38W15D	26-Jun-00	REG	CALCIUM	102000		
D2914/155	02.4116.93	PEC	CALCIUM	75700	-	
B3000 155	26-MAX-94	REG	CALCIUM	55100	-	
D3000135	10 MAY 05	REG	CALCIUM	80500	-	
B36W 155	19-MAY-95		CALCIUM	75100	-	5
B38W/155	13-MAY-96	REG	CALCIUM	52500	-	
B38W/155	03-111N-97	REG	CALCIUM	57200		5
B38W/155	06-111-98	REG	CALCIUM	55400		
B38W15S	26+Jun=00	REG	CALCIUM	80500		
	20 001 00	BEC	CALCIUM	122000		
B38W17A	28-301-93	REG	CALCIUM	75000	-	
D3000 1/A	20-MAY 05	REG	CALCIUM	57200	_	
D3000 1/A	12 MAY 02	REG	CALCIUM	02800	-	
D30W 17A	03 ILIN 07	REG	CALCIUM	53400	-	3
D30W17A	03-3014-97	PEC	CALCIUM	60800		
B30W17A	17-May-99		CALCIUM	88300		
B38W/17A	19- Jun-00	REG	CALCIUM	54000		
D0011170	20 11 02			240000	_	
D30W1/B	29-JUL-93	REG	CALCIUM	219000	=	J
D30W1/B	20-IVIA 1-94	REG	CALCIUM	291000	-	
D30W1/B	20-IVIAT-90	REG		223000	-	1
D30W1/D	13-1VIA 1-90	REG		313000	-	J
D30WV1/D	03-JUN-9/	REG		313000		
D30WV1/B	12 May 00	REG		20000		
D30VV1/D	10-10-00	REG	CALCIUM	303000		
D30VV1/D	19-3011-00	REG		200000		
B38W18D	21-JUL-93	REG	CALCIUM	151000	=	
B38W18D	13-MAY-94	REG	CALCIUM	164000	=	J
B38W18D	15-MAY-95	REG	CALCIUM	154000	=	
B38W18D	14-MAY-96	REG	CALCIUM	166000	=	
B38W18D	09-MAY-97	REG	CALCIUM	154000		
B38W18D	08-JUN-98	REG	CALCIUM	162000		
B38W18D	20-May-99	REG	CALCIUM	161000		
B38W18D	06-Jul-00	REG	CALCIUM	143000		

-

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W19D	23-JUL-93	REG	CALCIUM	214000	=	
B38W19D	16-MAY-94	REG	CALCIUM	296000	=	
B38W19D	10-MAY-95	REG	CALCIUM	180000	=	
B38W19D	16-MAY-96	REG	CALCIUM	262000	=	
B38W19D	16-MAY-97	REG	CALCIUM	256000		
B38W/19D	17-JUN-98	REG	CALCIUM	226000		
B38\A/19D	17-1UN-98	REG	CALCIUM	209000		
828\//10D	27-May-99	REG	CALCIUM	258000		
B38W 19D	12. Jul-00	REG	CALCIUM	192000		
83644190	07.1414.04			620000	_	
B38W19S	27-MAY-94	REG		629000	-	
B38W19S	17-MAY-95	REG		657000	-	
B38W195	10-MAY-96	REG	CALCIUM	011000	-	J
B38W19S	29-JUN-98	REG	CALCIUM	670000		
B38W19S	27-May-99	REG	CALCIUM	654000		
B38W24D	09-AUG-93	REG	CALCIUM	80700	Ξ	J
B38W24D	18-MAY-94	REG	CALCIUM	81300	=	
B38W24D	17-MAY-95	REG	CALCIUM	69700	=	
B38W24D	09-MAY-96	REG	CALCIUM	98300	=	J
B38W24D	02-JUN-97	REG	CALCIUM	83600		
B38W24D	02-JUL-98	REG	CALCIUM	82900		
B38W24D	14-May-99	REG	CALCIUM	98800		
B38W24D	22-Jun-00	REG	CALCIUM	89800		
B38W24S	05-AUG-93	REG	CALCIUM	42600	=	J
B38W24S	25-MAY-94	REG	CALCIUM	54000	Ŧ	
B38W24S	17-MAY-95	REG	CALCIUM	57000	=	
B38W/245	09-MAY-96	REG	CALCIUM	61300	=	J
D3011245	02.111N-97	REG	CALCIUM	43900		-
D39\N/240	02-001100	REG	CALCIUM	41000		
D30W245	13-May-99	REG	CALCIUM	67100		
D3011245	21. Jun-00	REG		56700		
B3077243	21-301-00	DEO	CALCIUM	452000		
B38W25D	03-AUG-93	REG	CALCIUM	152000	-	
B38W25D	18-MAY-94	REG	CALCIUM	117000	_	
B38W25D	12-MAY-95	REG	CALCIUM	144000	-	
B38W25D	15-MAY-96	REG		134000	-	J
B38W25D	15-MAY-97	REG	CALCIUM	109000		3
B38W25D	01-JUL-98	REG	CALCIUM	109000		
B38W25D	26-May-99	REG	CALCIUM	109000		
B38W25D	07-Jul-00	REG	CALCIUM	99500		
B38W25S	03-AUG-93	REG	CALCIUM	255000	=	
B38W25S	24-MAY-94	REG	CALCIUM	189000	=	J
B38W25S	15-MAY-95	REG	CALCIUM	208000	=	
B38W25S	15-MAY-95	DUP	CALCIUM	199000	=	
B38W25S	15-MAY-96	REG	CALCIUM	162000	=	J
B38W25S	15-MAY-96	DUP	CALCIUM	183000	=	J
B38W25S	05-JUN-97	REG	CALCIUM	169000		
B38W25S	01-JUL-98	REG	CALCIUM	144000		
B38W25S	01-May-99	REG	CALCIUM	185000		
B38W25S	07-Jul-00	REG	CALCIUM	186000		
MISS01AA	31-JUL-93	REG	CALCIUM	616000	=	J
MISS01AA	23-MAY-94	REG	CALCIUM	564000	=	
MISS01AA	18-MAY-95	REG	CALCIUM	714000	=	
MISS01AA	09-MAY-96	REG	CALCIUM	555000	=	J
MISS01AA	23-MAY-97	REG	CALCIUM	616000		
MISS01AA	18-JUN-98	REG	CALCIUM	645000		
MISS01AA	12-May-99	REG	CALCIUM	645000		
MISSO144	20-Jun-00	REG	CALCIUM	544000		
MICCOTO	21 10 03	DEC	CALCUINA	02200	<u> </u>	
MISSUIB	21-JUL-93	REG		92200	-	
MISS01B	10-MAY-94	REG	CALCIUM	90800	-	
MISS01B	10-MAY-95	REG	CALCIUM	84500	=	,
MISS01B	15-MAY-96	REG	CALCIUM	97100	=	J

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS01B	18-JUN-98	REG	CALCIUM	91900		
MISSOIR	25-May-99	REG	CALCIUM	96600		
MI3301D	20 111 00		CALCIUM	164000		
MISS02A	20-301-93	REG	CALCIUM	70400	-	,
MISSU2A	12-MAT-94	REG	CALCIUM	79400	-	5
MISS02A	10-MAT-95	REG	CALCIUM	54500	-	
MISSU2A	16-MAT-90	REG	CALCIUM	67000	-	1
MISSUZA	10-MAT-97	REG	CALCIUM	60700		J
MISSUZA	10-MAT-97		CALCIUM	106000		5
MISSUZA	11-JUN-90	DUF	CALCIUM	116000		
MISSUZA	01-MA1-99	PEC	CALCIUM	116000		
MISSUZA	22-Jun-00	REG	CALCIUM	110000		
MISS02B	20-JUL-93	REG	CALCIUM	295000	=	
MISS02B	13-MAY-94	REG	CALCIUM	221000	=	J
MISS02B	09-MAY-95	REG	CALCIUM	248000	=	
MISS02B	14-MAY-96	REG	CALCIUM	275000	=	
MISS02B	19-MAY-97	REG	CALCIUM	272000		
MISS02B	10-JUN-98	REG	CALCIUM	304000		
MISS02B	18-May-99	DUP	CALCIUM	304000		
MISS02B	23-JUN-00	REG	CALCIUM	240000		
MISS05A	27-MAY-94	REG	CALCIUM	582000	=	
MISS05A	12-MAY-95	REG	CALCIUM	683000	=	
MISS05A	10-MAY-96	REG	CALCIUM	603000	=	J
MISS05A	02-JUN-97	REG	CALCIUM	612000		
MISS05A	29-JUN-98	REG	CALCIUM	591000		
MISS05A	14-May-99	REG	CALCIUM	677000		
MISS05B	23-JUL-93	REG	CALCIUM	315000	Ξ	
MISS05B	17-MAY-94	REG	CALCIUM	339000	=	
MISS05B	11-MAY-95	REG	CALCIUM	295000	=	
MISS05B	16-MAY-96	REG	CALCIUM	322000	=	
MISS05B	14-MAY-97	REG	CALCIUM	340000		
MISS05B	30-JUN-98	REG	CALCIUM	143000		
MISS05B	11-Jul-00	REG	CALCIUM	201000		
MISS06A	04-AUG-93	REG	CALCIUM	218000	=	J
MISS06A	24-MAY-94	REG	CALCIUM	249000	=	J
MISS06A	16-MAY-95	REG	CALCIUM	292000	=	
MISS06A	10-MAY-96	REG	CALCIUM	225000	=	J
MISS06A	03-JUN-97	REG	CALCIUM	273000		
MISS06A	01-JUL-98	REG	CALCIUM	198000		
MISS06A	17-May-99	DUP	CALCIUM	252000		
MISS06A	10-Jul-00	REG	CALCIUM	168000		
MISS07B	22-JUL-93	REG	CALCIUM	180000	=	
MISS07B	22-JUL-93	REG	CALCIUM	175000	=	
MISS07B	16-JUn-98	REG	CALCIUM	160000		
MISS07B	27-MAY-99	DUP	CALCIUM	250000		
MISS07B	12-Jul-00	REG	CALCIUM	138000		
B38W02D	27-JUL-93	REG	CHROMIUM	7.9	в	
B38W02D	17-MAY-96	REG	CHROMIUM	38.3	=	
B38W02D	04-JUN-97	REG	CHROMIUM	20.8		
B38W02D	30-JUN-98	REG	CHROMIUM	371		
B38W02D	20-May-99	REG	CHROMIUM	9.7		
B38W02D	13-Jul-00	REG	CHROMIUM	98.4		J
B38W14D	04-JUN-97	REG	CHROMIUM	21.2		
B38W14D	07-JUL-98	REG	CHROMIUM	3.9		
B38W14D	07-JUL-98	DUP	CHROMIUM	2.6		
B38W14D	17-May-99	REG	CHROMIUM	1		
B38W14S	20-MAY-95	REG	CHROMIUM	35.9	=	
B38W14S	17-MAY-96	REG	CHROMIUM	345	=	
B38W14S	17-MAY-96	DUP	CHROMIUM	296	=	
B38W14S	04-JUN-97	REG	CHROMIUM	354		
D2814/145	07-1111-09	PEG	CHROMUM	420		
B30VV 143	47.14- 00			720		
B38W14S	17-May-99	REG	CHROMIUM	67.2		
B38W14S	05-Jui-00	REG	CHROMIUM	7.5		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
838W15D	02-AUG-93	REG	CHROMIUM	9.3	в	
B38W15D	03-JUN-97	REG	CHROMIUM	2.2		
B38W15D	06-JUL-98	REG	CHROMIUM	6.5		
P29W15S	03-1UN-97	REG	CHROMIUM	1.8		
B38W155	06-101-98	REG	CHROMIUM	5.5		
B3011130	28 11 03	PEG	CHROMILIM	21000	=	
B38W1/A	26-301-93	PEG	CHROMIUM	122	=	
B38W1/A	20-MAY 05	PEG	CHROMIUM	56.6	=	
B36W17A	13-MAY-96	REG	CHROMIUM	632	=	
B38WV1/A	03- ILIN-97	REG	CHROMIUM	1880		
D3000 17A	02.111.98	REG	CHROMIUM	5350		
D30W 17A	13-May-99	REG	CHROMIUM	66.3		
B38\//17A	19-Jun-00	REG	CHROMIUM	1590		
B30W17A	02 1110 07	PEC	CHROMILIM	0.84		
B38W17B	03-JUN-97	REG	CHROMIUM	2.8		
B38W17B	12 May 90	PEC	CHROMIUM	14		
B38W17B	10 lun 00	PEG	CHROMIUM	12.9		
B38W17B	19-301-00					
B38W18D	21-JUL-93	REG	CHROMIUM	27.2	-	
B38W18D	13-MAY-94	REG	CHROMIUM	23.0	-	J
B38W18D	10-MAY-95	REG		23.3	-	
B38W18D	14-MAY-96	REG	CHROMIUM	30.8 26 0	-	5
B38W18D	09-MAT-9/	REG		20.9 83 A		
B38W18D	08-JUN-98	REG		39.5		
B38W18D	20-IMay-99	PEG	CHROMIUM	28		
B38VV16D	00-30-00	REG	CHROMIUM	E 1	_	
B38W19D	16-MAY-94	REG	CHROMIUM	5.1	-	
B38W19D	16-MAY-97	REG	CHROMIUM	3.4 2.8		
B38W19D	12-JUI-00	REG DEC	CHROMIUM	2.0		
838W195	29-JUN-90	REG	CHROMIUM	2.5		
B38W195	14-May-99	REG	CHROMIUM	2.0		
B38W24D	09-AUG-93	REG	CHROMIUM	8.9	-	J
B38W24D	18-MAY-94	REG	CHROMIUM	0.2	-	
B38W24D	09-MAY-96	REG	CHROMIUM	17.0	-	
B38W24D	02-JUL-98	REG	CHROMIUM	64		
B38W24D	13-мау-ээ	REG	CHROMIUM	0.4		
B38W24S	25-MAY-94	REG	CHROMIUM	4.9	=	
B38W24S	02-JUN-97	REG	CHROMIUM	4.5		
B38W24S	21-Jun-00	REG	CHROMIUM	0.0		
B38W25D	18-MAY-94	REG	CHROMIUM	8.8	=	
B38W25D	12-MAY-95	REG	CHROMIUM	36.5	=	J
B38W25D	15-MAY-97	REG	CHROMIUM	6.2		
B38W25D	01-JUL-98	REG	CHROMIUM	3.2		
B38W25D	07-Jul-00	REG	CHROMIUM	5.3		
B38W25S	03-AUG-93	REG	CHROMIUM	210	=	
B38W25S	15-MAY-95	REG	CHROMIUM	14.6	=	
B38W25S	15-MAY-95	DUP	CHROMIUM	12.7	=	
B38W25S	15-MAY-96	REG	CHROMIUM	4.9	Ŧ	
B38W25S	05-JUN-97	REG	CHROMIUM	20.7		
B38W25S	01-JUL-98	REG	CHROMIUM	50.7		
B38W25S	17-May-99	REG	CHROMIUM	106		
B38W25S	07-Jul-00	REG	CHROMIUM	48.4		
MISS01AA	31-JUL-93	REG	CHROMIUM	54.9	=	
MISS01AA	23-MAY-94	REG	CHROMIUM	285	=	
MISS01AA	23-MAY-97	REG	CHROMIUM	2.1		
MISS01AA	18-JUN-98	REG	CHROMIUM	7.4		
MISS01AA	12-May-99	REG	CHROMIUM	1		
MISS01AA	20-Jun-00	REG	CHROMIUM	4.4		·····
MISS01B	20-Jun-00	REG	CHROMIUM	1.7		. <u>j</u>
MISS02A	20-JUL-93	REG	CHROMIUM	157	=	
MISS02A	12-MAY-94	REG	CHROMIUM	15.1	=	J
MISS02A	10-MAY-95	REG	CHROMIUM	94.5	=	
MISS02A	15-MAY-97	REG	CHROMIUM	24.3		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS02A	15-MAY-97	DUP	CHROMIUM	22.3		
MISS02A	11-JUN-98	DUP	CHROMIUM	26.8		
MISS02A	18-May-99	REG	CHROMIUM	94.1		
MISS02A	22-Jun-00	REG	CHROMIUM	69.2		
MISS02B	20-JUL-93	REG	CHROMIUM	5.1	=	
MISS02B	09-MAY-95	REG	CHROMIUM	5.3	=	
MISS02B	19-MAY-97	REG	CHROMIUM	5.1		
MISS02B	10-JUN-98	REG	CHROMIUM	6.2		
MISS02B	18-May-99	REG	CHROMIUM	7.5		
MISS02B	23-Jun-00	REG	CHROMIUM	24.1		
MISS05B	11-MAY-95	REG	CHROMIUM	10.9	=	
MISS05B	14-MAY-97	REG	CHROMIUM	2.9		
MISS05B	30-JUN-98	REG	CHROMIUM	10.8		
MISS05B	11-Jul-00	REG	CHROMIUM	2.4		
MISS06A	10-JUI-00	REG	CHROMIUM	1.6		
B38WU7B	12 10 00	REG	CHROMIUM	2.1		1
B364407B	12-30-00					
B38W02D	04-JUN-97	REG	COBALT	1.1		
B38W02D	30-JUN-98	REG	COBALT	1.6		
B38W02D	13-Jul-00	REG	COBALT	1.4		J
B38W14D	07-JUL-98	REG	COBALT	0.42		
B38W14S	04-AUG-93	REG	COBALT	20.1	в	
B38W14S	04-JUN-97	REG	COBALT	0.97		
B38W14S	07-JUL-98	REG	COBALT	2.2		
B38W14S	17-May-99	REG	COBALT	1.5		
B38W15D	03-JUN-97	REG	COBALT	2.5		
B38W15D	06-JUL-98	REG	COBALT	1.4		
B38W15S	03-JUN-97	REG	COBALT	1.4		
B38W15S	06-JUL-98	REG	COBALT	0.69		
B38W17A	28-JUL-93	REG	COBALT	57	=	
B38W17A	25-MAY-94	REG	COBALT	5.8	Ξ	
B38W17A	03-JUN-97	REG	COBALT	1.6		
B38W17A	02-JUL-98	REG	COBALT	8.1		
B38W17A	13-May-99	DUP	COBALT	1.2		
B38W17A	19-Jun-00	REG	COBALT	13		
B38W18D	21-JUL-93	REG	COBALT	17.7	в	
B38W18D	13-MAY-94	REG	COBALT	19.1	=	J
B38W18D	15-MAY-95	REG	COBALT	18.5	=	
B38W18D	14-MAY-96	REG	COBALT	16.9	=	
B38W18D	09-MAY-97	REG	COBALT	11.5		
B38W18D	08-JUN-98	REG	COBALT	13.3		
B38W18D	20-May-99	REG	COBALT	0.5		
BSOWIED	00 4110 02	BEC	COBALT	12		
B38W24D	09-AUG-93	REG	COBALT	0.74	D	
B38W24D	21-Jun-00	REG	COBALT	0.72		L
	03 4110 03	BEC	COBALT	14.6	8	
B38W255	15-MAY-95	REG	COBALT	36	=	
B38W255	05-11 N-97	REG	COBALT	1.5		
B38W25S	01-JUL-98	REG	COBALT	2.4		
B38W25S	17-May-99	REG	COBALT	3.2		
MISSO2A	15-MAY-97	BEG	COBALT	1		
MISS02A MISS02A	15-MAY-97	DUP	COBALT	0.98		
MISS02A	11-JUN-98	DUP	COBALT	1.1		
MISS02A	18-May-99	DUP	COBALT	2.2		
MISS02B	13-MAY-94	REG	COBALT	7	=	j
MISS02B	09-MAY-95	REG	COBALT	5.4	=	
MISS02B	19-MAY-97	REG	COBALT	3.3		
MISS02B	10-JUN-98	REG	COBALT	2.8		
MISS02B	18-May-99	REG	COBALT	3		
MISS05A	12-MAY-95	REG	COBALT	9.1	=	
MISS05A	02-JUN-97	REG	COBALT	1.4		
MISS05A	29-JUN-98	REG	COBALT	1.3		
MISS05A	14-May-99	REG	COBALT	14.1		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS06A	24-MAY-94	REG	COBALT	4.2	=	
MISSOGA	03-JUN-97	REG	COBALT	0.95		
MISSOCA	01 11 09	REC	COBALT	0.64		
MISSUBA	01-302-96	REG	COBALT	0.04		
MISS06A	10-Jui-00	REG	COBALT	1.2		J
B38W07B	16-JUN-98	REG	COBALT	4.4		
B38\M/07B	27-May-99	DUP	COBALT	5.3		
0000070			CODALT			
B38W07B	12-Jul-00	REG	COBALT	3.6		
B38W02D	19-MAY-94	REG	COPPER	3.8	=	
D30W02D	04- H IN-97	REG	COPPER	24		
DagwoodD	20 11 10 08	REC	COPPER	9.7		
B389902D	30-3014-90	REG	COFFER	0.7		
B38W02D	20-May-99	REG	CUPPER	2.9		<u> </u>
B38W14D	04-AUG-93	REG	COPPER	33.1	=	
B38W14D	20-MAY-95	REG	COPPER	5.7	=	
B38W14D	04-JUN-97	REG	COPPER	15.7		
B38W14D	07-JUL-98	REG	COPPER	13		
B38W/14D	07-111-98	DUP	COPPER	11.8		
DOOW14D	17 May 99		COPPER	3.6		
B38W 14D	or huloo		COPPER	5.0		
B38W14D	05-JUI-00	REG	COPPER	21.0		
B38W14S	04-AUG-93	REG	COPPER	14.7	в	
B38W14S	20-MAY-95	REG	COPPER	4.1	=	
B38W14S	04-JUN-97	REG	COPPER	8.9		
B38W14S	07-JUL-98	REG	COPPER	22.3		
D301114C	17-May-99	REG	COPPER	4.9		
B30W145	05 101 00	PEC	COPPER	2.5		
B38W145	05-30-00	KEG	COFFER	2.5		
B38W15D	02-AUG-93	REG	COPPER	33.7	=	
B38W15D	13-MAY-96	REG	COPPER	9.7	=	
B38W15D	03-JUN-97	REG	COPPER	2.6		
B38W15D	06-JUL-98	REG	COPPER	9.2		
B38W15D	26-Jun-00	REG	COPPER	1.3		
0000000	10 MAY OF	BEC	CODDED	0.2	_	
B38W155	19-MA1-95	REG	COPPER	9.5	-	
B38W15S	19-MAY-95	DOP	COPPER	6.4	=	
B38W15S	03-JUN-97	REG	COPPER	5.4		
B38W15S	06-JUL-98	REG	COPPER	21.8		
B38W15S	26-Jun-00	REG	COPPER	4.1		
B38\A/174	28-JUL-93	REG	COPPER	118	=	
D20\4/17A	25.MAY-94	REG	COPPER	7.6	=	
B36W17A	42 MAY 08	DEC	CODDED	7.0	_	
B38W17A	13-MA1-90	REG	COPPER	0.4	-	
B38W17A	03-JUN-97	REG	COPPER	10		
B38W17A	02-JUL-98	REG	COPPER	36.6		
B38W17A	13-May-99	REG	COPPER	2.9		
B38W17B	02-JUL-98	REG	COPPER	2.1		
D00\4(47D	12 May 99	PEG		12		
B36W/17D	13-Way-55	- REG	COFFER	1.2		
B38W18D	06-Jul-00	REG	COPPER	2.4		
B38W19D	16-MAY-97	REG	COPPER	3.9		
B38W19D	17-JUN-98	REG	COPPER	1		
		DEC	COBBER	A 0	_	
B38W 195	17-MAT-95	REG	COPPER	4.0	-	
B38W195	29-JUN-98	REG	COPPER	2.8		
B38W24D	09-AUG-93	REG	COPPER	6	в	
B38W24D	18-MAY-94	REG	COPPER	3.4	=	
B38W24D	02-JUN-97	REG	COPPER	1.3		
B38W24D	02-JUL-98	REG	COPPER	10.4		
D3814/24D	13-May-99	REC	COPPER	3		
B307724D	10-Way-00					
B38W24S	05-AUG-93	REG	COPPER	8.8	в	
B38W24S	02-JUN-97	REG	COPPER	24.2		
B38W24S	02-JUL-98	REG	COPPER	2.8		
B38W24S	13-May-99	REG	COPPER	9.4		
B38W/25D	15-MAY-97	REG	COPPER	4.6		
	01 111 00		CORPER	4.0		
D38W25D	07-001-90	REG	COPPER	1.3		
B38W25D	07-Jul-00	REG	COPPER	0.54		J
B38W25S	03-AUG-93	REG	COPPER	52.4	=	
B38W25S	05-JUN-97	REG	COPPER	1		
B38W25S	01-JUL-98	REG	COPPER	7.3		
B38W25S	17-May-99	REG	COPPER	2.8		
B3810/255	07-10-00	REG	COPPER	5.2		
03044233	07-00-00	NEQ		J.2		· · · · · · · · · · · · · · · · · · ·

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS01AA	31-JUL-93	REG	COPPER	31.1	=	
MISS01AA	23-MAY-94	REG	COPPER	11.7	=	
MISS01AA	23-MAY-97	REG	COPPER	3.9		
MISS02A	20-JUL-93	REG	COPPER	126	=	
MISS02A	12-MAY-94	REG	COPPER	103	=	
MISS02A	10-MAY-95	REG	COPPER	173	=	
MISS02A	16-MAY-96	REG	COPPER	169	=	
MISS02A	15-MAY-97	REG	COPPER	112		
MISS02A	15-MAY-97	DUP	COPPER	114		
MISS02A	11-JUN-98	DUP	COPPER	96.2		
MISS02A	18-May-99	REG	COPPER	366		
MISS02B	13-MAY-94	REG	COPPER	166	=	J
MISS02B	09-MAY-95	REG	COPPER	6	=	
MISS02B	19-MAY-97	REG	COPPER	3.4		
MISS02B	10-JUN-98	REG	COPPER	1.1		
MISS02B	23- Jun-00	REG	COPPER	1.7		
MISSOEA	10-MAY-96	BEG	COPPER	6	=	
MISSOSA	02-1110-97	REG	COPPER	37		
MISSORA	29. 11 IN-98	REG	COPPER	4 1		
MISSOFA	14-May-99	REG	COPPER	17		
MISSUSA	11-MAY-95	REG	COPPER	4.9	=	
MISSUSD	30-1110-08	REG	COPPER	34		
MISSUSE	04 AUC 93	REG	COPPER	22.9	B	
MISSUBA	24 MAY 94	REG	COPPER	21.8	=	
MISSUBA	16 MAY 05	PEG	COPPER	21.0	=	
MISSUBA	10-MAY-96	REG	COPPER	27.2	=	
MISSUBA	02 1110 07	REG	COPPER	50.1	-	
MISSUGA	03-3014-97	PEG	COPPER	44		
MISSUBA	17 May 99	PEG	COPPER	29.4		
MISS06A	16 ILIN 09	PEG	COPPER	29.4		
B38007B	10-3014-90	KLU	COFFER	4.0		
B38W01S	28-JUL-93	REG	IRON	31000	=	
B38W01S	23-MAY-94	REG	IRON	27500	=	
B38W01S	21-MAY-95	REG	IRON	22100	=	
B38W01S	17-MAY-96	REG	IRON	24700	=	
B38W01S	04-JUN-97	REG	IRON	28100		J
B38W01S	07-JUL-98	REG	IRON	28900		J
B38W02D	19-MAY-94	REG	IRON	33.1	=	
B38W02D	20-MAY-95	REG	IRON	72.4	=	
B38W02D	17-MAY-96	REG	IRON	737	=	
B38W02D	04-JUN-97	REG	IRON	183		J
B38W02D	30-JUN-98	REG	IRON	580		J
B38W02D	20-May-99	REG	IRON	28.8		
B38W02D	13-Jul-00	REG	IRON	202		
B38W/14D	04-AUG-93	REG	IRON	320	=	
B38W/14D	20-MAY-95	REG	IRON	32.4	=	
B38W14D	07-111-98	REG	IRON	274		L
B38W14D	07-101-98	DUP	IRON	204		J
B38W/14D	17-Mav-99	REG	IRON	64.2		-
D307714D	04 4110 00		IRON	403		¥
B38W145	04-AUG-93	REG		403	-	
B38W145	20-MAY-95	REG		324	-	
B38W145	17-MAY-96	REG	IRON	820	=	
B38W14S	17-MAY-96	DUP	IRON	/43	=	
B38W14S	04-JUN-97	REG	IRON	1200		J
B38W14S	07-JUL-98	REG	IRON	2540		J
B38W14S	17-May-99	REG	IRON	528		J
B38W14S	05-Jul-00	REG	IRON	340		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W15D	02-AUG-93	REG	IRON	709	=	
B38W15D	13-MAY-96	REG	IRON	103	=	UJ
B38W15D	03-JUN-97	REG	IRON	160		J
B38W15D	06-JUL-98	REG	IRON	593		J
B38W15S	02-AUG-93	REG	IRON	537	=	
B38W15S	26-MAY-94	REG	IRON	400	=	
B38W15S	19-MAY-95	REG	IRON	1720	=	
B38W15S	19-MAY-95	DUP	IRON	1450	=	
B38W15S	13-MAY-96	REG	IRON	530	=	J
B38W15S	03-JUN-97	REG	IRON	675		L
B38W15S	06-JUL-98	REG	IRON	1010		J
B38W155	26-Jun-00	REG	IRON	546		
D2914/17A	28-111-93	REG	IRÓN	116000	=	
D30W17A	25-MAY-94	REG	IRON	829	=	
D30W17A	20-MAY-95	REG	IRON	688	=	
D30W17A	13-MAY-96	REG	IRON	3280	=	Ŀ
D30VV1/A	03. ILIN-97	REG	IRON	11700		J
D301117A	02-1014-57	REG	IRON	27900		۔ ار
D30W17A	13.Mav-00	REG	IRON	377		•
D38W1/A	19- hin-00	REG	IRON	12500		
D30VV1/A	00 111 00				<u> </u>	<u>ı</u>
B38W17B	29-JUL-93	REG	IRON	6520	-	J
B38W17B	25-MAY-94	REG		10200	-	
B38W17B	20-MAY-95	REG	IRUN	6570	-	,
B38W17B	13-MAY-96	REG	IRON	11400	=	3
B38W17B	03-JUN-97	REG	IRON	9470		J
B38W17B	02-JUL-98	REG	IRON	6890		J
B38W17B	13-May-99	REG	IRON	8350		
B38W17B	19-Jun-00	REG	IRON	8490	·. •	
B38W18D	21-JUL-93	REG	IRON	16000	=	J
B38W18D	13-MAY-94	REG	IRON	12900	=	J
B38W18D	15-MAY-95	REG	IRON	14400	=	
B38W18D	14-MAY-96	REG	IRON	14200	=	
B38W18D	09-MAY-97	REG	IRON	12100		
B38W18D	08-JUN-98	REG	IRON	13500		
B38W18D	20-May-99	REG	IRON	14800		
B38W18D	06-Jul-00	REG	IRON	11600		
B38W19D	23-JUL-93	REG	IRON	3030	=	J
B38W19D	16-MAY-94	REG	IRON	4090	=	
B38W19D	10-MAY-95	REG	IRON	2630	=	J
B38W19D	16-MAY-96	REG	IRON	3530	=	
B38W19D	16-MAY-97	REG	IRON	3260		J
B38W19D	17-JUN-98	REG	IRON	3110		J
B38W19D	17-JUN-98	REG	IRON	3160		
B38W19D	27-May-99	REG	IRON	3670		
B38W19D	12-Jul-00	REG	IRON	3110		
B38W/195	27-MAY-94	REG	IRON	3240	=	
B38W19S	17-MAY-95	REG	IRON	1300	=	
B38W19S	10-MAY-96	REG	IRON	4590	=	J
B38W19S	29-JUN-98	REG	IRON	5980		J
B38W19S	14-May-99	REG	IRON	6600		
B2814/24D	09-4110-02	DEC	IRON	22900	=	.1
B38W24D	18.444 04	DEC	IRON	21900	-	5
B38W24D	10-1VIA 1-94	DEC		17500	-	
B38W24D	17-MAT-90	REG		29600	-	ı
B38W24D	09-MAT-90	REG		20000	-	J 1
B38W24D	02-JUN-9/	REG		20000		J
B38W24D	02-JUL-98	REG		20000		J
B38W24D	13-May-99	REG		27000		
B38W24D	22-Jun-00	REG		37900		
B38W24S	05-AUG-93	REG	IRON	34800	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W24S	25-MAY-94	REG	IRON	35900	=	
B38W24S	17-MAY-95	REG	IRON	46500	=	
B38W24S	09-MAY-96	REG	IRON	33400	=	J
B38W24S	02-JUN-97	REG	IRON	51100		J
B38W24S	02-JUL-98	REG	IRON	31700		J
B38W24S	13-May-99	DUP	IRON	36100		
B38W24S	21-Jun-00	REG	IRON	31900		
D2814/25D	03 AUG-03	PEG	IRON	5380	-	
B300023D	18 MAY 94	REG	IRON	5550	-	
D300023D	12 MAY 05	REG	IRON	6760	_	
B38W/25D	12-MAT-95	REG	IRON	6460	-	
B36W25D	15-MAT-90	REG		5640	-	J 1
B36W25D	13-IVIA 1-97	REG	IRON	4620		3
B30W25D	01-JUL-90	PEC	IRON	4020		5
B36W25D	20-IVIAy-99	REG	IRON	4500		
B38W25D	07-30-00	REG	IRON	5270		
B38W25S	03-AUG-93	REG	IRON	19700	=	
B38W25S	24-MAY-94	REG	IRON	9080	=	J
B38W25S	15-MAY-95	REG	IRON	14600	=	
B38W25S	15-MAY-95	DUP	IRON	12000	=	
B38W25S	15-MAY-96	REG	IRON	9620	=	J
B38W25S	15-MAY-96	DUP	IRON	10200	=	J
B38W25S	05-JUN-97	REG	IRON	6260		J
B38W25S	01-JUL-98	REG	IRON	7490		J
B38W25S	17-May-99	REG	IRON	10400		J
B38W25S	07-Jul-00	REG	IRON	14000		
MISS01AA	31-JUL-93	REG	IRON	9340	=	
MISS01AA	23-MAY-94	REG	IRON	2210	=	
MISS01AA	18-MAY-95	REG	IRON	360	=	
MISS01AA	09-MAY-96	REG	IRON	725	=	J
MISS01AA	23-MAY-97	REG	IRON	571		
MISS01AA	18-JUN-98	REG	IRON	512		
MISS01AA	12-May-99	REG	IRON	2790		
MISS01AA	20-Jun-00	REG	IRON	490		
MISS01B	21-JUL-93	REG	IRON	1620	=	ť
MISS01B	16-MAY-94	REG	IRON	7780	=	
MISS01B	10-MAY-95	REG	IRON	1030	=	J
MISS01B	15-MAY-96	REG	IRON	6260	=	J
MISS01B	18-JUN-98	REG	IRON	2080		
MISS01B	25-May-99	REG	IRON	1060		
MISS01B	20-Jun-00	REG	IRON	4970		
MISS02A	20-JUL-93	REG	IRON	914	Ξ	
MISS02A	12-MAY-94	REG	IRON	402	=	J
MISS02A	10-MAY-95	REG	IRON	892	=	J
MISS02A	16-MAY-96	REG	IRON	584	=	
MISS02A	15-MAY-97	REG	IRON	426		J
MISS02A	15-MAY-97	DUP	IRON	500		J
MISS02A	11-JUN-98	REG	IRON	1070		-
MISS02A	11-JUN-98	DUP	IRON	1440		
MISS02A	18-May-99	REG	IRÓN	1010		
MISS02A	22-Jun-00	REG	IRON	5410		
MISS02P	20-1111-93	PEC	IRON	19300	=	
MISS02B	13-MAV-94	REG	IRON	6800	=	1
MISS028	09-MAY-95	REG	IRON	8690	-	U U
MISS02B	14-MAY-96	REG		7880	=	
MISS020	19.MAV-97	REC		7000 8880	-	ı
MISS020	10-1111-09	DEC	IRON	81 <i>4</i> 0		5
MISSO2D	18-May 00	DEC		9620		
MISSUZD	23 hup 00	DEC		16500		
MISOU2B	20-Jun-00	REG	IRON	6110		
WI3302B		REG		0110		
MISS05A	27-MAY-94	REG	IRON	9770	=	
MISS05A	12-MAY-95	REG	IRON	15800	=	
MISS05A	10-MAY-96	REG	IRON	6590	=	J

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISSO5A	02-JUN-97	REG	IRON	31600		J
MISSOSA	29-JUN-98	REG	IRON	15900		J
MISS05A	14-May-99	REG	IRON	2190		
MISS05B	23-JUL-93	REG	IRON	2660	=	J
MISS05B	17-MAY-94	REG	IRON	2780	=	
115505B	11-MAY-95	REG	IRON	3180	=	J
115505B	16-MAY-96	REG	IRON	2910	=	
AISS05B	14-MAY-97	REG	IRON	2560		
AISS05B	30-JUN-98	REG	IRON	13800		J
AISS064	04-AUG-93	REG	IRON	225	=	
4199064	24-MAY-94	REG	IRON	455	=	J
415506A	16-MAY-95	REG	IRON	333	=	
1155064	10-MAY-96	REG	IRON	157	=	J
AISSOCA	03-1UN-97	REG	IRON	759		J
AICEORA	01-111-98	REG	IRON	1320		J
10000A	17-May-99	REG	IRON	370		J
	22jul-00	REG	IRON	1910		=
38W07B	16-JUN-98	REG	IRON	9160		
28W/07R	27-Mav-99	REG	IRON	5920		
29M/07B	12- Jul-00	REG	IRON	6390		
38\6/020	17-MAY-96	REG	LEAD	1.4	=	
38W02D	04-JUN-97	REG	LEAD	2.8		
38W02D	30-JUN-98	REG	LEAD	7.1		
0000020	20 MAY 05	PEG		2.8		.,
3800140	20-1441-95	DUP		17		•
38VV 14D	17 May 00	PEG		0.86		
38VV14D	17-Way-99			2.00		
38W14S	20-MAY-95	REG		2.9	-	J
338W14S	17-MAY-90	REG		1.2	-	
338W14S	17-MAY-96	DUP		1.0	-	
338W145	04-JUN-97	REG		23.0		
38W145	07-JUL-90	REG		25.5		
38W145	17-May-99	REG	LEAD	2.5		
38W15D	02-AUG-93	REG	LEAD	27.5	=	J
338W15D	03-JUN-97	REG	LEAD	1.8		
338W15D	06-JUL-98	REG	LEAD	3.3		
338W15S	02-AUG-93	REG	LEAD	2.3	В	J
38W15S	26-MAY-94	REG	LEAD	3	=	J
338W15S	19-MAY-95	REG	LEAD	2	=	
338W15S	19-MAY-95	DUP	LEAD	2.4	=	
338W15S	03-JUN-97	REG	LEAD	4		
38W15S	06-JUL-98	REG	LEAD	5.3		
338W17A	28-JUL-93	REG	LEAD	36.6	=	J
338W17A	20-MAY-95	REG	LEAD	2.8	=	J
338W17A	13-MAY-96	REG	LEAD	1.1	=	J
338W17A	03-JUN-97	REG	LEAD	2.3		
338W17A	02-JUL-98	REG	LEAD	1.3		
338W18D	14-MAY-96	REG	LEAD	1	=	
338W18D	08-JUN-98	REG	LEAD	0.45		
338W18D	20-May-99	REG	LEAD	1.1		
338W18D	06-Jul-00	REG	LEAD	1.9	_	J
338W19S	29-JUN-98	REG	LEAD	0.35		
338W24D	02-JUL-98	REG	LEAD	2.4		
238W/24D	13-May-99	REG	LEAD	1.2		
D30VV24D	17-MAY-95	REG		1.8	=	
53011243 538W24C	02-111-08	REG	LEAD	0.85		
00000240	04 14 1 04	050		2.00	_	
B38W25S	24-MAY-94	REG	LEAD	3.8	=	01

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W25S	15-MAY-96	REG	LEAD	1.5	=	J
B38W25S	05-JUN-97	REG	LEAD	0.6		
B38W25S	01-JUL-98	REG	LEAD	1.3		
B38W25S	17-May-99	REG	LEAD	0.66		
MISS01AA	31-JUL-93	REG	LEAD	4.1	=	J
MISS01AA	18-MAY-95	REG	LEAD	2	=	
MISS01AA	18-JUN-98	REG	LEAD	9.8		
MISS01AA	12-May-99	REG	LEAD	1.6		
MISS02A	20-JUL-93	REG	LEAD	2.5	=	UJ
MISS02A	12-MAY-94	REG	LEAD	7.3	=	J
MISS02A	10-MAY-95	REG	LEAD	3.6	=	
MISS02A	16-MAY-96	REG	LEAD	8.1	=	
MISS02A	15-MAY-97	REG	LEAD	4.8		J
MISS02A	15-MAY-97	DUP	LEAD	4.7		J
MISS02A	11-JUN-98	REG	LEAD	3.9		
MISS02A	11-JUN-98	DUP	LEAD	4.9		
MISS02A	18-May-99	REG	LEAD	11		
MISS02A	22-Jun-00	REG	LEAD	13		
MISS05A	29-JUN-98	REG	LEAD	11.9		
MISSO5A	14-May-99	REG	LEAD	0.35		
MICCOST	17 MAY 04	PEG		21	=	J
MISSUSB	17-MAT-94	REG		0.5		Ū
MI5505B	30-301-98	REG				
MISS06A	24-MAY-94	REG	LEAD	4.4	-	05
MISS06A	03-JUN-97	REG		13.0		
MISS06A	01-JUL-98	REG	LEAD	20		
MISS06A	17-May-99	REG	LEAD	2.9		
MISSUBA	10-Jui-00	REG	LEAU	3.0		
B38W01S	28-JUL-93	REG	LITHIUM	2690	=	
B38W01S	23-MAY-94	REG	LITHIUM	2410	=	
B38W01S	17-MAY-96	REG	LITHIUM	1830	=	J
B38W01S	04-JUN-97	REG	LITHIUM	2370		
B38W01S	07-JUL-98	REG	LITHIUM	1840		J
B38W02D	19-MAY-94	REG	LITHIUM	30.1	=	
B38W02D	04-JUN-97	REG	LITHIUM	14.8		
B38W02D	30-JUN-98	REG	LITHIUM	16.5		J
B38W02D	20-May-99	REG	LITHIUM	11.7		
B38W14D	04-AUG-93	REG	LITHIUM	49.8	=	
B38W14D	04-JUN-97	REG	LITHIUM	44.5		
B38W14D	07-JUL-98	DUP	LITHIUM	48.4		J
B38W14D	07-JUL-98	REG	LITHIUM	47.2		J
B38W14D	17-May-99	REG	LITHIUM	34.3		
B38W14S	04-AUG-93	REG	LITHIUM	126	=	
B38W14S	04-JUN-97	REG	LITHIUM	48		
B38W14S	07-JUL-98	REG	LITHIUM	45.5		J
B38W14S	17-May-99	REG	LITHIUM	38		
B38W15D	02-AUG-93	REG	LITHIUM	1740	=	
B38W15D	26-MAY-94	REG	LITHIUM	2750	=	
B38W15D	13-MAY-96	REG	LITHIUM	2980	=	J
B38W15D	03-JUN-97	REG	LITHIUM	2980		
B38W15D	06-JUL-98	REG	LITHIUM	2060		
B38W15S	02-AUG-93	REG	LITHIUM	1910	Ξ	
B38W15S	02-AUG-93	REG	LITHIUM	1970	=	
B38W15S	26-MAY-94	REG	LITHIUM	1590	=	
B38W15S	13-MAY-96	REG	LITHIUM	1800	=	J
B38W15S	03-JUN-97	REG	LITHIUM	2590		
B38W15S	06-JUL-98	REG	LITHIUM	2590		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W17A	28-JUL-93	REG	LITHIUM	348	=	
B38W17A	25-MAY-94	REG	LITHIUM	347	=	
B38W17A	13-MAY-96	REG	LITHIUM	431	z	J
B38W17A	03-JUN-97	REG	LITHIUM	334		
B38W17A	02-JUL-98	REG	LITHIUM	307		J
B38W17A	13-May-99	DUP	LITHIUM	363		
B28\A/17B	29-1111-93	REG	LITHIUM	1650	=	J
B300017B	25-MAY-94	REG	LITHIUM	1060	=	
D30W17D	13-MAY-96	REG	LITHIUM	920	=	J
D30W17D	03-111N-97	REG	UTHIUM	1740		
D30W17D	02-111-98	REG	UTHIUM	1800		J
D30W17D	13-May-99	REG	LITHUM	1460		Ĵ
BOOWIND	24 11 03	PEC		3610	=	
B38W18D	21-JUL-93	REG		3380	-	л
B38W18D	13-MA 1-94	REG		3000	_	.1
B38W18D	14-MAT-90	REG		3540	_	Ū
B38W18D	09-MAT-97	REG		0300		
B38W18D	08-JUN-98	REG	LITHIOM	3790		
B38W18D	20-May-99	REG	LITHIUM	2850		
B38W19D	23-JUL-93	REG	LITHIUM	6890	=	
B38W19D	16-MAY-94	REG	LITHIUM	4600	=	
B38W19D	16-MAY-96	REG	LITHIUM	3800	=	J
B38W19D	16-MAY-97	REG	LITHIUM	5600		
B38W19D	17-JUN-98	REG	LITHIUM	6220		J
B38W19D	17-JUN-98	REG	LITHIUM	5920		
B38W19D	27-May-99	REG	LITHIUM	6350		J
B38W19S	27-MAY-94	REG	LITHIUM	1690	=	
B38W19S	10-MAY-96	REG	LITHIUM	1450	=	J
B38W19S	29-JUN-98	REG	LITHIUM	1700		J
B38W19S	14-May-99	REG	LITHIUM	1400		J
B38W24D	09-AUG-93	REG	LITHIUM	44.1	=	
B38W24D	18-MAY-94	REG	LITHIUM	37.5	=	
B38W24D	09-MAY-96	REG	LITHIUM	80.1	=	J
B38W24D	02-JUN-97	REG	LITHIUM	54.3		
B38W24D	02-JUL-98	REG	LITHIUM	46.1		J
B38W24D	13-May-99	REG	LITHIUM	50.4		
B38W24S	09-MAY-96	REG	LITHIUM	56	=	J
B38W24S	02-JUN-97	REG	LITHIUM	27.5		
B38W24S	02-JUL-98	REG	LITHIUM	26.5		J
B38W24S	13-May-99	DUP	LITHIUM	32.4		
B38W25D	03-AUG-93	REG	LITHIUM	1330	=	
B38W25D	18-MAY-94	REG	LITHIUM	1230	=	
B38W25D	15-MAY-96	REG	LITHIUM	1370	=	J
B38W25D	15-MAY-97	REG	LITHIUM	1600		
B38W25D	01-JUL-98	REG	LITHIUM	1430		J
B38W25D	26-May-99	REG	LITHIUM	1280		J
B38W25S	03-AUG-93	REG	LITHIUM	1360	=	
B38W25S	24-MAY-94	REG	LITHIUM	1130	=	J
B38W25S	15-MAY-96	DUP	LITHIUM	994	=	J
B38W25S	05-JUN-97	REG	LITHIUM	1190		
D2011/260	01-1111-98	REG	UTHIUM	827		J
D30VV200	47.14	REG DEC		703		Ŭ
B38W25S	17-May-99	REG		/93		
MISS01AA	31-JUL-93	REG		442	-	
MISS01AA	23-MAY-94	REG		240	-	1
MISS01AA	09-MAY-96	REG		224	=	L
MISS01AA	23-MAY-97	REG	LITHIUM	265		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS01AA	18-JUN-98	REG	LITHIUM	258		
MISS01AA	12-May-99	REG	UTHIUM	224		,
MISS01B	21-111-93	REG				
MISS01B	16-MAY-94	REG		114	=	
MISS01B	15-MAY-96	REG		00.0	=	
MISS01B	18-JUN-98	REG		120	=	J
MISS01B	25-May-99	REG		105		
MISS02A	20-1111-93	REC		90.1		
MISS02A	12-MAY-04	REG		6990	=	
MISS02A	16-MAY-96	REG		4660	=	
MISS02A	15-MAY-97	REG		4460	=	J
MISS02A	15-MAY-97	DUP		7090		
MISS02A	11-JUN-98	DUP	LITHUM	6110		
MISS02A	11-May-99	REG	LITHUM	9300		
MISS02B	20-1111-02	DEC.		3300		······
MISS02B	13-1442-94	REG		14100	=	
MISS02B	14-MAY-96	REG		10200	=	J
MISS02B	19-MAY-97	PEC		11900	=	J
MISS02B	10-1UN-98	REG		15200		
MISS02B	18-May-99	DUP		12800		
MISSOSA	27-MAY 94			12200		J
MISSOSA	10-MAY-96	REG		677	=	
MISSOSA	02-11 IN-97	REG		664	=	J
MISSOSA	29- ILIN-98	REG		854		
MISS05A	14-May-99	REG		660		J
MICCOER	22 11 02	DE0		803		J
MISSUSD	23-JUL-93	REG	LITHIUM	2520	=	
MISSOSE	16-MAY-96	REG		2370	=	
MISS05B	14-MAY-97	REG		2130	=	J
MISS05B	30-JUN-98	REG	LITHIUM	2710		
MISSORA	04-41/0-92	REC		1920		J
MISSORA	24-MAX-94	REG		7340	=	
MISS06A	10-MAY-96	PEG		2140	=	J
MISS06A	03-1UN-97	REG		1060	=	J
MISS06A	01-JUL-98	REG		2100		
MISS06A	17-May-99	REG	LITHIUM	2130		J
B38W07B	16-JUN-98	PEG		£ 100		
B38W/07B	27-May-99	REG		5460		
	21-11/03-00	KEG		6870		
B38W01S	28-JUL-93	REG	MAGNESIUM	36900	=	
B38W01S	23-MAY-94	REG	MAGNESIUM	35400	=	
B38W01S	21-MAY-95	REG	MAGNESIUM	27600	=	
B38W01S	17-MAY-96	REG	MAGNESIUM	32800	=	
B38W01S	04-JUN-97	REG	MAGNESIUM	30300		
B38W01S	07-JUL-98	REG	MAGNESIUM	25600		J
B38W02D	27-JUL-93	REG	MAGNESIUM	3830	в	
B38W02D	19-MAY-94	REG	MAGNESIUM	3480	=	
B38W02D	20-MAY-95	REG	MAGNESIUM	3020	z	
B38W02D	17-MAY-96	REG	MAGNESIUM	3710	=	
B38W02D	04-JUN-97	REG	MAGNESIUM	3840		
B38W02D	20-May-99	REG	MAGNESIUM	4020		
B38W02D	13-Jul-00	REG	MAGNESIUM	3740		
B38WU/B	16-JUN-98	REG	MAGNESIUM	57500		
B38W0/B	27-May-99	DUP	MAGNESIUM	88300		
B38W14D	04-AUG-93	REG	MAGNESIUM	25100	=	J
B38W14D	20-MAY-95	REG	MAGNESIUM	19500	=	
B38W14D	17-MAY-96	REG	MAGNESIUM	27800	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W14D	04-JUN-97	REG	MAGNESIUM	27700		
B38W14D	07-JUL-98	DUP	MAGNESIUM	28700		J
B38W14D	17-May-99	REG	MAGNESIUM	30000		
B38W14D	05-Jul-00	REG	MAGNESIUM	25300		
B38W14S	04-AUG-93	REG	MAGNESIUM	12100	=	.1
B38W14S	20-MAY-95	REG	MAGNESIUM	20000	=	· ·
B38W14S	17-MAY-96	REG	MAGNESIUM	28900	=	
B38W14S	17-MAY-96	DUP	MAGNESIUM	26300	-	
B38W14S	04-JUN-97	REG	MAGNESIUM	25300	-	
B38W14S	07-JUL-98	REG	MAGNESIUM	25000		
B38W14S	17-May-99	REG	MAGNESIUM	27400		5
B38W14S	05-Jul-00	REG	MAGNESUIM	26600		
B281445D	02 AUC 02	BEC	MACHECUM	20000		
D36W15D	02-AUG-93	REG	MAGNESIUM	18100	=	
DOBWAED	10 MAY OF	REG	MAGNESIUM	35500	=	
B36W ISD	19-IVIA 1-95	REG	MAGNESIUM	22700	=	J
B38W15D	03 11110 07	REG	MAGNESIUM	37500	-	
B38W15D	03-1010-97	REG	MAGNESIUM	26500		
B38W15D	06-JUL-96	REG	MAGNESIUM	17100		J
B38W15D	20-JUN-00	REG	MAGNESIUM	39400		
B38W15S	02-AUG-93	REG	MAGNESIUM	25200	=	
B38W15S	26-MAY-94	REG	MAGNESIUM	19300	=	
B38W15S	19-MAY-95	REG	MAGNESIUM	27700	=	J
B38W15S	19-MAY-95	DUP	MAGNESIUM	25300	=	J
B38W15S	13-MAY-96	REG	MAGNESIUM	17800	=	
B38W15S	03-JUN-97	REG	MAGNESIUM	19000		
B38W15S	06-JUL-98	REG	MAGNESIUM	18100		J
B38W15S	26-Jun-00	REG	MAGNESIUM	25300		
B38W17A	28-JUL-93	REG	MAGNESIUM	13300	=	
B38W17A	25-MAY-94	REG	MAGNESIUM	7340	=	
B38W17A	20-MAY-95	REG	MAGNESIUM	5610	=	
B38W17A	13-MAY-96	REG	MAGNESIUM	9720	=	
B38W17A	03-JUN-97	REG	MAGNESIUM	5620		
B38W17A	02-JUL-98	REG	MAGNESIUM	6280		J
B38W17A	13-May-99	DUP	MAGNESIUM	9300		
B38W17A	19-Jun-00	REG	MAGNESIUM	5930		
B38W17B	29-JUL-93	REG	MAGNESIUM	25400	Ξ	J
B38W17B	25-MAY-94	REG	MAGNESIUM	26600	=	
B38W17B	20-MAY-95	REG	MAGNESIUM	22800	=	
B38W17B	13-MAY-96	REG	MAGNESIUM	23500	=	
B38W17B	03-JUN-97	REG	MAGNESIUM	24900		
B38W17B	13-May-99	REG	MAGNESIUM	25200		
B38W18D	21-101-93	REG	MAGNESIUM	13600		
B38W18D	13-MAY-94	REG	MAGNESIUM	14400	_	
B38W18D	15-MAY-95	REG	MAGNESIUM	14400	-	J
B38W18D	14-MAY-96	REG	MAGNESIUM	14300	-	
B38W/18D	09-MAY-97	REG	MAGNESIUM	14000	-	
B3814/18D	08-111N-98	REG	MAGNESIUM	14000		
22814/180	20-May-00	REG	MAGNESUM	14400		
2381//180	20-Nay-55	PEG	MAGNESIUM	12400		
330VV 10D	00-00-00	REG	MAGNESION	12400		
538W19D	23-JUL-93	REG	MAGNESIUM	37200	=	
538W19D	16-MAY-94	REG	MAGNESIUM	52600	=	
338W19D	10-MAY-95	REG	MAGNESIUM	31200	=	
338W19D	16-MAY-96	REG	MAGNESIUM	43900	=	
538W19D	16-MAY-97	REG	MAGNESIUM	36600		J
338W19D	17-JUN-98	REG	MAGNESIUM	38900		
B38W19D	27-May-99	REG	MAGNESIUM	42000		
338W19D	12-Jul-00	REG	MAGNESIUM	31100		
338W 19S	27-MAY-94	REG	MAGNESIUM	76200	=	
338W19S	17-MAY-95	REG	MAGNESIUM	69000	=	
338W19S	10-MAY-96	REG	MAGNESIUM	62600	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W19S	29-JUN-98	REG	MAGNESIUM	43300		J
B38W19S	14-May-99	REG	MAGNESIUM	46100		
B38W/24D	09-4116-93	PEG	MACHESHIM	0710		·
B38W24D	18-MAY-94	REG	MACHESHIM	9710	-	J
B38W24D	17-MAY-95	REG	MAGNESIUM	9010	-	
B28W/24D	09.MAV.96	PEG	MACHESIUM	11600	-	
B38W/24D	02-1110-97	REG	MAGNESIUM	10100	-	
B38W24D	02-1111-98	REG	MAGNESIUM	9700		,
B38W24D	24-May-99	REG	MAGNESIUM	11400		J
B38W24D	22-Jun-00	REG	MAGNESIUM	10700		
BabWare		DEC	MACHECIUM		_	
B38VV245	05-AUG-93	REG	MAGNESIUM	6330	=	J
B3000243	17 MAY OF	REG	MAGNESIUM	7930	=	
B30VV245	17-MAT-95	REG	MAGNESIUM	8430	=	
B3044245	03-1414 1-90	REG	MAGNESIUM	8550	=	
D30W243	02-JUN-97	REG	MAGNESIUM	6280		
B38W245	12-JUL-98	REG	MAGNESIUM	5810		J
B38W245	13-May-99	REG	MAGNESIUM	4910		
B38W245	21-Jun-00	REG	MAGNESIUM	/830		
B38W25D	03-AUG-93	REG	MAGNESIUM	6810	=	
B38W25D	18-MAY-94	REG	MAGNESIUM	5680	=	
B38W25D	12-MAY-95	REG	MAGNESIUM	6940	=	
B38W25D	15-MAY-96	REG	MAGNESIUM	6470	=	
B38W25D	15-MAY-97	REG	MAGNESIUM	5670		J
B38W25D	01-JUL-98	REG	MAGNESIUM	5520		J
B38W25D	26-May-99	REG	MAGNESIUM	5290		
838W25D	07-Jul-00	REG	MAGNESIUM	4920		
B38W25S	03-AUG-93	REG	MAGNESIUM	7480	=	
B38W25S	24-MAY-94	REG	MAGNESIUM	7290	=	J
B38W25S	15-MAY-95	REG	MAGNESIUM	9110	=	
B38W25S	15-MAY-95	DUP	MAGNESIUM	7630	=	
B38W25S	15-MAY-96	REG	MAGNESIUM	7550	=	
B38W25S	15-MAY-96	DUP	MAGNESIUM	7980	=	
B38W25S	05-JUN-97	REG	MAGNESIUM	7470		
B38W25S	01-JUL-98	REG	MAGNESIUM	7810		J
B38W25S	17-May-99	REG	MAGNESIUM	6150		
B38W25S	07-Jul-00	REG	MAGNESIUM	7520		
MISS01AA	31-JUL-93	REG	MAGNESIUM	23800	=	
MISS01AA	23-MAY-94	REG	MAGNESIUM	22200	=	
MISS01AA	18-MAY-95	REG	MAGNESIUM	22000	=	
MISS01AA	09-MAY-96	REG	MAGNESIUM	24100	=	
MISS01AA	23-MAY-97	REG	MAGNESIUM	32100		
MISS01AA	18-JUN-98	REG	MAGNESIUM	33800		
MISS01AA	12-May-99	REG	MAGNESIUM	31700		
MISS01AA	20-Jun-00	REG	MAGNESIUM	23700		
MISS01B	21-JUL-93	REG	MAGNESIUM	18700	=	
MISS01B	16-MAY-94	REG	MAGNESIUM	18400	=	
MISS01B	10-MAY-95	REG	MAGNESIUM	17600	=	
MISS01B	15-MAY-96	REG	MAGNESIUM	19200	2	
MISS01B	18-JUN-98	REG	MAGNESIUM	18900		
MISS01B	25-May-99	REG	MAGNESIUM	18800		
MISS01B	20-Jun-00	REG	MAGNESIUM	17200		
MISS02A	20-JUL-93	REG	MAGNESIUM	16100	=	
MISS02A	12-MAY-94	REG	MAGNESIUM	7980	=	
MISS02A	10-MAY-95	REG	MAGNESIUM	3410	=	
MISS02A	16-MAY-96	REG	MAGNESIUM	5980	=	
MISS02A	15-MAY-97	REG	MAGNESIUM	7560		L
MISS02A	15-MAY-97	DUP	MAGNESIUM	7030		J
MISS02A	11-JUN-98	DUP	MAGNESIUM	11800		-
MISS02A	18-May-99	REG	MAGNESIUM	5700		
MISS02A	22-Jun-00	REG	MAGNESIUM	7780		
MISS02B	20-111-93	REG	MAGNESIUM	42300		
MISS02B	13-MAY-94	REG	MAGNESILIM	30100	-	,
	10 110 11-04		MAGNEGIOW	30100	-	J

.

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS02B	09-MAY-95	REG	MAGNESIUM	33600	=	
MISS02B	14-MAY-96	REG	MAGNESIUM	36100	=	
MISS02B	19-MAY-97	REG	MAGNESIUM	32500		J
MISS02B	10-JUN-98	REG	MAGNESIUM	34600		
MISS02B	18-May-99	DUP	MAGNESIUM	40500		
MISS02B	23-Jun-00	REG	MAGNESIUM	34200		
MISS05A	27-MAY-94	REG	MAGNESIUM	48200	=	
MISS05A	12-MAY-95	REG	MAGNESIUM	79200	_	
MISS05A	10-MAY-96	REG	MAGNESIUM	42700	-	
MISS05A	02-JUN-97	REG	MAGNESIUM	43300	-	
MISS05A	29-JUN-98	REG	MAGNESILIM	33100		
MISS05A	14-May-99	REG	MAGNESIUM	47700		J
MISSOER	22 11 02		MACHECUM	50000		
MISSUSB	23-JUL-93	REG	MAGNESIUM	58200	=	
MISSUSB	17-MAT-94	REG	MAGNESIUM	64400	=	
MISSUSB	11-MA 1-95	REG	MAGNESIUM	52200	=	J
MISSUSB	10-MA 1-96	REG	MAGNESIUM	47400	=	
MISSUSB	14-MAY-97	REG	MAGNESIUM	60300		
MISSUSB	30-JUN-98	REG	MAGNESIUM	19000		J
MISSUSB	11-Jul-00	REG	MAGNESIUM	23900		
MISS06A	04-AUG-93	REG	MAGNESIUM	14800	2	J
MISS06A	24-MAY-94	REG	MAGNESIUM	9830	÷	J
MISS06A	16-MAY-95	REG	MAGNESIUM	19200	=	
MISS06A	10-MAY-96	REG	MAGNESIUM	8630	=	
MISS06A	03-JUN-97	REG	MAGNESIUM	13600		
MISS06A	01-JUL-98	REG	MAGNESIUM	9670		J
MISS06A	17-May-99	DUP	MAGNESIUM	12400		
MISS06A	10-Jul-00	REG	MAGNESIUM	9330		
MISS07B	12-Jul-00	REG	MAGNESIUM	50000		
B38W01S	28-JUL-93	REG	MANGANESE	2880	_	1
B38W01S	23-MAY-94	REG	MANGANESE	2910	-	5
B38W01S	21-MAY-95	REG	MANGANESE	2340	_	
B38W01S	17-MAY-96	REG	MANGANESE	2810	_	
B38W01S	04-JUN-97	REG	MANGANESE	2780		
B38W01S	07-JUL-98	REG	MANGANESE	2270		
B28W/02D	27.111.02	PEC	MANCANESE	2270		·
B30W02D	10. MAY 04	REG	MANGANESE	2220	=	J
B30W02D	20 MAY 05	REG	MANGANESE	2000	-	
B30002D	17 MAY 96	REG	MANGANESE	1240	=	
B38W02D	04. ILIN 97	REG	MANGANESE	1350	=	
B30002D	20 1110 08	REG	MANGANESE	2460		
B30002D	20-May 99	REG	MANGANESE	3700		
B38W02D	13- Jul-00	REG	MANGANESE	1130		
Baavaar	13-301-00	REG	MANGANESE	2300		
B38W14D	04-AUG-93	REG	MANGANESE	31.7	=	
B38W14D	20-MAY-95	REG	MANGANESE	5.3	=	
B38W14D	17-MAY-96	REG	MANGANESE	5.3	=	
B38W14D	04-JUN-97	REG	MANGANESE	33.5		
B38W14D	07-JUL-98	REG	MANGANESE	14.2		
B38W14D	07-JUL-98	DUP	MANGANESE	13.3		
B38W14D	17-May-99	REG	MANGANESE	6.1		J
B38W14D	05-Jul-00	REG	MANGANESE	11.5		
B38W14S	04-AUG-93	REG	MANGANESE	505	=	
B38W14S	20-MAY-95	REG	MANGANESE	7.9	=	
B38W14S	17-MAY-96	REG	MANGANESE	22.6	=	
B38W14S	17-MAY-96	DUP	MANGANESE	20.3	=	
B38W14S	04-JUN-97	REG	MANGANESE	15.7		
B38W14S	07-JUL-98	REG	MANGANESE	126		J
B38W14S	17-May-99	REG	MANGANESE	32.1		
B38W14S	05-Jul-00	REG	MANGANESE	76.3		
B38W15D	02-AUG-93	REG	MANGANESE	474	=	J
Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
-----------	--------------	-------------	------------	--------------	----------	-------
B38W15D	26-MAY-94	REG	MANGANESE	944	z	
B38W15D	19-MAY-95	REG	MANGANESE	638	=	J
B38W15D	13-MAY-96	REG	MANGANESE	1080	=	J
B38W15D	03-JUN-97	REG	MANGANESE	809		
B38W15D	06-JUL-98	REG	MANGANESE	514		
B38W15D	26-Jun-00	REG	MANGANESE	1060		
B38W15S	02-AUG-93	REG	MANGANESE	1850	=	
B38W15S	26-MAY-94	REG	MANGANESE	1370	-	5
B38W15S	19-MAY-95	REG	MANGANESE	2170	-	
B38W15S	19-MAY-95	DUP	MANGANESE	1970	=	.1
B38W15S	13-MAY-96	REG	MANGANESE	1400	-	i
B38W15S	03-JUN-97	REG	MANGANESE	1540		5
B38W15S	06-JUL-98	REG	MANGANESE	1550		
B38W15S	26-Jun-00	REG	MANGANESE	2050		
D28\4/174	28 11 11 .02	PEC	MANCANESE	1020		
D38\A/17A	25-MAX-94	REG	MANCANESE	1030	-	J
B38W17A	20-MAV-95	REG	MANGANESE	57.7	-	
B38W17A	13-MAV-06	DEC	MANGANEGE	30.8	<i>=</i>	
B38\4/17A	13-10A1-30	REG	MANGANESE	38.4	=	J
D30111/A	03-3014-97	REG	MANGANESE	59.9		
B391/17A	13_May-00	REG DUD	MANCANESE	13/		
D30111/A	19-10-00	DUP	MANGANESE	42.7		
D30W17A	19-3411-00	REG	MANGANESE	2070		
B38W17B	29-JUL-93	REG	MANGANESE	3940	=	J
B38W17B	25-MAY-94	REG	MANGANESE	4650	=	
B38W17B	20-MAY-95	REG	MANGANESE	4020	=	
B38W17B	13-MAY-96	REG	MANGANESE	4710	=	J
B38W17B	03-JUN-97	REG	MANGANESE	4860		
B38W17B	02-JUL-98	REG	MANGANESE	3940		
B38W17B	13-May-99	REG	MANGANESE	4920		
B38W17B	19-Jun-00	REG	MANGANESE	3970		
B38W18D	21-JUL-93	REG	MANGANESE	4010	=	J
B38W18D	13-MAY-94	REG	MANGANESE	3800	=	J
B38W18D	15-MAY-95	REG	MANGANESE	4010	=	
B38W18D	14-MAY-96	REG	MANGANESE	3950	=	
B38W18D	09-MAY-97	REG	MANGANESE	2980		
B38W18D	08-JUN-98	REG	MANGANESE	3670		
B38W18D	20-May-99	REG	MANGANESE	4590		
B38W18D	06-Jul-00	REG	MANGANESE	3510		
B38W19D	23-JUL-93	REG	MANGANESE	2450	=	J
B38W19D	16-MAY-94	REG	MANGANESE	3090	=	
338W 19D	10-MAY-95	REG	MANGANESE	2030	=	
B38W19D	16-MAY-96	REG	MANGANESE	2570	=	
B38W19D	16-MAY-97	REG	MANGANESE	2400		
B38W19D	17-JUN-98	REG	MANGANESE	2530		
B38W19D	27-May-99	REG	MANGANESE	2820		
B38W19D	12-Jul-00	REG	MANGANESE	2240		
B38W19S	27-MAY-94	REG	MANGANESE	860	=	
B38W19S	17-MAY-95	REG	MANGANESE	301	=	
B38W19S	10-MAY-96	REG	MANGANESE	744	=	.1
B38W19S	29-JUN-98	REG	MANGANESE	682	-	5
B38W19S	29-Mav-99	REG	MANGANESE	841		
2291A/24D	09_01/0 02	BEC	MANICANECE			·.
230VV24U	18 MAY 04	REG	MANGANESE	5620	=	
000VV24U	10-1VIA 1-94	REG	MANGANESE	4/30	=	J
538W24U	17-MAY-95	REG	MANGANESE	3980	=	
200W24U	09-MAY-96	REG	MANGANESE	6190	=	J
DOBW24U	02-JUN-9/	REG	MANGANESE	5600		
538W24D	02-JUL-98	REG	MANGANESE	4720		
B38W24D	13-May-99	REG	MANGANESE	5860		
B38W24D	22-Jun-00	REG	MANGANESE	5350		
B38W24S	05-AUG-93	REG	MANGANESE	4720	=	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W24S	25-MAY-94	REG	MANGANESE	4610	=	
B38W24S	17-MAY-95	REG	MANGANESE	5420	=	
B38W24S	09-MAY-96	REG	MANGANESE	4430	=	J
B38W24S	02-JUN-97	REG	MANGANESE	3190		
B38W24S	02-JUL-98	REG	MANGANESE	2910		
B38W24S	13-May-99	DUP	MANGANESE	5040		
B38W24S	21-Jun-00	REG	MANGANESE	3830		
B38W25D	03-AUG-93	REG	MANGANESE	1620	=	J
B38W25D	18-MAY-94	REG	MANGANESE	1380	=	J
B38W25D	12-MAY-95	REG	MANGANESE	1740	=	J
B38W25D	15-MAY-96	REG	MANGANESE	1610	÷	J
B38W25D	15-MAY-97	REG	MANGANESE	1380		
B38W25D	01-JUL-98	REG	MANGANESE	1400		
B38W25D	26-May-99	REG	MANGANESE	1390		
B38W25D	07-Jul-00	REG	MANGANESE	1250		
B38W25S	03-AUG-93	REG	MANGANESE	1730	÷	J
B38W25S	24-MAY-94	REG	MANGANESE	1250	=	J
B38W25S	15-MAY-95	REG	MANGANESE	1540	=	
B38W25S	15-MAY-95	DUP	MANGANESE	1410	=	
B38W25S	15-MAY-96	REG	MANGANESE	1330	=	J
B38W25S	15-MAY-96	DUP	MANGANESE	1480	=	J
B38W25S	05-JUN-97	REG	MANGANESE	1450		
B38W25S	01-JUL-98	REG	MANGANESE	2390		
B38W25S	17-May-99	REG	MANGANESE	2670		J
B38W25S	07-Jul-00	REG	MANGANESE	7120		
MISS01AA	31-JUL-93	REG	MANGANESE	309	=	J
MISS01AA	23-MAY-94	REG	MANGANESE	156	=	
MISS01AA	18-MAY-95	REG	MANGANESE	8.6	z	
MISS01AA	09-MAY-96	REG	MANGANESE	119	=	J
MISS01AA	23-MAY-97	REG	MANGANESE	116		
MISS01AA	18-JUN-98	REG	MANGANESE	117		
MISS01AA	12-May-99	REG	MANGANESE	118		
MISS01AA	20-Jun-00	RÉG	MANGANESE	94.9		
MISS01B	21-JUL-93	REG	MANGANESE	236	=	j
MISS01B	16-MAY-94	REG	MANGANESE	356	=	
MISS01B	10-MAY-95	REG	MANGANESE	271	=	
MISS01B	15-MAY-96	REG	MANGANESE	390	=	J
MISS01B	18-JUN-98	REG	MANGANESE	375		
MISS01B	25-May-99	REG	MANGANESE	359		
MISS01B	20-Jun-00	REG	MANGANESE	291		
MISS02A	20-JUL-93	REG	MANGANESE	96.8	=	
MISS02A	12-MAY-94	REG	MANGANESE	21.9	=	J
MISS02A	10-MAY-95	REG	MANGANESE	50.6	=	
MISS02A	16-MAY-96	REG	MANGANESE	20.9	=	
MISS02A	15-MAY-97	DUP	MANGANESE	19.4		
MISS02A	11-JUN-98	DUP	MANGANESE	49.7		
MISS02A	18-May-99	REG	MANGANESE	71		
MISS02A	22-Jun-00	REG	MANGANESE	268		
MISS02B	20-JUL-93	REG	MANGANESE	4500	=	
MISS02B	13-MAY-94	REG	MANGANESE	4190	=	J
MISS02B	09-MAY-95	REG	MANGANESE	4210	=	
MISS02B	14-MAY-96	REG	MANGANESE	5470	=	
MISS02B	19-MAY-97	REG	MANGANESE	4630		
MISS02B	10-JUN-98	REG	MANGANESE	5120		
MISS02B	18-May-99	DUP	MANGANESE	5650		
MISS02B	23-JUN-00	REG	MANGANESE	3820		
MISS05A	27-MAY-94	REG	MANGANESE	728	=	
MISS05A	12-MAY-95	REG	MANGANESE	1330	=	J
MISS05A	10-MAY-96	REG	MANGANESE	646	=	J
MISS05A	02-JUN-97	REG	MANGANESE	584		
MISS05A	29-JUN-98	REG	MANGANESE	330		
MISS05A	14-May-99	REG	MANGANESE	688		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS05B	23-JUL-93	REG	MANGANESE	2220	=	J
MISS05B	17-MAY-94	REG	MANGANESE	2530	=	
MISS05B	11-MAY-95	REG	MANGANESE	2180	=	
MISS05B	16-MAY-96	REG	MANGANESE	1920	=	
MISS05B	14-MAY-97	REG	MANGANESE	2450		
MISS05B	30-JUN-98	REG	MANGANESE	771		
MISS05B	11-Jul-00	REG	MANGANESE	951		
MISS06A	04-AUG-93	REG	MANGANESE	826	=	
MISS06A	24-MAY-94	REG	MANGANESE	49 7	=	4
MISS06A	16-MAY-95	REG	MANGANESE	1540	=	
MISS06A	10-MAY-96	REG	MANGANESE	95	=	.1
MISS06A	03-JUN-97	REG	MANGANESE	374		•
MISS06A	01-JUL-98	REG	MANGANESE	267		
MISS06A	17-May-99	REG	MANGANESE	58.6		.1
MISS06A	10-Jul-00	REG	MANGANESE	228		•
MISS07B	12-Jul-00	REG	MANGANESE	2030		
	44.11.01.00					_
MISS02A	11-JUN-98	REG	MERCURY	0.51		J
MISS02A	11-JUN-98	DUP	MERCURY	0.52		J
MISS02A	22-Jun-00	REG	MERCURY	0.45		
B38W14D	05-JUI-00	REG	MERCURY	0.11		J
B38W245	21-JUN-00	REG	MERCURY	0.12		J
B38W02D	20-MAY-95	REG	MOLYBDENUM	9.7	=	
B38W02D	04-JUN-97	REG	MOLYBDENUM	2.5		
B38W02D	30-JON-98	REG	MOLYBDENUM	23.6		
B38W14D	20-MAY-95	REG	MOLYBDENUM	16.6	=	
B38W14S	20-MAY-95	REG	MOLYBDENUM	18.1	=	
B38W14S	04-JUN-97	REG	MOLYBDENUM	20.5		
B38W14S	07-JUL-98	REG	MOLYBDENUM	29.7		
B38W14S	17-May-99	REG	MOLYBDENUM	9.4		
B38W17A	28-JUL-93	REG	MOLYBDENUM	281	=	
B38W17A	20-MAY-95	REG	MOLYBDENUM	18.9	=	
B38W17A	03-JUN-97	REG	MOLYBDENUM	18.7		
B38W17A	02-JUL-98	REG	MOLYBDENUM	7 9 .1		
B38W17A	13-May-99	REG	MOLYBDENUM	2.6		
B38W18D	08-JUN-98	REG	MOLYBDENUM	9.7		
B38W19S	17-MAY-95	REG		20.4	_	·····
B38W19S	10-MAY-96	REG		10.1	-	
B38W24D	02-JUL-98	REG	MOLYBDENUM	3.9		
B38W25S	24-MAY-94	REG		6.0 E A		
B38W/255	01-111-98	PEG		0.4	-	
B38W25S	17-May-99	REG		16.6		
MICCOLAA	17 May 00	DEC	MOLTODENUM	10.0		
MISSUIAA	23-MAT-94	REG	MOLYBDENUM	49.2	=	J
MISSUIAA	22 MAX 07	REG	MOLYBDENUM	10	=	
MISSUIAA	18 111108	REG		1.8		
MI3301AA	10-3014-36	REG	MOLIBDENUM	3		
MISS02A	12-MAY-94	REG	MOLYBDENUM	5.9	=	J
MISS02A	15-MAY-97	REG	MOLYBDENUM	3.5		
MISS02A	15-MAY-97	DUP	MOLYBDENUM	3.5		
MISS02A	11-JUN-98	REG	MOLYBDENUM	3.4		
MISS02A	11-JUN-98	DUP	MOLYBDENUM	3.8		
MISS02A	11-JUN-99	REG	MOLYBDENUM	31.1		
MISS05A	02-JUN-97	REG	MOLYBDENUM	2.5		
MISS05A	29-JUN-98	REG	MOLYBDENUM	3.3		
MISS05A	14-May-99	REG	MOLYBDENUM	1.9		
B38W01S	28-JUL-93	REG	NICKEL	14.8	в	
B38W01S	04-JUN-97	REG	NICKEL	3.6		
B38W01S	07-JUL-98	REG	NICKEL	2.7		

.

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W02D	27-JUL-93	REG	NICKEL	14.8	в	
B38W02D	19-MAY-94	REG	NICKEL	10.1	=	
B38W02D	17-MAY-96	REG	NICKEL	40.8	=	
B38W02D	04-JUN-97	REG	NICKEL	17.6		
B38W02D	30-JUN-98	REG	NICKEL	41.6		
B38W02D	20-May-99	REG	NICKEL	5.7		
B38W02D	13-Jul-00	REG	NICKEL	32.7		
B38W14D	04-JUN-97	REG	NICKEL	18.5		
B38W14D	07-JUL-98	REG	NICKEL	10.2		
B38W14D	07-JUL-98	DUP	NICKEL	9.1		
B38W14D	17-MAY-99	REG	NICKEL	3.3		
B38W14D	05-Jul-00	REG	NICKEL	12.1		
B38W14S	04-Aug-93	REG	NICKEL	31.2	В	
B38W14S	17-MAY-96	REG	NICKEL	17	=	
B38W14S	17-MAY-96	DUP	NICKEL	17	=	
B38W14S	04-JUN-97	REG	NICKEL	19.7		
B38W14S	07-JUL-98	REG	NICKEL	31.3		
B38W14S	17-MAY-99	REG	NICKEL	23.5		
B38W14S	05-Jul-00	REG	NICKEL	9.6		
B38W15D	26-MAY-94	REG	NICKEL	30.9	=	
B38W15D	03-JUN-97	REG	NICKEL	6.8		
B38W15D	06-JUL-98	REG	NICKEL	8.2		
B38W15D	26-Jun-00	REG	NICKEL	9.7		
B38W15S	03-JUN-97	REG	NICKEI	3.8		
B38W15S	06-JUL-98	REG	NICKEL	5.2		
B38W15S	26-Jun-00	REG	NICKEL	4.8		
B38)A/17A	28, 111, 03	PEC	NICKEI	924	_	
B38\0/174	25-MAY-94	REG	NICKEL	153	-	
B38)//174	20-MAY-95	REG	NICKEL	155	-	
B38\//174	13-MAY-96	REG	NICKEL	143	-	
B38W/17A	03-111N-97	REG	NICKEL	143	-	
D38\A/17A	02-101-97	PEG	NICKEL	140		
B38\//17A	13-MAY-99	DUP	NICKEL	1201		
B38W17A	19- Jun-00	REG	NICKEL	120		
Doott 17A		<u></u>	NICKEL	114		
D30W17D	03-3014-97	REG	NICKEL	1.2		
D30W17D	12 144 7 00	REG	NICKEL	2.4		
D30W17D	10 Jun 00	REG	NICKEL	1.0		
B38\A/18D	21-111-93	PEG	NICKEL	27.6		
B38W/18D	13-MAY-94	REG	NICKEL	39.5	-	
B38W/18D	15-MAY-95	REG	NICKEL	39.3	-	J
B38W/18D	14-MAY-96	REG	NICKEL	20.3	-	
B38\//18D	09-MAY-97	REG	NICKEL	20.4	-	
B38W/18D	08-1UN-98	REG	NICKEL	55.5		
B38W18D	20-MAY-99	REG	NICKEL	24 0		
B38W18D	06-10-00	DEC	NICKEL	24.9		
B38W10D	16.MAV-07	PEG	NICKEL	22.1		
838W10D	17. ILIN-08	PEG	NICKEL	J.U 1 0		
R38W10D	27.MAV-00	REG	NICKEL	1.9		
B38W100	12- Jul-00	REG	NICKEL	1.7		
B38W195	29-1LIN-98	REG	NICKEL	A 7		J
B38W105	14-MAV-00	PEG	NICKEL	4.1		
B38W24D	18-MAV-94	REG	NICKEL	4.2		
B38\0/24D	02.11 NL-97	PEG	NICKEL	12.0	-	
B38W24D	02-111-98	PEG	NICKEL	1.4		
R38W24D	13-MAY-99	REG	NICKEL	14.r A A		
B38W24S	02-IUN-97	REG	NICKEL			
B38W24S	02-JUI -98	REG	NICKEL	0.4		
B38W245	21-40-00	REG	NICKEI	0.05 A		
338W25D	12-MAV-05	PEC	NICKEL	0 7 7 7		
B38W/25D	15-MAV-07	DEC	NICKEL	21.1	-	
23814/25D	01-110-09	REG	NICKEL	5.3		
23811/25D	26-MAY 00	PEC	NICKEL	2.7		
0007720D	20-IVIA 1-88	REG DEC	NICKEL	2.7		
D30VVZDU		REG	NICKEL	3.6		
22814/250	15 MAY OF	REG		134	=	
00000200	10-MAT-95	REG	NICKEL	22.5	#	
0000200	10-MAT-95	DUP	NICKEL	30	=	
538W25S	05-JUN-97	REG	NICKEL	5.8		

Station	Date	Sample Type	Analyte	Result(ug/I)	Lab Q	Rev Q
B38W25S	01-JUL-98	REG	NICKEL	35.1		
B38W25S	17-MAY-99	DUP	NICKEL	78.1		
D28\M/26S	07 101 00	DEC	NICKEL	, o. i		
B3600233	31 11 02	REG	NICKEL	32.4		
MISSOIAA	23-MAV-94	REG	NICKEL	66.5	=	
MISSO1AA	23-MAY-07	REG	NICKEL	243	=	
MISSOIAA	18- II IN 09	REG	NICKEL	4.1		
MISSOIAA	12-MAV-90	REG	NICKEL	9.9		
MISSUIAA	20 Jun 00	REG	NICKEL	3.6		
MISSOIR	20-Jun-00	REG	NICKEL	4		<u> </u>
MICCORA	20-5011-00	REG	NICKEL	1,9		J
MISS02A	20-JUL-93	REG	NICKEL	20.7	=	
MISS02A	12-MAY-94	REG	NICKEL	27.1	=	
MISS02A	10-MAY-95	REG	NICKEL	11.4	=	
MISSUZA	15-MAY-97	REG	NICKEL	12.2		
MISS02A	15-MAY-97	DUP	NICKEL	13.5		
MISS02A	11-JUN-98	REG	NICKEL	9.7		
MISSU2A	11-JUN-98	DUP	NICKEL	10.4		
MISS02A	18-MAY-99	REG	NICKEL	31.1		
MISS02A	22-Jun-00	REG	NICKEL	20		
MISS02B	20-JUL-93	REG	NICKEL	22.6	=	
MISS02B	13-MAY-94	REG	NICKEL	181	=	J
MISS02B	19-MAY-97	REG	NICKEL	9.2		
MISS02B	10-JUN-98	REG	NICKEL	9.2		
MISS02B	18-MAY-99	REG	NICKEL	9.6		
MISS02B	23-Jun-00	REG	NICKEL	20.9		
MISS05A	10-MAY-96	REG	NICKEL	10,9	=	
MISS05A	02-JUN-97	REG	NICKEL	6.1		
MISS05A	29-JUN-98	REG	NICKEL	5		
MISS05A	14-MAY-99	REG	NICKEL	22.8		
MISS05B	23-JUL-93	REG	NICKEL	17.7	В	
MISS05B	14-MAY-97	REG	NICKEL	4.1	-	
MISS05B	30-JUN-98	REG	NICKEL	10.8		
MISS06A	10-MAY-96	REG	NICKEI	17.3	-	
MISS06A	03-JUN-97	REG	NICKEL	10.6	-	
MISS06A	01-JUL-98	REG	NICKEL	8.1		
MISS06A	17-MAY-99	DUP	NICKEL	79		
MISS06A	10-Jul-00	REG	NICKEL	21.1		
MISS07B	12-Jul-00	REG	NICKEL	68		
B38W01S	28-JUL-93	REG	POTASSIUM	59500	=	
B38W01S	23-MAY-94	REG	POTASSIUM	54100	=	
B38W015	21-MAY-95	REG	POTASSIUM	44600	=	
B38W01S	17-MAY-96	REG	POTASSIUM	49300	=	
B38W015	04-JUN-97	REG	POTASSIUM	49500		
B38W015	07-JUL-98	REG	POTASSIUM	43700		
B38W02D	19-MAY-94	REG	POTASSIUM	1210	=	
B38W02D	17-MAY-96	REG	POTASSIUM	449	=	
B38W02D	04-JUN-97	REG	POTASSIUM	819		
B38W02D	30-JUN-98	REG	POTASSIUM	941		
338W02D	20-MAY-99	REG	POTASSIUM	777		
338W02D	13-Jul-00	REG	POTASSIUM	847		
338W14D	04-AUG-93	REG	POTASSIUM	7440	=	
338W14D	20-MAY-95	REG	POTASSIUM	3750	=	
338W14D	17-MAY-96	REG	POTASSIUM	4380	=	
338W14D	04-JUN-97	REG	POTASSIUM	5300		
338W14D	07-JUL-98	REG	POTASSIUM	6020		
338W14D	07-JUL-98	DUP	POTASSIUM	6110		
338W14D	17-MAY-99	REG	POTASSIUM	4140		
338W14D	05-Jul-00	REG	POTASSIUM	6240		
338W14S	04-AUG-93	PEG	POTASSILINA	5700	_	
338W14S	20-MAY-95	REG	POTASSIUM	2850	-	
38W14S	17-MAY-96	REG	POTASSIUM	2000	=	
38W14S	17-MAY-06	nue	POTAGOUM	3720	-	
338W145	04-1111-97	DUF DEC	DOTASSIUM	5090	-	
	34-3014-37	REG		0000		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W14S	07-JUL-98	REG	POTASSIUM	4930		
B38W14S	17-MAY-99	REG	POTASSIUM	4810		
B38W14S	05-Jul-00	REG	POTASSILIM	4420		
B38W/15D	02-41/6-93	PEG	POTASSIUM	41200		
B38W/15D	26-MAY-94	REG	POTASSIUM	41200	-	
B38W15D	19-MAY-95	REG	POTASSIUM	43300	-	
B38W15D	13-MAY-96	REG	POTASSIUM	65000	=	J
B38W15D	03-JUN-97	REG	POTASSIUM	50500		°.
B38W15D	06-JUL-98	REG	POTASSIUM	44200		
B38W15D	26-Jun-00	REG	POTASSIUM	72700		
B38W15S	02-AUG-93	REG	POTASSIUM	146000	=	
B38W15S	26-MAY-94	REG	POTASSIUM	138000	=	
B38W15S	19-MAY-95	REG	POTASSIUM	168000	=	J
B38W15S	19-MAY-95	DUP	POTASSIUM	154000	=	J
B38W15S	13-MAY-96	REG	POTASSIUM	136000	=	J
B38W15S	03-JUN-97	REG	POTASSIUM	136000		
B38W15S	06-JUL-98	REG	POTASSIUM	120000		
B38W15S	26-Jun-00	REG	POTASSIUM	164000		
B38W17A	28-JUL-93	REG	POTASSIUM	26600	=	
B38W17A	25-MAY-94	REG	POTASSIUM	20300	=	
B38W17A	20-MAY-95	REG	POTASSIUM	13900	=	
B38W17A	13-MAY-96	REG	POTASSIUM	31000	=	J
B38W17A	03-JUN-97	REG	POTASSIUM	19200		
B38W17A	02-JUL-98	REG	POTASSIUM	20800		
B38W17A	13-MAY-99	DUP	POTASSIUM	25000		
B38W17A	19-Jun-00	REG	POTASSIUM	18900		
B38\0/17B	29, 111, 93	PEC	POTASSIUM	78400		
D28\4(17D	26 502 55	REG	DOTACOUM	70400	-	5
B38W/17B	20-MAY-94	REG	POTASSIUM	72200	=	
B38W17B	13-MAY-96	REG	POTASSIUM	73200	-	,
B38W17B	03-JUN-97	REG	POTASSIUM	91100	-	5
B38W17B	02-JUL-98	REG	POTASSIUM	88000		
B38W17B	13-MAY-99	REG	POTASSIUM	98900		
B38W17B	19-Jun-00	REG	POTASSIUM	93300		
B38W18D	21-JUL-93	REG	POTASSIUM	6910	=	
B38W18D	13-MAY-94	REG	POTASSIUM	6240	=	.1
B38W18D	15-MAY-95	REG	POTASSIUM	6370	=	•
B38W18D	14-MAY-96	REG	POTASSIUM	6830	=	
B38W18D	09-MAY-97	REG	POTASSIUM	7530		
B38W18D	08-JUN-98	REG	POTASSIUM	8870		
B38W18D	20-MAY-99	DUP	POTASSIUM	7370		
B38W18D	06-Jul-00	REG	POTASSIUM	6320		
B38W19D	23-JUL-93	REG	POTASSIUM	381000	=	
B38W19D	16-MAY-94	REG	POTASSIUM	485000	=	
338W19D	10-MAY-95	REG	POTASSIUM	329000	=	
B38W19D	16-MAY-96	REG	POTASSIUM	435000	=	
338W19D	16-MAY-97	REG	POTASSIUM	397000		J
338W19D	17-JUN-98	REG	POTASSIUM	415000		J
338W19D	27-MAY-99	REG	POTASSIUM	408000		
538W19D	12-Jul-00	REG	POTASSIUM	291000		
338W19S	27-MAY-94	REG	POTASSIUM	43500	=	
338W19S	17-MAY-95	REG	POTASSIUM	40400	=	
338W19S	10-MAY-96	REG	POTASSIUM	33500	=	J
338W19S	29-JUN-98	REG	POTASSIUM	31800		
338W 195	14-MAY-99	REG	POTASSIUM	35500		
338W24D	09-AUG-93	REG	POTASSIUM	13000	=	
38W24D	18-MAY-94	REG	POTASSIUM	9900	=	
38W24D	17-MAY-95	REG	POTASSIUM	7530	=	
338W24D	09-MAY-96	REG	POTASSIUM	12700	=	J

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W24D	02-JUN-97	REG	POTASSIUM	12800		
B38W24D	02-JUL-98	REG	POTASSIUM	12200		
B38W24D	13-MAY-99	REG	POTASSIUM	12800		
B38W24D	22-Jun-00	REG	POTASSIUM	11600		
B38W24S	05-AUG-93	REG	POTASSIUM	8060	=	
B38W24S	25-MAY-94	REG	POTASSIUM	6600	=	
B38W24S	17-MAY-95	REG	POTASSIUM	7050	=	
B38W24S	09-MAY-96	REG	POTASSIUM	8790	Ŧ	J
B38W24S	02-JUN-97	REG	POTASSIUM	6030		
B38W24S	02-JUL-98	REG	POTASSIUM	6450		
B38W24S	13-MAY-99	DUP	POTASSIUM	7710		
B38W24S	21-Jun-00	REG	POTASSIUM	6990		
B38W25D	03-AUG-93	REG	POTASSIUM	92300	=	
B38W25D	18-MAY-94	REG	POTASSIUM	62800	=	
B38W25D	12-MAY-95	REG	POTASSIUM	73900	=	J
B38W25D	15-MAY-96	REG	POTASSIUM	77800	=	J
B38W25D	15-MAY-97	REG	POTASSIUM	61700		J
B38W25D	01-JUL-98	REG	POTASSIUM	56900		
B38W25D	26-MAY-99	DUP	POTASSIUM	56200		
B38W25D	07-Jul-00	REG	POTASSIUM	48300		
B38W25S	03-AUG-93	REG	POTASSIUM	167000	=	
B38W25S	24-MAY-94	REG	POTASSIUM	89600	=	J
B38W25S	15-MAY-95	REG	POTASSIUM	88400	=	
B38W25S	15-MAY-95	DUP	POTASSIUM	88800	=	
B38W25S	15-MAY-96	REG	POTASSIUM	72800	=	J
B38W25S	15-MAY-96	DUP	POTASSIUM	77900	=	J
B38W25S	05-JUN-97	REG	POTASSIUM	71400		
B38W25S	01-JUL-98	REG	POTASSIUM	45900		
B38W25S	17-MAY-99	REG	POTASSIUM	74400		
B38W25S	07-Jul-00	REG	POTASSIUM	59900		
MISS01AA	31-JUL-93	REG	POTASSIUM	2340	в	J
MISS01AA	18-MAY-95	REG	POTASSIUM	1550	=	
MISS01AA	09-MAY-96	REG	POTASSIUM	1460	=	J
MISS01AA	23-MAY-97	REG	POTASSIUM	1900		
MISS01AA	18-JUN-98	REG	POTASSIUM	2100		
MISS01AA	12-MAY-99	REG	POTASSIUM	1590		
MISS01AA	20-Jun-00	REG	POTASSIUM	1270		
MISS01B	21-JUL-93	REG	POTASSIUM	6350	=	
MISS01B	16-MAY-94	REG	POTASSIUM	5710	=	
MISS01B	10-MAY-95	REG	POTASSIUM	6950	=	
MISS01B	15-MAY-96	REG	POTASSIUM	15300	=	J
MISS01B	18-JUN-98	REG	POTASSIUM	13900		
MISS01B	25-MAY-99	REG	POTASSIUM	11900		
MISS01B	20-Jun-00	REG	POTASSIUM	9000		
MISS02A	20-JUL-93	REG	POTASSIUM	9390	=	
MISS02A	12-MAY-94	REG	POTASSIUM	2850	=	
MISS02A	10-MAY-95	REG	POTASSIUM	4340	=	
MISS02A	16-MAY-96	REG	POTASSIUM	3190	=	
MISS02A	15-MAY-97	REG	POTASSIUM	5120		J
MISS02A	15-MAY-97	DUP	POTASSIUM	4940		J
MISS02A	11-JUN-98	REG	POTASSIUM	4790		J
MISS02A	11-JUN-98	DUP	POTASSIUM	5260		J
MISS02A	18-MAY-99	REG	POTASSIUM	12500		
MISS02A	22-Jun-00	REG	POTASSIUM	9350		J
MISS02B	20-JUL-93	REG	POTASSIUM	55100	=	
MISS02B	13-MAY-94	REG	POTASSIUM	32000	=	J
MISS02B	09-MAY-95	REG	POTASSIUM	40300	=	-
MISS02B	14-MAY-96	REG	POTASSIUM	38000	=	
MISS02B	19-MAY-97	REG	POTASSIUM	40100		J
MISS02B	10-JUN-98	REG	POTASSIUM	46200		J
MISS02B	18-MAY-99	REG	POTASSIUM	70700		-
MISS02B	23-Jun-00	REG	POTASSIUM	84400		
MISS05A	27-MAY-94	REG	POTASSILIM	57800	=	
				0.000	-	

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS05A	12-MAY-95	REG	POTASSIUM	84600	=	J
MISS05A	10-MAY-96	REG	POTASSIUM	53000	=	Ĵ
MISS05A	02-JUN-97	REG	POTASSIUM	64100		
MISS05A	29-JUN-98	REG	POTASSIUM	45000		
MISS05A	14-MAY-99	REG	POTASSIUM	58300		
MISSOFR	23-1111-93	PEG	POTASSILIM	224000	-	
MISSOED	17 MAY DA	REG	POTASSIUM	224000	-	
MISSUSB	11 MAY OF	REG	POTASSIUM	230000	_	
MISSUSE	16 MAY 06	REG	POTASSIUM	231000	=	
MISSUSE	10-MAY 07	REG	POTASSIUM	234000	=	
MISSUSB	14-MAT-97	REG	POTASSIUM	224000		
MISSUSB	30-JUN-90	REG	POTASSIUM	162000		
MI5505B		REG	PUTASSIUM	167000		
MISS06A	04-AUG-93	REG	POTASSIUM	75400	Ξ	
MISS06A	24-MAY-94	REG	POTASSIUM	12100	=	J
MISS06A	16-MAY-95	REG	POTASSIUM	97000	=	
MISS06A	10-MAY-96	REG	POTASSIUM	12300	=	J
MISS06A	03-JUN-97	REG	POTASSIUM	22900		
MISS06A	01-JUL-98	REG	POTASSIUM	15000		
MISS06A	17-MAY-99	REG	POTASSIUM	15800		
MISS06A	10-Jul-00	REG	POTASSIUM	12600		
MISS07B	12-Jul-00	REG	POTASSIUM	29200		
B38W02D	30-JUN-98	REG	SILVER	0.78		
DONNOZE	16 1111 09	PEC		4.4		
53674075	10-3014-90	REG	SILVER	1.1		J
B38W07B	27-MAY-99	DUP	SILVER	3		·
B38W19D	16-MAY-94	REG	SILVER	6	Ξ	
B38W19D	17-JUN-98	REG	SILVER	4.3		
B38W19S	14-MAY-99	REG	SILVER	1.5		
B38W24D	18-MAY-94	REG	SILVER	4.8	=	
B38W24D	02-JUL-98	REG	SILVER	0.56		
MISS01AA	18-JUN-98	REG	SILVER	1.3		
MISS01B	16-MAY-94	REG	SILVER	64	-	-
MI3301D	05 1441 00	REG	OILVER	0.4	-	
MISSUIB	25-MA 1-99	REG	SILVER	1.4		·····
MISSUZA	11-JUN-98	REG	SILVER	3.5		J
MISSUZA	11-JUN-98	DUP	SILVER	0.96		J
MISSUZA	10-MA1-99	REG	SILVER	1.4	· · · · ·	
MISS02B	10-JUN-98	REG	SILVER	1.2		J
MISS02B	18-MAY-99	REG	SILVER	1.4		
MISS05A	27-MAY-94	REG	SILVER	5.6	=	
MISS05A	14-MAY-99	REG	SILVER	1.5		
B38W01S	28-JUL-93	REG	SODIUM	91100	=	
B38W015	23-MAY-94	REG	SODIUM	80300	=	
B38W01S	21-MAY-95	REG	SODIUM	53700	=	
B38W015	1/-MAY-96	REG	SODIUM	59900	=	
B38W015	04-JUN-97	REG	SODIUM	52200		
B38W015	07-JUL-98	REG	SODIUM	39500		J
B38W02D	27-JUL-93	REG	SODIUM	7820	=	
B38W02D	19-MAY-94	REG	SODIUM	7060	=	
B38W02D	20-MAY-95	REG	SODIUM	6050	=	
B38W02D	17-MAY-96	REG	SODIUM	7210	=	
B38W02D	04-JUN-97	REG	SODIUM	8410		
B38W02D	30-JUN-98	REG	SODIUM	8710		J
B38W02D	20-MAY-99	REG	SODIUM	8350		
B38W02D	13-Jul-00	REG	SODIUM	9050		
B38W14D	04-AUG-93	REG	SODIUM	29400	=	
B38W14D	20-MAY-95	REG	SODIUM	22100	=	
B38W14D	17-MAY-96	REG	SODIUM	31100	=	
B38W14D	04-JUN-97	REG	SODIUM	34800		
B38W14D	07-JUL-98	REG	SODIUM	34500		J
B38W14D	07-JUL-98	DUP	SODIUM	35400		J
B38W14D	17-MAY-99	REG	SODIUM	38800		2
B38W14D	05-Jul-00	REG	SODIUM	34800		

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W14S	04-AUG-93	REG	SODIUM	11500	=	
B38W14S	20-MAY-95	REG	SODIUM	13500	=	
B38W14S	17-MAY-96	REG	SODIUM	19500	=	
B38W14S	17-MAY-96	DUP	SODIUM	17700	=	
B38W14S	04-JUN-97	REG	SODIUM	21900		
B38W14S	07-JUL-98	REG	SODIUM	19900		J
B38W14S	17-MAY-99	REG	SODIUM	22800		-
B38W14S	05-Jul-00	REG	SODIUM	23300		
B38\//15D	02-4116-93	PEG	SODIUM	229000	_	····
B38W15D	26-MAY-94	REG	SODIUM	229000	-	
B38W15D	19-MAY-95	PEG	SODIUM	340000	-	
B38W15D	13-MAY-06	REG	SODIUM	245000	-	
B38W/15D	03-11 IN-97	REG	SODIUM	351000	-	J
B30W15D	06-111-98	REG	SODIUM	201000		
D30W 15D	26 Jun 00	REG	SODIUM	181000		J
B307715D	20-301-00	REG	SODIUM	204000	.	
B38W15S	02-AUG-93	REG	SODIUM	223000	=	
B38W15S	26-MAY-94	REG	SODIUM	205000	=	
B38W15S	19-MAY-95	REG	SODIUM	269000	=	
B38W15S	19-MAY-95	DUP	SODIUM	248000	=	
B38W15S	13-MAY-96	REG	SODIUM	207000	=	J
B38W15S	03-JUN-97	REG	SODIUM	207000		
B38W15S	06-JUL-98	REG	SODIUM	187000		J
B38W15S	26-Jun-00	REG	SODIUM	175000		
B38W17A	28-JUL-93	REG	SODIUM	47000	=	
B38W17A	25-MAY-94	REG	SODIUM	37500	=	
B38W17A	20-MAY-95	REG	SODIUM	28000	=	
B38W17A	13-MAY-96	REG	SODIUM	58100	=	J
B38W17A	03-JUN-97	REG	SODIUM	33300		
B38W17A	02-JUL-98	REG	SODIUM	32300		J
B38W17A	13-MAY-99	REG	SODIUM	50800		
B38W17A	19-Jun-00	REG	SODIUM	38100		
B38W17B	29-JUL-93	REG	SODIUM	207000	=	J
B38W17B	25-MAY-94	REG	SODIUM	208000	=	
B38W17B	20-MAY-95	REG	SODIUM	232000	=	
B38W17B	13-MAY-96	REG	SODIUM	194000	Ξ	J
B38W17B	03-JUN-97	REG	SODIUM	218000		
B38W17B	02-JUL-98	REG	SODIUM	172000		L
B38W17B	13-MAY-99	REG	SODIUM	197000		
B38W17B	19-Jun-00	REG	SODIUM	211000		
B38W18D	21-JUI -93	REG	SODIUM	28300	-	
B38W18D	13-MAY-94	REG	SODIUM	32800	-	
B38W18D	15-MAY-95	REG	SODIUM	27000	-	5
B38W/18D	14-MAY-96	REG	SODIUM	29700	-	
DODWARD	00 MAY 07	DEG	SODIUM	20100	-	
B38W18D	09-MA1-97	REG	SODIUM	29100		
B38W18D	08-JUN-98	REG	SODIUM	34800		
B38W18D	20-MAY-99	REG	SODIUM	34300		
B38W18D	06-Jul-00	REG	SODIUM	36600		
B38W19D	23-JUL-93	REG	SODIUM	469000	=	
B29W/10D	16 MAY 04	DEC	CODIUM	400000	_	
B30W I9D	10-MAY 05	REG	SODIUM	499000	=	
B36W 19D	10-MAT-95	REG	SODIUM	306000	=	
B30W19D	10-MAT-90	REG	SODIUM	391000	=	
B36W190	10-IVIA 1-97	REG	SODIUM	327000		
B30W19D	17-JUN-96	REG	SODIUM	367000		
B38W19D	27-MAY-99	REG	SODIUM	383000		
B38W19D	12-JUI-00	REG	SODIUM	206000		J
B38W19S	27-MAY-94	REG	SODIUM	25900	z	
B38W19S	17-MAY-95	REG	SODIUM	23700	=	J
B38W19S	10-MAY-96	REG	SODIUM	22700	=	J
B38W19S	29-JUN-98	REG	SODIUM	21300		J
B38W19S	14-MAY-99	REG	SODIUM	21700		

.

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W24D	09-AUG-93	REG	SODIUM	59800	=	J
B38W24D	18-MAY-94	REG	SODIUM	46600	=	
B38\W24D	17-MAY-95	REG	SODIUM	39700	=	J
B28)4(24D	09-MAY-96	REG	SODIUM	54500	=	.1
B300024D	02-1118-07	REG	SODIUM	41300		Ū
D300024D	02-3011-37	REG	SODIUM	33800		,
B36VV24D	12 MAX 00	PEC	SODIUM	40000		5
B38W24D	13-MAT-99	REG	SODIUM	40000		
B38W24D	22-301-00	REG	SODIUM	34700		
B38W24S	05-AUG-93	REG	SODIUM	21700	=	
B38W24S	25-MAY-94	REG	SODIUM	19800	=	
B38W24S	17-MAY-95	REG	SODIUM	18800	=	J
B38W24S	09-MAY-96	REG	SODIUM	15700	=	J
B38W24S	02-JUN-97	REG	SODIUM	12500		
B38W24S	02-JUL-98	REG	SODIUM	12000		J
B38W24S	13-MAY-99	DUP	SODIUM	15600		
B38W24S	21-Jun-00	REG	SODIUM	13900		
B38W/25D	03-AUG-93	REG	SODIUM	54500	=	
B38\//25D	18-MAY-94	REG	SODIUM	40200	±	
B38\//25D	12-MAY-95	REG	SODIUM	43700	=	.I
B30W25D	15-MAY-96	REG	SODIUM	37600	-	.i
D300025D	15-MAY-97	REG	SODIUM	30900		Ŭ
B36W25D	01 111 09	PEC	SODIUM	28900		
B36WZ5D	01-JUL-90	REG	SODIUM	20300		5
B38W25D	26-MAT-99	REG	SODIUM	27700		
B38W25D	07-301-00	REG	SODIUM	20000		
B38W25S	03-AUG-93	REG	SODIUM	83800	=	
B38W25S	24-MAY-94	REG	SODIUM	42200	=	J
B38W25S	15-MAY-95	REG	SODIUM	37200	=	
B38W25S	15-MAY-95	DUP	SODIUM	37000	=	
B38W25S	15-MAY-96	REG	SODIUM	28300	=	J
B38W25S	15-MAY-96	DUP	SODIUM	31400	=	J
B38W25S	05-JUN-97	REG	SODIUM	31800		
B38W25S	01-JUL-98	REG	SODIUM	21600		J
B38W25S	17-MAY-99	REG	SODIUM	29900		
B38W25S	07-Jul-00	REG	SODIUM	30100		
MISS01AA	31-JUL-93	REG	SODIUM	7400	=	
MISS01AA	23-MAY-94	REG	SODIUM	4810	=	
MISSOIAA	18-MAY-95	REG	SODIUM	5990	=	.1
MISSOIAA	09-MAY-96	REG	SODIUM	3870	=	J
MISSOIAA	23-MAY-97	REG	SODIUM	5260		•
MISSOIAA	19- 11 INL-98	REG	SODIUM	5300		
MISSOIAA	12-4447-00	PEG	SODIUM	5140		
MISSUIAA	20 Jun 00	REG	SODIUM	4850		
MISSUIAA	20-001900		00010101	4050		
MISS01B	21-JUL-93	REG	SODIUM	53200	=	
MISS01B	16-MAY-94	REG	SODIUM	48100	=	
MISS01B	10-MAY-95	REG	SODIUM	48100	=	
MISS01B	15-MAY-96	REG	SODIUM	56900	=	J
MISS01B	18-JUN-98	REG	SODIUM	49000		
MISS01B	25-MAY-99	REG	SODIUM	51500		
MISS01B	20-Jun-00	REG	SODIUM	50000		
MISS02A	20-JUL-93	REG	SODIUM	870000	=	
MISS02A	12-MAY-94	REG	SODIUM	878000	=	
MISS02A	10-MAY-95	REG	SODIUM	986000	=	
MISS02A	16-MAY-96	REG	SODIUM	800000	=	
MISS02A	15-MAY-97	REG	SODIUM	709000		
MISS024	15-MAY-97	DUP	SODIUM	679000		
MISS024	11-11 INLOR	DUP	SODIUM	555000		
MISSO2A	22-Jun-00	REG	SODIUM	666000		
		550	0001011	4040000		
MISS02B	20-JUL-93	REG	SODIUM	1310000	=	
MISS02B	13-MAY-94	REG	SODIUM	801000	=	J
MISS02B	09-MAY-95	REG	SODIUM	932000	=	J

.

Station	Date	Sample Type	Analyte	Result(ug/I)	Lab Q	Rev Q
MISS02B	14-MAY-96	REG	SODIUM	981000	=	
MISS02B	19-MAY-97	REG	SODIUM	959000		
MISS02B	10-JUN-98	REG	SODIUM	973000		
MISS02B	18-MAY-99	REG	SODIUM	1000000		
MISS02B	23-Jun-00	REG	SODIUM	342000		
MISS05A	27-MAY-94	REG	SODIUM	17300	=	
MISS05A	12-MAY-95	REG	SODIUM	24200	=	1
MISS05A	10-MAY-96	REG	SODIUM	14000	=	,
MISS05A	02-JUN-97	REG	SODIUM	20100		v
MISS05A	29-JUN-98	REG	SODIUM	13800		1
MISS05A	14-MAY-99	REG	SODIUM	18000		v
MICCOER	22 11 11 02	PEC	SODIUM	224000		
MISSUSB	17 MAY 04	REG	SODIUM	321000	=	
MISSUSB	17-100-11-94	REG	SODIUM	362000	=	
MISSUBB	11-MAT-90	REG	SODIUM	303000	=	
MISSUSB	10-IVIA 1-90	REG	SODIUM	272000	=	
MISSUSB	14-MAY-97	REG	SODIUM	297000		
MISS05B	30-JUN-98	REG	SODIUM	107000		J
MISS05B	11-Jul-00	REG	SODIUM	94800		
MISS06A	04-AUG-93	REG	SODIUM	57300	=	
MISS06A	24-MAY-94	REG	SODIUM	15100	=	J
MISS06A	16-MAY-95	REG	SODIUM	62600	=	
MISS06A	10-MAY-96	REG	SODIUM	10500	=	J
MISS06A	03-JUN-97	REG	SODIUM	19400		
MISS06A	01-JUL-98	REG	SODIUM	15800		J
MISS06A	17-MAY-99	DUP	SODIUM	21300		
MISS06A	10-Jul-00	REG	SODIUM	17100		
MISS07B	27-MAY-99	REG	SODIUM	1290000		
MISS07B	12-Jui-00	REG	SODIUM	338000		
B38W02D	13-Jul-00	REG	THALLIUM	5.5		J
B38W15S	26-Jun-00	REG	THALLIUM	6.2		J
B38W18D	06-Jul-00	REG	THALLIUM	7.8		J
B38W25S	07-Jul-00	REG	THALLIUM	17.4		
MISS02B	23-Jun-00	REG	THALLIUM	7.8		J
B38W02D	04-JUN-97	REG	VANADIUM	1.2		
B38W02D	30-JUN-98	REG	VANADIUM	2.7		
B38W02D	20-MAY-99	REG	VANADIUM	1		
B38W02D	13-Jul-00	REG	VANADIUM	18		J
B29\A/14D	17-MAY-06	PEG		4.7	-	
B3000 14D	07.101.08	REG	VANADIUM	4.7	-	
B3099 14D	07-JUL-98	DUD	VANADIUM	1.1		
B389914D	07-JUL-96	DOP	VANADIUM	0.8		
B3699 14D	17-IVIA 199	REG	VANADIOM	1.1		······
B38W14S	17-MAY-96	REG	VANADIUM	7.4	=	
B38W14S	17-MAY-96	DUP	VANADIUM	7.2	=	
B38W14S	04-JUN-97	REG	VANADIUM	6.2		
B38W14S	07-JUL-98	REG	VANADIUM	9.8		
B38W14S	17-MAY-99	REG	VANADIUM	2.9		
B38W15D	26-MAY-94	REG	VANADIUM	11.9	=	
B38W15D	13-MAY-96	REG	VANADIUM	12.3	=	
B38W15D	03-JUN-97	REG	VANADIUM	4.2		
B38W15D	06-JUL-98	REG	VANADIUM	4.2		
B38W15S	02-AUG-93	REG	VANADIUM	13.3	в	
B38W15S	03-JUN-97	REG	VANADIUM	21	-	
B38W15S	06-JUL-98	REG	VANADIUM	2.2		
B3810/17A	25-MAY 04	PEC	VANADU IM		~	
B38\4/17A	12. MAV 00	DEC	VANADUM	3.3	-	
D20141474	03. ILIN 07	REG		5.4 7 C	=	
DOOW I/A	03-3014-97	REG		1.2		
D38W1/A	02-JUL-98	REG	VANADIUM	28.2		
B38W1/A	19-JUN-00	REG	VANADIUM	11.8		
B38W17B	25-MAY-94	REG	VANADIUM	20.8	=	
B38W17B	20-MAY-95	REG	VANADIUM	7.6	=	
B38W17B	13-MAY-96	REG	VANADIUM	20.6	=	
B38W17B	03-JUN-97	REG	VANADIUM	2		
B38W17B	02-JUL-98	REG	VANADIUM	1		
B38W17B	13-MAY-99	REG	VANADIUM	2.1		
B38W17B	19-Jun-00	REG	VANADIUM	1		L

_

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
B38W19D	16-MAY-94	REG	VANADIUM	4.2	=	
B38W19D	16-MAY-96	REG	VANADIUM	8.1	=	
B38W19D	16-MAY-97	REG	VANADIUM	5.2		
B38W19D	17-JUN-98	REG	VANADIUM	4.2		
B38W19D	27-MAY-99	REG	VANADIUM	8.2		
B38W19D	12-Jul-00	REG	VANADIUM	4.5		
B38W19S	27-MAY-94	REG	VANADIUM	56.6	=	
B38W19S	17-MAY-95	REG	VANADIUM	67	=	
B38W19S	10-MAY-96	REG	VANADIUM	41.9	=	
B38W19S	29-JUN-98	REG	VANADIUM	11		
B38W19S	14-MAY-99	REG	VANADIUM	2		
B38W24D	02- IL IN-97	REG		12		
B38W24D	02-101-97	REG		0.8		
B38W24D	13-MAY-99	REG	VANADIUM	0.8		
8001124D	00 1111 07	<u></u>		0.0		·····
B38W245	02-JUN-97	REG	VANADIUM	2.8		
B38W245	02-JUL-98	REG	VANADIUM	1.1		
B38W245	13-MAY-99	REG	VANADIUM	0.89		
B38W25S	03-AUG-93	REG	VANADIUM	16.7	в	J
B38W25S	24-MAY-94	REG	VANADIUM	15	=	
B38W25S	15-MAY-96	REG	VANADIUM	9.3	=	
B38W25S	15-MAY-96	DUP	VANADIUM	13.1	=	
B38W25S	05-JUN-97	REG	VANADIUM	1.3		
B38W25S	01-JUL-98	REG	VANADIUM	1.8		
B38W25S	17-MAY-99	REG	VANADIUM	1.7		
MISS01AA	31-JUL-93	REG	VANADIUM	46.1	в	J
MISS01AA	23-MAY-94	REG	VANADIUM	42.1	=	
MISS01AA	09-MAY-96	REG	VANADIUM	37.9	=	
MISS01AA	23-MAY-97	REG	VANADIUM	0.5		
MISS01AA	18-JUN-98	REG	VANADIUM	4.6		
MISS01AA	12-MAY-99	REG	VANADIUM	2.8		
MISS01B	16-MAY-94	REG	VANADIUM	7.4	=	
MISS01B	15-MAY-96	REG	VANADIUM	13.6	=	
MISS01B	18-JUN-98	REG	VANADIUM	2.5		
MISS01B	25-MAY-99	REG	VANADIUM	3.4		
MISS01B	20-Jun-00	REG	VANADIUM	2.9		J
MISS02A	10-MAY-95	REG	VANADIUM	10.1	=	
MISS02A	16-MAY-96	REG	VANADIUM	6.3	=	
MISS02A	15-MAY-97	REG	VANADIUM	4.7		
MISS02A	15-MAY-97	DUP	VANADIUM	4.8		
MISS02A	11-JUN-98	REG	VANADIUM	2		
MISS02A	11-JUN-98	DUP	VANADIUM	2.4		
MISS02A	18-MAY-99	DUP	VANADIUM	9.7		
MISS02A	22-Jun-00	REG	VANADIUM	2.7		J
MISS02B	09-MAY-95	REG	VANADIUM	6.8	=	
MISS02B	19-MAY-97	REG	VANADIUM	3.4		
MISS02B	10-JUN-98	REG	VANADIUM	3.4		
MISS02B	18-MAY-99	DUP	VANADIUM	3.9		
MISS02B	23-Jun-00	REG	VANADIUM	4.7		
MISS05A	27-MAY-94	REG	VANADIUM	50.5	=	
MISS05A	10-MAY-96	REG	VANADIUM	41.9	=	
MISS05A	02-JUN-97	REG	VANADIUM	16.9		
MISS05A	29-JUN-98	REG	VANADIUM	11.3		
MISS05A	14-MAY-99	REG	VANADIUM	1.6		
MISS05B	17-MAY-94	REG	VANADIUM	27.7	=	
MISS05B	16-MAY-96	REG	VANADIUM	6	=	
MISS05B	14-MAY-97	REG	VANADIUM	3.8		
MISS05B	30-JUN-98	REG	VANADIUM	0.96		
MISS05B	11-Jul-00	REG	VANADIUM	2.1		J
MISS06A	04-AUG-93	REG	VANADILIM	21 9	R	⁻ I
MISS06A	24-MAY-94	REG	VANADIUM	23.6	=	5
MISS06A	10-MAY-96	REG	VANADIUM	176	=	
MISS06A	03-JUN-97	REG	VANADIUM	12	-	

37

Station	Date	Sample Type	Analyte	Result(ug/l)	Lab Q	Rev Q
MISS06A	01-JUL-98	REG	VANADIUM	1.2		
MISS06A	17-MAY-99	REG		12		
MICCOCA	10 14 00	DEC				
WISSU0A	10-301-00	REG_	VANADIOM	2.1		
MISS07B	27-MAY-99	DUP	VANADIUM	19.6		
MISS07B	12-Jul-00	REG	VANADIUM	13.9		
B38W01S	23-MAY-94	REG	ZINC	129	=	J
B38W01S	07-JUL-98	REG	ZINC	13.5		
B38W02D	27-JUL-93	REG	ZINC	15.2	в	
B38W02D	17-MAY-96	REG	ZINC	3.2	=	
B38W02D	30-JUN-98	REG	ZINC	7.4		
B38W14D	04-AUG-93	REG	ZINC	23.7	=	
B38W14D	17-MAY-96	REG	ZINC	4.2	=	
B38W14D	07-JUL-98	REG	ZINC	21.1		
B38W14D	07-JUL-98	DUP	ZINC	17.9		
B38W14D	05-Jul-00	REG	ZINC	24.7		
B38W14S	04-AUG-93	REG	ZINC	47.1	=	
B38W14S	20-MAY-95	REG	ZINC	40.1	=	
B38W14S	17-MAY-96	REG	ZINC	6.5	=	
B38W14S	17-MAY-96	DUP	ZINC	5.3	=	
B38W14S	07-JUL-98	REG	ZINC	40.3		
B38W14S	13-MAY-99	REG	ZINC	6.9		
B38W15D	02-AUG-93	REG	ZINC	57.5	=	UJ
B38W15D	26-MAY-94	REG	ZINC	67.2	=	
B38W15D	06-JUL-98	REG	ZINC	11.2		
B38W15S	02-AUG-93	REG	ZINC	48.6	=	UJ
B38W15S	02-AUG-93	REG	ZINC	36.4	=	UJ
B38W15S	06-JUL-98	REG	ZINC	13.9		
B38W17A	28-JUL-93	REG	ZINC	147	=	
B38W17A	25-MAY-94	REG	ZINC	34.3	=	
B38W17A	02-JUL-98	REG	ZINC	22		
B38W17A	13-MAY-99	REG	ZINC	4.9		
B38W17A	19-Jun-00	REG	ZINC	25.8		
B38W17B	25-MAY-94	REG	ZINC	42,8	=	
B38W17B	02-JUL-98	REG	ZINC	3.2		
B38W17B	13-MAY-99	REG	ZINC	1.6		
B38W/18D	21-111-93	REG	ZINC	138		
B38W18D	13-MAY-94	REG	ZINC	226	_	
B38W18D	15-MAY-95	REG	ZINC	152	-	J 1
B38W18D	14-MAY-96	REG	ZINC	102	=	
B38W18D	09-MAY-97	REG	ZINC	76.8		
B38W18D	08-JUN-98	REG	ZINC	79.7		
B38W18D	20-MAY-99	DUP	ZINC	81.5		
B38W18D	06-Jul-00	REG	ZINC	91.2		
B38W19D	16-MAY-96	REG	ZINC	46	=	
B38W19D	16-MAY-97	REG	ZINC	3.1	_	
B38W19D	17-JUN-98	REG	ZINC	29		
B38W19D	27-MAY-99	REG	ZINC	2.1		
B2814/105	17-MAY-95	PEC	ZINIC	6	_	
B3814/195	29. ILINI-98	REG	ZINC	6.7	-	UJ
B3814/105	14-MAV-99	REG	ZINC	0.2		
0000000	- 14-11/- 00		7010	1.7		
338W24D	09-AUG-93	REG	ZINC	38.1	=	J
220VV24D	17-1VIA 1-90	REG	ZINC	17.2	=	UJ
538VV24U	12 MAY 00	REG	ZINC	15.4		
538VV24U	13-MAY-99	KEG		5.9		
B38W24S	17-MAY-95	REG	ZINC	7.6	=	ÛĴ
B38W24S	02-JUL-98	REG	ZINC	12.3		
B38W24S	13-MAY-99	REG	ZINC	30.4		
B38W25D	03-AUG-93	REG	ZINC	28.5	=	UJ
338W25D	15-MAY-97	REG	ZINC	2.8		
338W25D	01-JUL-98	REG	ZINC	4.6		
338W25D	26-MAY-99	REG	ZINC	4.5		
338W25S	03-AUG-93	REG	ZINC	231	=	J

Station	Date	Sample Type	Analyte	Result(ug/I)	Lab Q	Rev Q
B38W25S	15-MAY-95	REG	ZINC	12.4	=	UJ
B38W25S	15-MAY-95	DUP	ZINC	13.1	=	UJ
B38W25S	15-MAY-96	REG	ZINC	38.2	=	
B38W25S	15-MAY-96	DUP	ZINC	31.6	=	J
B38W25S	01-JUL-98	REG	ZINC	198		-
B38W25S	17-MAY-99	REG	ZINC	29.7		
B38W25S	07-Jul-00	REG	ZINC	530		
MISS01AA	31-JUL-93	REG	ZINC	142	-	
MISS01AA	23-MAY-94	REG	ZINC	88 B	_	5
MISS01AA	18-MAY-95	REG	ZINC	7.6	-	171
MISS01AA	23-MAY-97	REG	ZINC	1.8	-	05
MISS01AA	18-JUN-98	REG	ZINC	2.8		111
MISSOIR	21-111-03	PEG	71NC	12.0		05
MISS01B	10-MAY-05	PEG	ZINC	13.0	8	
MISSOIR	18- II IN-08	REG	ZINC	34.0	-	
MISS01B	25-MAY-00	PEG	ZINC	2.2		UJ
NIGGOOD	20-MA1-33	REG	ZHNC	2.9		
MISS02A	20-JUL-93	REG	ZINC	17.3	=	
MISS02A	12-MAY-94	REG	ZINC	50	=	J
MISS02A	10-MAY-95	REG	ZINC	19.3	=	
MISS02A	16-MAY-96	REG	ZINC	4.5	=	
MISS02A	15-MAY-97	REG	ZINC	8		
MISS02A	15-MAY-97	DUP	ZINC	10.5		
MISS02A	11-JUN-98	REG	ZINC	17.7		J
MISS02A	11-JUN-98	DUP	ZINC	11		J
MISS02A	18-MAY-99	REG	ZINC	36		
MISSOZA	22-Jun-00	REG	ZINC	18.8		
MISS02B	13-MAY-94	REG	ZINC	148	Ŧ	J
MISS02B	09-MAY-95	REG	ZINC	22	=	
MISS02B	14-MAY-96	REG	ZINC	1.8	=	
MISS02B	19-MAY-97	REG	ZINC	70.8		
MISS02B	10-JUN-98	REG	ZINC	2.1		J
MISS02B	23-Jun-00	REG	ZINC	109		
MISS05A	27-MAY-94	REG	ZINC	34.6	=	
MISS05A	12-MAY-95	REG	ZINC	34.4	=	
MISS05A	10-MAY-96	REG	ZINC	72.1	=	
MISS05A	29-JUN-98	REG	ZINC	27.4		
MISS05A	14-MAY-99	REG	ZINC	74.5		
MISS05B	11-MAY-95	REG	ZINC	98	=	J
MISS05B	16-MAY-96	REG	ZINC	7.8	=	
MISS05B	30-JUN-98	REG	ZINC	39.3		
MISS06A	04-AUG-93	REG	ZINC	1260	=	
MISS06A	24-MAY-94	REG	ZINC	1120	=	
MISS06A	16-MAY-95	REG	ZINC	865	=	
MISS06A	10-MAY-96	REG	ZINC	968	=	
MISS06A	03-JUN-97	REG	ZINC	1060		
MISS06A	01-JUL-98	REG	ZINC	802		
MISS06A	17-MAY-99	DUP	ZINC	934		
MISS06A	10-Jul-00	REG	ZINC	495		
MISS07B	27-MAY-99	DUP	ZINC	4.8		·

TABLE A-4 Historical Results for Detected VOCs in Groundwater at MISS

			RESULT	QUAL	IFIER	DETECTION
STATION	DATE	ANALYTE	(ug/L)	BNI	Lab	LIMIT (ug/L)
B38W14D	04-Aug-93	1,1,1-Trichloroethane	8.00			5
B38W14D	20-May-95	1,1,1-Trichloroethane	6.00			5
B38W14D	04-Jun-97	1,1,1-Trichloroethane	4.00	J	I	5
B38W14D	07-Jul-98	1,1,1-Trichloroethane	3.00	I	ī	10
B38W14D	20-May-99	1.1.1-Trichloroethane	3.00	Ţ	I	10
B38W14D	16-Nov-00	1.1.1-Trichloroethane	2.00	J	,	10
B38W14S	20-May-95	1.1.1-Trichloroethane	7.00			5
B38W14S	04-lun-97	1 1 1-Trichloroethane	4.00	т	т	5
B38W14S	07-Jul-98	1 1 1-Trichloroethane	4.00	J	J	5
B38W14S	17-May-99	1 1 1-Trichloroethane	7.00	J	,	5
B38W14S	16-Nov-00	1 1 1-Trichloroethane	2.00	J	у 11	5
B38W15D	02-Aug-93	1,1,1-Trichloroethane	1.00		0	
B38W15D	26 May 04	1 1 1 Trighloroothone	10.00			5
B38W15D	10 May 05	1,1,1 Trichloraethane	3.00			5
D29W15D	17-Way-93	1,1,1-Thenless the	7.00			5
D29W15D	02 Jun 07	1,1,1-Trichlens the	3.00			2
D20W15D	05-Jull-97	1,1,1-1 richloroethane	3.00	J	J	5
B38WISD	00-101-98	1,1,1-1 richloroethane	5.00			5
B38W15D	09-Nov-00	1,1,1-1 richloroethane	0.60		<u> </u>	1
B38W15S	02-Aug-93	1,1,1-Trichloroethane	2.00		J	5
B38W15S	26-May-94	1,1,1-Trichloroethane	2.00		J	5
B38W15S	13-May-96	1,1,1-Trichloroethane	1.00	J	J	2
B38W15S	09-Nov-00	1,1,1-Trichloroethane	1.00		U	1
MISS07B	13-Oct-92	1,1,1-Trichloroethane	1.00		J	5
MISS07B	12-Aug-93	1,1,1-Trichloroethane	2.00	J	J	5
MISS07B	18-May-94	1,1,1-Trichloroethane	2.00		J	5
MISS07B	18-May-94	1,1,1-Trichloroethane	2.00		J	5
MISS07B	06-Nov-00	1,1,1-Trichloroethane	0.20		J	1
B38W14D	04-Aug-93	1,1-Dichloroethane	3.00		J	5
B38W14D	20-May-95	1,1-Dichloroethane	4.00		J	5
B38W14D	04-Jun-97	1,1-Dichloroethane	3.00	J	J	5
B38W14D	17-May-99	1,1-Dichloroethane	2.00	J	J	5
B38W14D	16-Nov-00	1,1-Dichloroethane	1.00			1
B38W14S	20-May-95	1,1-Dichloroethane	2.00		J	5
B38W14S	04-Jun-97	1,1-Dichloroethane	2.00	J	J	5
B38W14S	07-Jul-98	1,1-Dichloroethane	1.00	J	j	5
B38W14S	08-Nov-00	1,1-Dichloroethane	0.20		j	1
B38W15D	02-Aug-93	1,1-Dichloroethane	6.00			5
B38W15D	26-May-94	1,1-Dichloroethane	4.00		J	5
B38W15D	19-May-95	1,1-Dichloroethane	6.00		•	5
B38W15D	13-May-96	1,1-Dichloroethane	3.00			2
B38W15D	03-Jun-97	1.1-Dichloroethane	4.00	I	I	5
B38W15D	06-Jul-98	1.1-Dichloroethane	6.00	5	5	5
B38W15D	09-Nov-00	1.1-Dichloroethane	2.00			1
B38W15S	02-Aug-93	1.1-Dichloroethane	4.00			
B38W15S	26-May-94	1.1-Dichloroethane	6.00		J	5
B38W15S	19-Mav-95	1.1-Dichloroethane	4 00		т	2
B38W15S	13-May-96	1 1-Dichloroethane	5.00		J	2
B38W15S	03-Jun-97	1 1-Dichloroethane	J.00 4 00	ı	Ţ	2
B38W15S	06-Jul-98	1.1-Dichloroethane	4.00	J	J	5
B38W15S	00-Jul-20	1.1-Dichloroethane	4.00	J	J	5
B38W14D	01 Aug 03	1 Dichloroethane	1.00		0	<u>I</u>
D38W14D	20 May 05	1.1 Dichloroethene	0.00			5
D38W14D	20-141ay-93	1,1-Dichloroethere	7.00			5
D20W14D	07 1.1 00	1,1-Dichlorosthana	5.00	,	•	1
D30W14D	07 Mar 00	1,1-Dichlana eth	3.00	J	J	10
D20W14D	07-1VIAY-99	1,1-Dichloroethene	3.00	J	1	5
D20W14D	10-INOV-UU	1,1-Dicnioroethene	4.00			<u> </u>
B38W14S	20-May-95	1,1-Dichloroethene	7.00			5
B38W14S	17-May-96	1,1-Dichloroethene	6.00	J	J	10
B38W14S	04-Jun-97	1,1-Dichloroethene	5.00			1 /
B38W14S	07-Jul-98	1,1-Dichloroethene	5.00	J	J	5
B38W14S	17-May-99	1,1-Dichloroethene	2.00	J	J	5
B38W14S	16-Nov-00	I,I-Dichloroethene	1.00		<u> </u>	11

			RESULT	QUAL	IFIER	DETECTION
STATION	DATE	ANALYTE	(ug/L)	BNI	Lab	LIMIT (ug/L)
B38W15D	02-Aug-93	1,1-Dichloroethene	8.00			5
B38W15D	26-May-94	1,1-Dichloroethene	7.00			5
B38W15D	19-May-95	1,1-Dichloroethene	9.00			5
B38W15D	13-May-96	1,1-Dichloroethene	5.00			2
B38W15D	03-Jun-97	1,1-Dichloroethene	7.00	J		1
B38W15D	06-Jul-98	l, l-Dichloroethene	6.00			5
B38W15D	<u>09-Nov-00</u>	I,I-Dichloroethene	2.00			1
B38W135	13-May-90	1,1-Dichloroethene	0.30	J	J	2
MISSOID	16 May 04	1,1-Dichloroethere	1.00		<u> </u>	1
MISSOID	21 Dec 00	1,1-Dichlorootheme	1.00		J	5
MISSO7B	13-Oct-92	1.1-Dichloroethene	2.00			
MISS07B	13-001-92 18-May-94	1 1-Dichloroethene	2.00		J T	5
MISS07B	11-May-95	1 1-Dichloroethene	2.00		J	5
MISS07B	16-May-96	1.1-Dichloroethene	2.00	T	J	2
MISS07B	16-May-97	1.1-Dichloroethene	2.00	5	5	2
MISS07B	06-Nov-00	1.1-Dichloroethene	0.70		Т	1
B38W07B	16-Jun-98	1.2-Dichloroethene (Total)	6.00			5
B38W07B	06-Nov-00	1,2-Dichloroethene (Total)	6.00			1
B38W14D	04-Aug-93	1,2-Dichloroethene (Total)	56.00			5
B38W14D	20-May-95	1,2-Dichloroethene (Total)	93.00			5
B38W14D	17-May-96	1,2-Dichloroethene (Total)	83.00			50
B38W14D	04-Jun-97	1,2-Dichloroethene (Total)	78.00			5
B38W14D	07-Jul-98	1,2-Dichloroethene (Total)	71.00			10
B38W14D	17-May-99	1,2-Dichloroethene (Total)	77.00			5
B38W14D	16-Nov-00	1,2-Dichloroethene (Total)	50.00	D	_	1
B38W14S	04-Aug-93	1,2-Dichloroethene (Total)	10.00			5
B38W14S	20-May-95	1,2-Dichloroethene (Total)	53.00			5
B38W14S	17-May-96	1,2-Dichloroethene (Total)	29.00			10
B38W14S	17-May-96	1,2-Dichloroethene (Total)	0.90	J	J	1
B38W14S	04-Jun-9/	1,2-Dichloroethene (Total)	43.00			5
B38W145	07-Jul-98	1,2-Dichloroethene (Iotal)	44.00			5
D38W145	17-Way-99	1,2-Dichloroethene (Total)	43.00			5
B38W15D	02-409-93	1.2-Dichloroethene (Total)	10.00			<u> </u>
B38W15D	26-May-94	1.2-Dichloroethene (Total)	120.00			5
B38W15D	19-May-95	1,2-Dichloroethene (Total)	160.00			5
B38W15D	13-May-96	1.2-Dichloroethene (Total)	110.00			2
B38W15D	03-Jun-97	1.2-Dichloroethene (Total)	120.00	I		2 5
B38W15D	06-Jul-98	1,2-Dichloroethene (Total)	140.00			5
B38W15D	09-Nov-00	1,2-Dichloroethene (Total)	55.00			1
B38W15S	02-Aug-93	1,2-Dichloroethene (Total)	42.00			5
B38W15S	26-May-94	1,2-Dichloroethene (Total)	94.00			5
B38W15S	19-May-95	1,2-Dichloroethene (Total)	6.00			5
B38W15S	19 -Ma y-95	1,2-Dichloroethene (Total)	10.00			5
B38W15S	13-May-96	1,2-Dichloroethene (Total)	55.00			2
B38W15S	03-Jun-97	1,2-Dichloroethene (Total)	13.00			5
B38W15S	06-Jul-98	1,2-Dichloroethene (Total)	15.00			5
B38W155	<u>09-Nov-00</u>	1,2-Dichloroethene (Total)	1.00		<u> </u>	1
B38W1/B	29-Jul-93	1,2-Dichloroethene (Total)	3.00		J	5
B38W1/B	25-May-94	1,2-Dichloroethene (Total)	1.00	-	J	5
B38W17B	20-1Vlay-95	1,2-Dichloroethene (Total)	2.00	J	J	5
D36W19D	16 May 06	1,2-Dichloroethene (Total)	2.00	Ŧ	J	5
B38W10D	07-Nov 00	1,2-Dichloroethene (Total)	0.30	J	J	1
B38W24D	09-May-96	1,2-Dichloroethene (Total)	0.50	T		<u> </u>
B38W24D	15-Nov-00	1.2-Dichloroethene (Total)	0.70	J	J T	1
B38W24S	09-May-96	1.2-Dichloroethene (Total)	0.30	1		<u>_</u>
MISSOIB	15-Oct-92	1.2-Dichloroethene (Total)	1.00	J	<u>ј</u> Т	<u> </u>
MISS01B	21-Jul-93	1,2-Dichloroethene (Total)	5.00		J	5
MISS01B	16-Mav-94	1,2-Dichloroethene (Total)	31.00		3	5
MISS01B	10-May-95	1,2-Dichloroethene (Total)	3.00		Т	5
MISS01B	15-May-96	1,2-Dichloroethene (Total)	22.00		-	5
MISS01B	18-JUN-98	1,2-Dichloroethene (Total)	11.00			5
MISS01B	25-May-99	1,2-Dichloroethene (Total)	2.00	J	J	5
MISS01B	21-Dec-00	1,2-Dichloroethene (Total)	1.00		J	1
MISS05B	06-Nov-00	1,2-Dichloroethene (Total)	0.80		J	1

			RESULT	QUALIFIER		DETECTION	
STATION	DATE	ANALYTE	(ug/L)	BNI	Lab	LIMIT (ug/L)	
MISS07B	13-Oct-92	1,2-Dichloroethene (Total)	10.00			5	
MISS07B	12-Aug-93	1.2-Dichloroethene (Total)	11.00	I	T	5	
MISS07B	18-May-94	1.2-Dichloroethene (Total)	9.00	2	5	5	
MISS07B	18-May-94	1.2-Dichloroethene (Total)	10.00			5	
MISS07B	11-May-95	1.2-Dichloroethene (Total)	8.00			5	
MISS07B	16-May-96	1.2-Dichloroethene (Total)	7.00			2	
MISS07B	16-May-97	1.2-Dichloroethene (Total)	7.00			2	
MISS07B	16-Jun-98	1.2-Dichloroethene (Total)	6.00			5	
MISS07B	27-May-00	1.2-Dichloroethene (Total)	6.00			5	
MISS07B	06-Nov-00	1.2-Dichloroethene (Total)	6.00			3	
B38W14D	04 Aug 03	1.2 Dichloroppone	0.00				
D38W14D	20 May 05	1.2 Dichlosopropane	1.00		J	5	
D38W14D	16 Nov 00	1.2 Dichleronene	1.00		J	5	
D38W14D	02 Aug 02	1.2 Dichlanamana	0.40			<u> </u>	
D20W15D	02-Aug-93	1,2-Dichloropropane	2.00		1	5	
DIAMICD	20-May-94	1,2-Dichloropropane	1.00	_	1	5	
B38W15D	13-May-96	1,2-Dichloropropane	0.80	J	J	2	
B38W15D	06-Jul-98	1,2-Dichloropropane	2.00	J	J	5	
B38W15D	09-Nov-00	[,2-Dichloropropane	0.30		J	1	
B38W15S	26-May-94	1,2-Dichloropropane	2.00		J	5	
B38W15S	13-May-96	1,2-Dichloropropane	0.90	J	J	2	
MISS02A	11-Jun-98	2-Butanone	23.00			10	
MISS02A	21-Nov-00	2-Butanone	4.00		J	5	
B38W15D	13-May-96	Benzene	0.70	J	J	2	
B38W15D	09-Nov-00	Benzene	0.70		J	1	
B38W15S	26-May-94	Benzene	1.00		J	5	
B38W15S	13-May-96	Benzene	0.50	J	J	2	
B38W15S	09-Nov-00	Benzene	0.20		J	1	
B38W19D	16-May-94	Benzene	5.00		_	5	
B38W19D	10-May-95	Benzene	1.00		J	5	
B38W19D	16-May-96	Benzene	5.00			1	
B38W19D	07-Nov-00	Benzene	1.00			1	
B38W24D	18-May-94	Benzene	2.00		J	5	
B38W24D	09-May-96	Benzene	0.40	J	J	1	
B38W24D	15-Nov-00	Benzene	0.20		J	1	
MISS02B	15-Oct-92	Benzene	3.00		J	5	
MISS02B	20-Jul-93	Benzene	7.00			5	
MISS02B	13-May-94	Benzene	2.00		J	5	
MISS02B	09-May-95	Benzene	1.00		J	5	
MISS02B	14-May-96	Benzene	1.00			1	
MISS02B	21-Nov-00	Benzene	0.60		J	1	
MISS05B	14-Oct-92	Benzene	200.00			5	
MISS05B	12-Aug-93	Benzene	83.00	J		5	
MISS05B	17-May-94	Benzene	170.00			5	
MISS05B	11-May-95	Benzene	89.00	J		5	
MISS05B	16-May-96	Benzene	97.00			2	
MISS05B	14-May-97	Benzene	62.00			5	
MISS05B	30-JUN-98	Benzene	15.00			5	
MISS05B	06-Nov-00	Benzene	3500.00	D		1	
B38W24D	02-JUL-98	Benzene, 1,2-Dichloro-3-Methyl	9.00	ŊJ	NJ	0	
B38W17B	02-JUL-98	Benzene, 1.2-Dichloro-3-Methyl	4.00	NI	NI	0	
MISS05B	30-JUN-98	Benzene, 1,2-Dichloro-3-Methyl	10.00	NI	NI	0	
MISS01AA	16-Oct-92	Bis(2-Ethylhexyl)Phthalate	11.00		IR	10	
B38W02D	17-May-96	C4-Alkenylbenzene	1.00	NI	<u> </u>		
B38W19D	16-May-96	Chlorobenzene	0.60	T	i	1	
B38W19D	07-Nov-00	Chlorobenzene	0.40	3	ī	1	
B38W25S	15-May-96	Chlorobenzene	0.40	T		1	
B38W25S	27-Nov-00	Chlorobenzene	0.10	J	J	1	
MISS02B	14-May-96	Chlorobenzene	0.10		j		
MISSOSB	16-May-96	Chlorobenzene	0.10		J		
MISSOSB	06-Nov-00	Chlorobenzene	0.00 8 AA	J	J	2	
MISS07B	06-Nov-00	Chlorobenzene	0.00		т		
110007D	00-1101-00	ChlorobellZelle	0.20		J	L	

			RESULT	QUAL	IFIER	DETECTION
STATION	DATE	ANALYTE	(ug/L)	BNI	Lab	LIMIT (ug/L)
B38W14D	04-Aug-93	Chloroform	7.00			5
B38W14D	17-May-96	Chloroform	6.00	T	I	50
B38W14D	04-Jun-97	Chloroform	6.00	·		5
B38W14D	17-May-99	Chloroform	2.00	т	r	5
B38W14D	16-Nov-00	Chloroform	2.00	2	5	1
B38W14S	20-May-95	Chloroform	2.00			l
B38W14S	17-May-96	Chloroform	3.00	т	J	5
B38W14S	04-Jun-07	Chloraform	3.00	J	J	10
B38W14S	16-Nov 00	Chloroform	5.00	J	J	5
D20W145	12 May 06	Chloroform	0.00			
D30W15D	00 Nov 00	Chloroform	0.30	3	,	2
MISSOID	15 Oct 02	Chloroform	0.20		<u> </u>	<u> </u>
MISSUIB	15-Oct-92	Chloroform	15.00			5
MISSUIB	21-Jul-93	Chloroform	4.00		J	5
MISSUIB	16-May-94	Chloroform	2.00		J	5
MISSOIB	15-May-96	Chloroform	0.90	J	J	5
MISS01B	<u>21-Dec-00</u>	Chloroform	0.20		J	1
MISS06A	10-May-96	Chloroform	0.20	J	1	1
MISS06A	21-Dec-00	Chloroform	0.30		J	1
B38W17B	29-Jul-93	Chlorotoluene	20.00	NJ	J	0
B38W17B	03-Jun-97	Chlorotoluene	10.00	NJ	J	
MISS05B	12-Aug-93	Chlorotoluene	30.00	NJ	J	0
MISS05B	12-Aug-93	Chlorotoluene	20.00	NJ	J	ů
B38W25S	15-May-95	Dichloromethane	1.00		Ī	5
B38W24D	09-Aug-93	Dichlorotoluene	30.00	NI		
MISS05B	12-Aug-93	Dichlorotoluene	5.00		- <u> </u>	0
B38W24D	09-May-96	Ethylbenzene	0.10	1	<u> </u>	
B38W19D	13-Oct-92	N-Nitrosodinhenvlamine	3.00	J	j	10
MISS02B	15-Oct-92	Phenol	1.00	I	<u> </u>	10
B38W02D	30-Jun-98	Propage 2-Methows-2-Method	30.00		J	0
B38W15D	06-141-98	Propage 2 Methoxy 2 Methyl	20.00			0
B38W155	06_Jul-98	Propane, 2 Methows 2 Method	20.00	NU	NJ	0
B38W25S	01-Jul-98	Silopol Trimethyl	10.00			0
B38W18D	08-Jun-98	Sulfur Dioxide	6.00	J NU	NJ	0
D38W10D	07 Jul 08	Totrachlare ather a	0.00	INJ	NJ	0
D19W07D	16 Jun 08	Tetrachloroethene	6.00	- · · · · ·		5
	10-Juli-90	Tetrachlaracthera	48.00			5
D29W14D	07 Int 08	Tetra chlara ath an	1100.00			50
D30W14D	17 Mar 00	Tetrachloroethene	840.00		D	25
B38W14D	1 /-May-99	Tetrachloroethene	630.00	-	D	5
B38W14D	10-INOV-00	Tetrachloroethene	300.00			1
B38W145	04-Aug-93	letrachloroethene	23.00			5
B38W14S	17-May-96	l'etrachloroethene	360.00			10
B38W14S	I /-May-96	Tetrachloroethene	34.00			1
B38W14S	07-Jul-98	Tetrachloroethene	300.00	Е		12
B38W14S	17-May-99	Tetrachloroethene	290.00		D	5
B38W14S	<u>16-Nov-00</u>	Tetrachloroethene	6.00			1
B38W15S	13-May-96	Tetrachloroethene	0.30	J	J	2
B38W15D	09-Nov-00	Tetrachloroethene	120.00	_		1
MISS01B	15-Oct-92	Tetrachloroethene	15.00			5
MISS01B	21-Jul-93	Tetrachloroethene	33.00			5
MISS01B	16-May-94	Tetrachloroethene	140.00			5
MISS01B	10-May-95	Tetrachloroethene	20.00			5
MISS01B	15-May-96	Tetrachloroethene	120.00			5
MISS01B	18-Jun-98	Tetrachloroethene	69.00			5
MISS01B	18-May-99	Tetrachloroethene	15.00			5
MISS01B	21-Nov-00	Tetrachloroethene	12.00			1
MISS06A	04-Aug-93	Tetrachloroethene	14.00			5
MISS07B	13-Oct-92	Tetrachloroethene	43.00	-		5
MISS07B	12-Aug-93	Tetrachloroethene	61.00	I		5
MISS07B	18-May-94	Tetrachloroethene	94 00	3		5
MISS07B	18-May-04	Tetrachloroethene	24.00 89.00			3 5
MISSO7D	11_May-05	Tetrachloroethene	00.00			5
MISSOTD	16-May 06	Tetrachloroethere	43.00			2
MISSO/D	16-May 07	Tetrachloroothono	01.00			2
MISSO/D	16 Jun 00	Tetrahlarath	57.00			1
MISSU/B	10-JUN-98	Tetrachioroeinene	48.00			1
MICCOTP	27-Way-99	Tetrachioroethene	24.00			5
MI220\R	00-INOV-00	retrachioroethene	9.00			I

TABLE A-4 Historical Results for Detected VOCs in Groundwater at MISS

			RESULT	QUAL	IFIER	DETECTION
STATION	DATE	ANALYTE	(ug/L)	BNI	Lab	LIMIT (ug/L)
D2931016	17 May 06	Toluene	0.20	1	T	1
B36W015	17-1v1ay-90	Toluene	0.20	J	J	1
B38W015	08-100-00	Toluene	3.00			<u> </u>
B38W19D	16-May-96	foluene	0.10	J	J	1
B38W19D	07-Nov-00	Toluene	0.40		J	1
B38W24D	09-May-96	Toluene	0.10	J	J	1
B38W24D	13-May-99	Toluene	2.00	J	J	5
B38W24D	15-Nov-00	Toluene	0.70		1	1
MISSONA	11 UNI 08	Tolucno	2.00	т.		
MISSUZA	11-JUIN-96	Toluene	2.00	3	, ,	5
MISS02A	21-Nov-00	loluene	0.60		J	1
MISS05B	14-Oct-92	Toluene	2.00		J	5
MISS05B	17-May-94	Toluene	1.00		J	5
MISS05B	06-Nov-00	Toluene	6.00			1
B38W01S	07-Jul-98	Trichloroethene	2.00	I	I	5
D28W07D	16-Jun-98	Trichloroethene	2.00	1	<u> </u>	5
D30W07D	06 Nov 00	Trichloreethere	2.00	3	J	5
B38W07B	00-100-00	Trichloroethene	2.00			
B38W14D	17-May-96	Trichloroethene	240.00			50
B38W14D	04-Jun-97	Trichloroethene	200.00	J		1
B38W14D	07-Jul-98	Trichloroethene	210.00			10
B38W14D	17-Mav-99	Trichloroethene	160.00			5
B38W14D	16-Nov-00	Trichloroethene	82.00	Л		1
D19W146	04 Aug 02	Trichloroothono	6.00	<u> </u>		
B38W14S	04-Aug-93	Thenloroellene	0.00			5
B38W14S	20-May-95	Irichloroethene	140.00			5
B38W14S	17 -M ay-96	Trichloroethene	77.00			10
B38W14S	17-May-96	Trichloroethene	4.00			1
B38W14S	04-Jun-97	Trichloroethene	91.00	J		1
B38W14S	07-1111-98	Trichloroethene	79.00	•		5
D30W145	17 May 00	Trichloroethene	67.00			5
B38W145	17-1viay-99	Themoroeulene	07.00			5
B38W14S	08-Nov-00	Irichloroethene	5.00			1
B38W15D	26-May-94	Trichloroethene	170.00			5
B38W15D	03-Jun-97	Trichloroethene	170.00	J		1
B38W15D	09-Nov-00	Trichloroethene	30.00			1
B38W15S	02-Aug-93	Trichloroethene	1.00		J	5
B38W15S	26-May-94	Trichloroethene	2.00		Í.	5
D29W155	12 May 06	Triablaroathana	1.00	T		<u> </u>
B38W135	13-1viay-90	Themoroethene	1.00	J	j	2
MISSUIB	21-Jui-93	Trichloroethene	2.00		J	2
MISS01B	16-May-94	Trichloroethene	9.00			5
MISS01B	10-May-95	Trichloroethene	2.00		J	5
MISS01B	15-May-96	Trichloroethene	9.00			5
MISS01B	18-Jun-98	Trichloroethene	5.00	J	J	5
MISSOIR	21-Dec-00	Trichloroethene	1.00		•	1
MISSOID	11 Jun 08	Triablanathana	1.00	T	1	<u>r</u>
MISSUZA	04 Aur 02	The history of here	1.00	5	,	5
MISSUGA	04-Aug-93	Irichloroethene	1.00			
MISS07B	13-Oct-92	Irichloroethene	2.00		J	5
MISS07B	12-Aug-93	Trichloroethene	4.00	J	J	5
MISS07B	18-May-94	Trichloroethene	3.00		J	5
MISS07B	18-May-94	Trichloroethene	3.00		J	5
MISS07B	11-Mav-95	Trichloroethene	3.00		J	5
MISSO7P	16-May-96	Trichloroethene	3 00		v	2
MICCATE	16 Mar 07	Trichloroethene	2.00			<u>د</u> ۱
M1220/B	10-1V1ay-97	Tilled	2.00			l
MISS07B	16-Jun-98	Irichloroethene	2.00	J		1
MISS07B	27-May-99	Trichloroethene	2.00	J	J	5
MISS07B	06-Nov-00	Trichloroethene	2.00			1
B38W14S	04-Aug-93	Vinyl Chloride	6.00		J	10
B38W15D	02-Aug-93	Vinvl Chloride	4 00		Ī	10
D29W15D	26 May 04	Vinyl Chloride	3.00		J I	10
01010	12 Mar. 06	Vinul Chlorida	1.00	т	,	10
B38W15D	13-May-90		1.00	J	J	4
B38W15D	03-Jun-97	vinyl Chloride	1.00	J	J	2
B38W15D	09-Nov-00	Vinyl Chloride	0.60		J	2
B38W15S	02-Aug-93	Vinyl Chloride	40.00			10
B38W15S	26-Mav-94	Vinvl Chloride	95.00			10
B38W159	19-May-95	Vinyl Chloride	4 00		T	10
D2011120	10 Mar. 05	Vinul Chlorida	T.00		J	10
B29M122	19-1viay-95	v myr Cmoride	5.00		J	10
B38W15S	13-May-96	vinyl Chloride	54.00			4
B38W15S	03-Jun-97	Vinyl Chloride	9.00			2
B38W15S	06-Jul-98	Vinyl Chloride	12.00			2

			RESULT	RESULT QUALIFIER		DETECTION
STATION	DATE	ANALYTE	(ug/L)	BNI	Lab	LIMIT (ug/L)
B38W17B	25-May-94	Vinyl Chloride	2.00		J	10
B38W17B	20-May-95	Vinyl Chloride	2.00	J	J	10
MISS07B	18-May-94	Vinyl Chloride	2.00		J	10
MISS07B	18-May-94	Vinyl Chloride	2.00		J	10
MISS07B	16-May-96	Vinyl Chloride	0.80	J	J	4
MISS07B	16-May-97	Vinyl Chloride	0.80	J	J	2
MISS07B	06-Nov-00	Vinyl Chloride	1.00		J	2
B38W19D	16-May-96	Xylenes (Total)	0.10	J	J	1
B38W24D	09-May-96	Xylenes (Total)	0.50	J	J	1
MISS05B	16-May-96	Xylenes (Total)	0.40	J	J	2

Date: 1/19/00

Site: MISS

Page 1 of 6

Measured by:	<u>M. Hanashy</u>
	G. Moyer

- Battery Check
 Electric Sounder

Funct. CheckChalked Tape

Physical Exam.

Other _____

lectric Sounder [

Calibration of electric sounder

Date of last calibration:

Well No. (Enter Complete Well No.)	Time (24-hour format)	Depth to water (0.01 ft)	Remarks	Measurement Reference Point	x
MISS-1AA	1440		Top of Riser	Protective CSG	
Pennit#			Elevation:	Riser CSG X	
			62.7	Ground	
	Average		Lock is frozen	Other	
MISS-1B	1442	16.03	Top of Riser	Protective CSG	x
Permit # 🐲 🖓		16.03	Elevation:	Riser CSG X	. Yest
	A short sh	16.03	61.98	Ground	
	Average	16.03		Other	
MISS-2A	1435	8.30	Top of Riser	Protective CSG	X
Permit # . 2		8.30	Elevation:	Riser CSG X	
		8.30	61.47	Ground	
	Average	8.30		Other	
MISS-2B	1437	10.90	Top of Riser	Protective CSG	x
Permit #		10.90	Elevation:	Riser CSG X	\$3 ³
		10.90	61.64	Ground	
	Average	10.90		Other	
MISS-3A	1407	7.40	Top of Riser	Protective CSG	
Permit #		7.40	Elevation:	Riser CSG X	
		7.40	58.52	Ground	e de C Seres Seres
	Average	7.40	Riser needs cap.	Other	
MISS-3B	1405	9.30	Top of Riser	Protective CSG	- 16-16 IS-16-26
Permit #		9.30	Elevation:	Riser CSG X	
	化电子 计分子学	9.30	57.66	Ground	
	Average	9.30	Prot. cas.damaged	Other	

Date: 1/19/00		Site: MISS		Page 2 of 6	
Measured by:	M. Hanashy				
 Battery Check Electric Sound Calibration of Date of last ca 	G. Moyer	Funct. Check Chalked Tape		Physical Exam. Other	
Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
MISS-4A	1408	7.82	Top of Riser	Protective CSG	
Permit # 1994		7.82	Elevation:	Riser CSG X	
		7.82	57.17	Ground	
	Average	7.82	Riser needs cap.	Other	
MISS-4B	1410	10.32	Top of Riser	Protective CSG	X
Permit #		10.32	Elevation:	Riser CSG X	and the second s
	6 C. A.	10.32	56.42	Ground	
	Average	10.32		Other	Alles .
MISS-5A	1420	12.08	Top of Riser	Protective CSG	Х
Permit #		12.08	Elevation:	Riser CSG X	
		12.08	58.65	Ground	
MARKER SPECIES	Average	12.08	Riser needs cap.	Other	
MISS-5B	1421	15.20	Top of Riser	Protective CSG	Х
Permit #		15.20	Elevation:	Riser CSG X	S.
		15.20	59.76	Ground	
	Average	15.20		Other	\$\$\$
MISS-6A	1500	10.33	Top of Riser	Protective CSG	
Permit #		10.33	Elevation:	Riser CSG X	
		10.33	58.26	Ground	
· 行行道:"我们的问题。"	Average	10.33	Prot. cas.damaged	Other	
MISS-7A	1427	8.50	Top of Riser	Protective CSG	X
Permit #		8.50	Elevation:	Riser CSG X	
		8.50	55.6	Ground	
	Average	8.50		Other	

Date: 1/19/00		Site: MISS		Page 3 of 6	
Measured by:	M. Hanashy				
 Battery Check Electric Sound Calibration of Date of last calibration 	G. Moyer G. Moyer der der electric sounder alibration:	Funct. Check Chalked Tape		Physical Exam. Other	
Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
MISS-7B	1426	10.55	Top of Riser	Protective CSG	
Permit#_#	A CARLER MARKING	10.55	Elevation:	Riser CSG X	Sec.
		10.55	55.77	Ground	
	Average	10.55		Other	
B38W01S	1345	5.86	Top of Riser	Protective CSG	X
Permit #		5.86	Elevation:	Riser CSG X	
	计中央公式 马 拉马兰拉中	5.86	60.72	Ground	
A PARA BARA	Average	5.86	needs new lock	Other	
B38W02D	1350	15.55	Top of Riser	Protective CSG	Х
Permit #		15.55	Elevation:	Riser CSG X	
		15.55	67.7	Ground	
	Average	15.55		Other	
B38W03B	1403	9.34	Top of Riser	Protective CSG	
Permit#		9.34	Elevation:	Riser CSG X	
		9.34	58.27	Ground	19
MAR STRATE	Average	9.34	Conc.base damag.	Other	
B38W04B	1400	9.70	Top of Riser	Protective CSG	
Permit #		9.70	Elevation:	Riser CSG X	
		9.70	65.85	Ground	
COMPACT REAL STATE	Average	9.70	cas.cover is rusted	Other	
B38W05B	1320	11.47	Top of Riser	Protective CSG	Х
Permit #		11.47	Elevation:	Riser CSG X	
The Brank Street of		11.47	71.05	Ground	0.004
	Average	11.47		Other	

Date: 1/19/00

Site: MISS

Page 4 of 6

Physical Exam.

Other _____

Measured by: M. Hanashy

G. Moyer Battery Check

Funct. CheckChalked Tape

Electric Sounder
 Calibration of electric sounder

Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
B38W06B			Top of Riser	Protective CSG	
Permit #	Le Carles Branks		Elevation:	Riser CSG X	
	· · · · · · · · · · · · · · · · · · ·		54.41	Ground	
	Average		inaccessible	Other	
B38W07B	1417	8.72	Top of Riser	Protective CSG	X
Permit #	214	8.72	Elevation:	Riser CSG X	
		8.72	54.63	Ground	
Charthelens	Average	8.72		Other	
B38W12A	1325	5.78	Top of Riser	Protective CSG	X
Permit #		5.78	Elevation:	Riser CSG X	1995 - 2º
		5.78	50.1	Ground	
	Average	5.78		Other	
B38W12B	1327	5.30	Top of Riser	Protective CSG	
Permit#		5.30	Elevation:	Riser CSG X	2. 5 11
		5.30	49.78	Ground	
27 - A & A & A	Average	5.30	Conc.base cracked	Other	
B38W14S			Top of Riser	Protective CSG	
Permit #	21.1.5 C		Elevation:	Riser CSG X	
			43.89	Ground	
的 经基本利益 的	Average		Inaccessible	Other	
B38W14D			Top of Riser	Protective CSG	
Permit # 🔬 👘			Elevation:	Riser CSG X	Service.
			43.79	Ground	
1. 18 · 月末 - 42 ·	Average		Inaccessible	Other	

Date: 1/19/00

Site: MISS

Page 5 of 6

Physical Exam.

Other _____

Measured by: M. Hanashy

G. Moyer Battery Check

Funct. CheckChalked Tape

Electric Sounder
 Calibration of electric sounder

Date of last calibration:

Well NO.	lime	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
B38W15S			Top of Riser	Protective CSG	
Permit #			Elevation:	Riser CSG X	S.E.
			45.7	Ground	
	Average		Inaccessible	Other	
B38W15D			Top of Riser	Protective CSG	
Permit #			Elevation:	Riser CSG X	
1 A. 1997 1 1 1 1	14.10.1 - March -		45.89	Ground	
	Average		Inaccessible	Other	
B38W17A	1332	8.65	Top of Riser	Protective CSG	X
Permit #		8.65	Elevation:	Riser CSG X	
		8.65	53.24	Ground	
	Average	8.65		Other	
B38W17B	1335	8.75	Top of Riser	Protective CSG	X
Permit #	· 输出的 - 化并不少学	8.75	Elevation:	Riser CSG X	
	and the second	8.75	53.28	Ground	
	Average	8.75		Other	
B38W18D	1530	3.95	Top of Riser	Protective CSG	X
Permit #		3.95	Elevation:	Riser CSG X	
	A state of the second	3.95	57.85	Ground	
	Average	3.95		Other	
B38W19S	1422	15.30	Top of Riser	Protective CSG	X
Permit #		15.30	Elevation:	Riser CSG X	
		15.30	59.91	Ground	
	Average	15.30		Other	

Date: 1/19/00

Site: MISS

Page 6 of 6

Measured by:

Battery Check

Electric Sounder

<u>G. Moyer</u>

M. Hanashy

Funct. Check

Chalked Tape

Physical Exam. Other

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
B38W19D	1424	15.58	Top of Riser	Protective CSG	X
Permit ## 🖉 👘		15.58	Elevation:	Riser CSG X	5.8.5
	保密部分	15.58	59.98	Ground	
	Average	15.58		Other	
B38W24S	1412	9.15	Top of Riser	Protective CSG	X
Permit #		9.15	Elevation:	Riser CSG X	
		9.15	55.04	Ground	
	Average	9.15		Other	
B38W24D	1415	8.55	Top of Riser	Protective CSG	X
Permit #		8.55	Elevation:	Riser CSG X	
		8.55	54.91	Ground	
	Average	8.55		Other	
B38W25S	1457	7.00	Top of Riser	Protective CSG	X
Permit#		7.00	Elevation:	Riser CSG X	
Rep and the second		7.00	57.44	Ground	
1. ····································	Average	7.00		Other	
B38W25D	1455	7.90	Top of Riser	Protective CSG	
Permit #		7.90	Elevation:	Riser CSG X	
		7.90	58.24	Ground	
S. S. A. Large Contraction	Average	7.90	Prot. Cas.damaged	Other	
				Protective CSG	
Permit #	1. 27 B 1. 1. 1. 1.			Riser CSG X	
				Ground	All a start of the second seco
	Average			Other	

Date: 3/27/2000		Site:MISS		Page 1 of 6	
Measured by:	J. Lincoln				
	B. Spinelli				
Battery Check Electric Sound Calibration of	der electric sounder	Funct. Check Chalked Tape		Physical Exam. Other	
Date of last ca	alibration:	36689.00			
Well No. (Enter Complete	Time (24-hour	Depth to water	Remarks	Measurement Reference	x
Well NO.)	ionnat)	(0.01 ft)		Point	
MISS-1AA	1800	14.51	Top of Riser	Protective CSG	
Permit #		14.51	Elevation:	Riser CSG X	X
1. S.		14.51	62.7	Ground	
	Average	14.51		Other	3
MISS-1B	1518	16.13	Top of Riser	Protective CSG	
Permit #		16.13	Elevation:	Riser CSG X	X
		16.13	61.98	Ground	
	Average	16.13		Other	
MISS-2A	1510	7.33	Top of Riser	Protective CSG	
Permit #	C. Sec. 4	7.33	Elevation:	Riser CSG X	X
		7.33	61.47	Ground	
and the	Average	7.33		Other	
MISS-2B	1505	10.50	Top of Riser	Protective CSG	
Permit #		10.50	Elevation:	Riser CSG X	X
		10.50	61.64	Ground	
	Average	10.50		Other	
MISS-3A	1534	6.85	Top of Riser	Protective CSG	172. ¹
Permit #		6.85	Elevation:	Riser CSG X	X
		6.85	58.52	Ground	
	Average	6.85		Other	
MISS-3B	1537	8.82	Top of Riser	Protective CSG	
Permit #		8.82	Elevation:	Riser CSG X	
1		8.82	57.66	Ground	
	Average	8.82	Prot. cas. damaged	Other	

Date: 3/27/2000

Battery Check

Electric Sounder

Site:MISS

Page 2 of 6

J. Lincoln Measured by:

B. Spinelli

Funct. Check Chalked Tape

Physical Exam. Other _____

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete	(24-hour	water		Reference	x
Well No.)	format)	(0.01 ft)		Point	
MISS-4A	1540	11.47	Top of Riser	Protective CSG	19 ja -
Permit #		11.47	Elevation:	Riser CSG X	X
		11.47	57.17	Ground	
	Average	11.47		Other	
MISS-4B	1542	9.76	Top of Riser	Protective CSG	3.35
Permit#	的问题: 你有一个	9.76	Elevation:	Riser CSG X	X
		9.76	56.42	Ground	
	Average	9.76		Other	
MISS-5A	1555	11.43	Top of Riser	Protective CSG	
Permit #		11.43	Elevation:	Riser CSG X	Х
		11.43	58.65	Ground	
	Average	11.43		Other	
MISS-5B	1557	14.66	Top of Riser	Protective CSG	
Permit #		14.66	Elevation:	Riser CSG X	Х
		14.66	59.76	Ground	
	Average	14.66		Other	
MISS-6A	1646	8.27	Top of Riser	Protective CSG	
Permit #		8.27	Elevation:	Riser CSG X	
		8.27	58.26	Ground	
	Average	8.27	Prot.Cas.destroyed	Other	
MISS-7A	1607	8.15	Top of Riser	Protective CSG	
Permit #		8.15	Elevation:	Riser CSG X	X
國家權 的复数		8.15	55.6	Ground	
	Average	8.15		Other	

Date: 3/27/2000

Site:MISS

Page 3 of 6

Measured by: J. Lincoln

Battery Check

Electric Sounder

B. Spinelli

Funct. Check Chalked Tape

Physical Exam. Other _____

 \Box

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
MISS-7B	1605	10.18	Top of Riser	Protective CSG	
Permit #		10.18	Elevation:	Riser CSG X	X
注入 资源		10.18	55.77	Ground	
名[1] · · · · · · · · · · · · · · · · · · ·	Average	10.18		Other	
B38W01S	1740	5.51	Top of Riser	Protective CSG	
Permit # 😓 👘		5.51	Elevation:	Riser CSG X	X
		5.51	60.72	Ground	
	Average	5.51		Other	je konstruktion Disektor
B38W02D	1445	14.68	Top of Riser	Protective CSG	167 - S
Permit #		14.68	Elevation:	Riser CSG X	X
		14.68	67.7	Ground	
	Average	14.68		Other	- 20 C
B38W03B	1530	8.75	Top of Riser	Protective CSG	
Permit # 🐂 👔		8.75	Elevation:	Riser CSG X	X
		8.75	58.27	Ground	1.1.1
· · · · · · · · · · · · · · · · · · ·	Average	8.75		Other	
B38W04B	1522	8.90	Top of Riser	Protective CSG	
Permit #		8.90	Elevation:	Riser CSG X	
		8.90	65.85	Ground	
	Average	8.90	well cover damaged	Other	
B38W05B	1805	9.73	Top of Riser	Protective CSG	
Permit #	名 化学学 化合金	9.73	Elevation:	Riser CSG X	X
		9.73	71.05	Ground	Sec. Sec. 1
	Average	9.73		Other	

Date: 3/27/2000

Battery Check

Electric Sounder

Site:MISS

Page 4 of 6

Measured by: J. Lincoln

B. Spinelli

Funct. Check

Chalked Tape

Physical Exam. Other _____

Π

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete	(24-hour	water		Reference	x
Well No.)	format)	(0.01 ft)		Point	
B38W06B	N/A	NG	Top of Riser	Protective CSG	16. W.
Permit # Strategy		NG	Elevation:	Riser CSG X	X
		NG	54.41	Ground	
	Average	NG		Other	
B38W07B	1550	8.03	Top of Riser	Protective CSG	22×3.
Permit #	hý Charles	8.03	Elevation:	Riser CSG X	X
和"行"中学、"分学"		8.03	54.63	Ground	
	Average	8.03		Other	
B38W12A	1616	5.33	Top of Riser	Protective CSG	
Permit # 🗧 🖉 🖉	Sector Sector	5.33	Elevation:	Riser CSG X	X
		5.33	50.1	Ground	
	Average	5.33		Other	
B38W12B	1615	4.82	Top of Riser	Protective CSG	3 8.2
Permit # States	各国。2013年1月1日 1月1日 - 1月1日 -	4.82	Elevation:	Riser CSG X	X
		4.82	49.78	Ground	A.S.
	Average	4.82	Base pad cracked	Other	
B38W14S	N/A	NG	Top of Riser	Protective CSG	
Permit # 🗠 🔬		NG	Elevation:	Riser CSG X	X
		NG		Ground	2008
AGE 1942 1945	Average	NG		Other	1993
B38W14D	N/A	NG	Top of Riser	Protective CSG	
Permit #	3.7 \sim 1.1	NG	Elevation:	Riser CSG X	X
ALL LINE FAL		NG	43.79	Ground	
海洋和北洋	Average	NG		Other	

Date: 3/27/2000

Battery Check

Electric Sounder

Site:MISS

Page 5 of 6

Measured by: J. Lincoln

B. Spinelli

Funct. Check

Chalked Tape

Physical Exam. Other _____

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete	(24-hour	water		Reference	x
Well No.)	format)	(0.01 ft)		Point	
B38W15S	N/A	NG	Top of Riser	Protective CSG	
Permit #	in the second	NG	Elevation:	Riser CSG X	X
		NG	45.7	Ground	
	Average	NG		Other	
B38W15D	N/A	NG	Top of Riser	Protective CSG	
Permit #	Constant of the	NG	Elevation:	Riser CSG X	X
		NG	45.89	Ground	
	Average	NG		Other	
B38W17A	1427	7.96	Top of Riser	Protective CSG	
Permit #		7.96	Elevation:	Riser CSG X	X
		7.96	53.24	Ground	3 30
	Average	7.96		Other	
B38W17B	1426	8.08	Top of Riser	Protective CSG	
Permit # 👘 👾		8.08	Elevation:	Riser CSG X	X
		8.08	53.28	Ground	
1. 法举办 书	Average	8.08		Other	
B38W18D	1753	3.41	Top of Casing	Protective CSG	
Permit#	19月2日 - 19	3.41	Elevation:	Riser CSG X	X
设 。在这些是一些在		3.41	57.85	Ground	
	Average	3.41	No permit #	Other	
B38W19S	1602	14.74	Top of Riser	Protective CSG	
Permit #		14.74	Elevation:	Riser CSG X	X
State of the second		14.74	59.91	Ground	
	Average	14.74		Other	

X - if well head	and pad are in good condition
FUSRAP SOP:	SW-MWD-410-0
Rev: 0	

Date:	3/27/2000
-------	-----------

Site:MISS

Page 6 of 6

Measured by: <u>J. Lincoln</u>

_

B. Spinelli

Battery CheckElectric Sounder

Funct. Check

Physical Exam.Other _____

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete	(24-hour	water		Reference	x
Well No.)	format)	(0.01 ft)		Point	
B38W19D	1600	14.90	Top of Riser	Protective CSG	
Permit # 👘 👘		14.90	Elevation:	Riser CSG X	X
		14.90	59.98	Ground	4
	Average	14.90		Other	
B38W24S	1547	7.65	Top of Riser	Protective CSG	15
Permit#	the first subject	7.65	Elevation:	Riser CSG X	X
	38 1 1 1 L.	7.65	55.04	Ground	12
	Average	7.65		Other	3
B38W24D	1545	7.93	Top of Casing	Protective CSG	
Permit #		7.93	Elevation:	Riser CSG X	X
		7.93	54.91	Ground	
	Average	7.93		Other	
B38W25S	1645	5.96	Top of Riser	Protective CSG	
Permit #	Harpe for	5.96	Elevation:	Riser CSG X	X
	Sector Sector	5.96	57.44	Ground	X.Z
	Average	5.96	No permit #	Other	
B38W25D	1640	6.38	Top of Riser	Protective CSG	意义
Permit #	· 建筑和 《 集集 》	6.38	Elevation:	Riser CSG X	
$\gamma = 0$		6.38	58.24	Ground	3 % G.
	Average	6.38	Cas. is damaged	Other	
			Needs lock	Protective CSG	25
Permit #				Riser CSG X	X
				Ground	Reiss
	Average			Other	12 × 1

Date: 6/12/2000		Site:MISS		Page 1 of 6	
Measured by:	<u>M. Hanashy</u> <u>G. Moyer</u>				
 Battery Check Electric Sound Calibration of Date of last ca 	der [electric sounder alibration:	Funct. Check Chalked Tape 06/12/2000		Physical Exam. Other	
Well No. (Enter Complete Well No.)	Time (24-hour format)	Depth to water (0.01 ft)	Remarks	Measurement Reference Point	x
MISS-1AA	1115	14.36	Top of Riser	Protective CSG	
Permit #	245 C	14.36	Elevation:	Riser CSG X	X
		14.36	62.7	Ground	1. a.s.
这种时候,在 时代	Average	14.36		Other	
MISS-1B	1113	15.77	Top of Riser	Protective CSG	S.M.
Permit #		15.77	Elevation:	Riser CSG X	Τx
A Barton Sec.		15.77	61.98	Ground	
	Average	15.77		Other	
MISS-2A	1110	8.65	Top of Riser	Protective CSG	14352 (V) 14
Permit #		8.65	Elevation:	Riser CSG X	X
		8.65	61.47	Ground	
	Average	8.65		Other	
MISS-2B	1109	10.77	Top of Riser	Protective CSG	
Permit #		10.77	Elevation:	Riser CSG X	X
	A P C	10.77	61.64	Ground	\mathcal{X}_{α}
的复数形式	Average	10.77		Other	
MISS-3A	10.52	7.40	Top of Riser	Protective CSG	72 ·
Permit #		7.40	Elevation:	Riser CSG X	X
		7.40	58.52	Ground	
	Average	7.40		Other	-
MISS-3B	1053	8.90	Top of Riser	Protective CSG	编之
Permit #		8.90	Elevation:	Riser CSG X	
	Average	8.90	57.66	Ground	
	rvelaye	0.90	iriot. cas. damaged	Uther	

Date: 6/12/2000

Battery Check

Electric Sounder

Site:MISS

Page 2 of 6

Measured by: M. Hanashy

G. Moyer

Funct. Check Chalked Tape Physical Exam. Other _____

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete Well No.)	(24-hour format)	water (0.01 ft)		Reference Point	x
MISS-4A	1040	8.45	Top of Riser	Protective CSG	
Permit # 200 2 40		8.45	Elevation:	Riser CSG X	X
		8.45	57.17	Ground	
	Average	8.45		Other	43
MISS-4B	1042	10.05	Top of Riser	Protective CSG	ira:
Permit # George	「「「「「」」」と示う	10.05	Elevation:	Riser CSG X	X
		10.05	56.42	Ground	\$4).
	Average	10.05		Other	
MISS-5A	1034	12.24	Top of Riser	Protective CSG	
Permit # Association		12.24	Elevation:	Riser CSG X	X
and the second second		12.24	58.65	Ground	
	Average	12.24		Other	
MISS-5B	1032	14.90	Top of Riser	Protective CSG	33
Permit # Source		14.90	Elevation:	Riser CSG X	X
		14.90	59.76	Ground	
	Average	14.90		Other	
MISS-6A	1123	9.77	Top of Riser	Protective CSG	2.4.
Permit#		9.77	Elevation:	Riser CSG X	
		9.77	58.26	Ground	
	Average	9.77	Prot.Cas.destroyed	Other	
MISS-7A	1040	8.40	Top of Riser	Protective CSG	黨部
Permit #		8.40	Elevation:	Riser CSG X	Х
		8.40	55.6	Ground	Â.
(1) 建筑学校的	Average	8.40		Other	

Date: 6/12/2000

Site:MISS

Page 3 of 6

Measured by: M. Hanashy

Battery Check

Electric Sounder

G. Moyer

Funct. Check Chalked Tape

Physical Exam. Other _____

Π

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete	(24-hour	water		Reference	x
Well No.)	format)	(0.01 ft)		Point	
MISS-7B	1039	10.22	Top of Riser	Protective CSG	
Permit # 5	125 (545)	10.22	Elevation:	Riser CSG X	X
		10.22	55.77	Ground	386
	Average	10.22		Other	
B38W01S	1012	5.66	Top of Riser	Protective CSG	
Permit #		5.66	Elevation:	Riser CSG X	X
		5.66	60.72	Ground	
1999 A.	Average	5.66		Other	
B38W02D	1018	14.62	Top of Riser	Protective CSG	
Permit # 🐅 👾		14.62	Elevation:	Riser CSG X	X
		14.62	67.7	Ground	
	Average	14.62		Other	
B38W03B	1100	8.85	Top of Riser	Protective CSG	
Permit #	Distance in the	8.85	Elevation:	Riser CSG X	X
		8.85	58.27	Ground	
	Average	8.85		Other	
B38W04B	1105	8.70	Top of Riser	Protective CSG	
Permit #		8.70	Elevation:	Riser CSG X	i suite
		8.70	65.85	Ground	
	Average	8.70	well cover damaged	Other	
B38W05B	930	10.20	Top of Riser	Protective CSG	
Permit#		10.20	Elevation:	Riser CSG X	X
		10.20	71.05	Ground	20.25
	Average	10.20		Other	

Date: 6/12/2000

Site:MISS

Page 4 of 6

Physical Exam.

Other _____

Measured by: M. Hanashy

Battery Check

G. Moyer

Funct. Check

□ Electric Sounder □ □ Calibration of electric sounder

Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete Well No.)	(24-hour format)	water (0.01 ft)		Reference Point	x
B38W06B	1103	9.40	Top of Riser	Protective CSG	
Permit #		9.40	Elevation:	Riser CSG X	X
		9.40	言語をなることに	Ground	20
	Average	9.40		Other	
B38W07B	1030	8.60	Top of Riser	Protective CSG	
Permit #	YELL METERS	8.60	Elevation:	Riser CSG X	X
		8.60	54.63	Ground	Server and the server of the s
	Average	8.60		Other	
B38W12A	936	5.44	Top of Riser	Protective CSG	279
Permit #		5.44	Elevation:	Riser CSG X	X
	2 B. B. S. S. S. S. S.	5.44	50.1	Ground	
and a state of the	Average	5.44		Other	
B38W12B	935	4.84	Top of Riser	Protective CSG	A.
Permit #		4.84	Elevation:	Riser CSG X	X
		4.84	49.78	Ground	
	Average	4.84	Base pad cracked	Other	1967 - 14 1967 - 14 1967 - 14
B38W14S	959	4.45	Top of Riser	Protective CSG	
Permit #		4.45	Elevation:	Riser CSG X	X
dec.e.		4.45	to the call of the	Ground	
	Average	4.45		Other	
B38W14D	1002	4.00	Top of Riser	Protective CSG	
Permit #	S. 77	4.00	Elevation:	Riser CSG X	X
	Provide States of States	4.00		Ground	
	Average	4.00		Other	
Date: 6/12/2000

Battery Check

Electric Sounder

Site:MISS

Page 5 of 6

Measured by: M. Hanashy

G. Moyer

Funct. Check Chalked Tape

Physical Exam. Other _____

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete	(24-hour	water		Reference	x
Well No.)	format)	(0.01 ft)		Point	
B38W15S	946	5.30	Top of Riser	Protective CSG	
Permit # 🖓 👾 👡		5.30	Elevation:	Riser CSG X	X
		5.30		Ground	
	Average	5.30		Other	
B38W15D	953	4.67	Top of Riser	Protective CSG	1945-1 1
Permit #	· · · · · · · · · · · · · · · · · · ·	4.67	Elevation:	Riser CSG X	X
	5. The Col.	4.67		Ground	
	Average	4.67		Other	
B38W17A	943	8.26	Top of Riser	Protective CSG	
Permit #. 🛛 🚓 👘		8.26	Elevation:	Riser CSG X	X
	and the second secon	8.26	53.24	Ground	
	Average	8.26		Other	
B38W17B	941	8.32	Top of Riser	Protective CSG	S.
Permit #	计注意 的公式	8.32	Elevation:	Riser CSG X	X
		8.32	53.28	Ground	S.C.
	Average	8.32		Other	÷.
B38W18D	1130	3.40	Top of Casing	Protective CSG	Alexandra de la composición de la composicinde la composición de la composición de la composición de l
Permit #	专动的,在学生	3.40	Elevation:	Riser CSG X	X
		3.40	58.14	Ground	
	Average	3.40	No permit #	Other	
B38W19S	1038	15.02	Top of Riser	Protective CSG	¥.64
Permit#		15.02	Elevation:	Riser CSG X	X
		15.02	59.91	Ground	
	Average	15.02		Other	

Date: 6/12/2000

Site:MISS

Page 6 of 6

Measured by: <u>M. Hanashy</u>

G. Moyer

Battery Check
 Electric Sounder

Funct. Check

Physical Exam.
Other _____

Calibration of electric sounder

Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	
(Enter Complete Well No.)	(24-hour format)	water (0.01 ft)		Reference Point	x
B38W19D	1036	15.24	Top of Riser	Protective CSG	10
Permit #4.		15.24	Elevation:	Riser CSG X	X
		15.24	59.98	Ground	14
	Average	15.24		Other	
B38W24S	1047	9.02	Top of Riser	Protective CSG	
Permit # 🗧 🔬 👘		9.02	Elevation:	Riser CSG X	X
了他的关系。		9.02	55.04	Ground	(str
	Average	9.02		Other	
B38W24D	1048	8.45	Top of Casing	Protective CSG	11
Permit #	- Rest in the second	8.45	Elevation:	Riser CSG X	X
S 6493 2		8.45	57.77	Ground	
	Average	8.45		Other	
B38W25S	1120	5.92	Top of Riser	Protective CSG	
Permit #		5.92	Elevation:	Riser CSG X	Х
		5.92	57.44	Ground	報
	Average	5.92	No permit #	Other	
B38W25D	1122	6.40	Top of Riser	Protective CSG	
Permit#		6.40	Elevation:	Riser CSG X	
		6.40	58.24	Ground	
	Average	6.40	Cas. is damaged	Other	
			Needs lock	Protective CSG	
Permit # 👘 📖				Riser CSG X	Х
· 122、"是一面"。				Ground	
	Average			Other	

Date: 9/29/2000		Site:MISS		Page 1 of 6	
Measured by: Battery Check Electric Sound Calibration of Date of last ca	M. Hanashy G. Moyer der D electric sounder alibration:	Funct. Check Chalked Tape		Physical Exam. Other	
Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	tormat)	(0.01 π)		Point	
MISS-1AA	1132	14.92	Top of Riser	Protective CSG	X
Permit #		14.92	Elevation:	Riser CSG X	
	論文法 2011年二日	14.92	62.7	Ground	
Sterrow Street	Average	14.92		Other	
MISS-1B	1130	16.39	Top of Riser	Protective CSG	X
Permit #		16.39	Elevation:	Riser CSG X	
	2014年4月1日)	16.39	61.98	Ground	
	Average	16.39		Other	- 15 r
MISS-2A	1135	9.70	Top of Riser	Protective CSG	X
Permit #	表注: · · · · · · · · · · · · · · · · · · ·	9.70	Elevation:	Riser CSG X	
		9.70	61.47	Ground	
计标准 在这种分子	Average	9.70		Other	
MISS-2B	1136	11.34	Top of Riser	Protective CSG	X
Permit #		11.34	Elevation:	Riser CSG X	
·注意: "你了。"		11.34	61.64	Ground	
	Average	11.34		Other	
MISS-3A	1044	8.32	Top of Riser	Protective CSG	X
Permit # 🖉 👘		8.32	Elevation:	Riser CSG X	
		8.32	58.52	Ground	
	Average	8.32		Other	
MISS-3B	1042	9.70	Top of Riser	Protective CSG	
Permit #		9.70	Elevation:	Riser CSG X	
	Avorage	9.70	57.66	Ground	
	Average	9.70	Prot cas.damaged	LOther	

Date:	9/29/2000
	012012000

Site:MISS

Page 2 of 6

Physical Exam.

Other _____

 \Box

Π

Measured by: <u>M. Hanashy</u>

<u>G. Moyer</u>

Battery Check
 Electric Sounder

Funct. CheckChalked Tape

Calibration of electric sounder

Chalked Tap

Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
MISS-4A	1048	9.55	Top of Riser	Protective CSG	
Permit #		9.55	Elevation:	Riser CSG X	
	A.告诉老师主义的第三	9.55	57.17	Ground	
	Average	9.55		Other	
MISS-4B	1060	10.80	Top of Riser	Protective CSG	X
Permit #		10.80	Elevation:	Riser CSG X	
And States		10.80	56.42	Ground	3.00
	Average	10.80		Other	
MISS-5A	1042	13.00	Top of Riser	Protective CSG	TX
Permit #. 🖉		13.00	Elevation:	Riser CSG X	
F = F	18 4 7 G . ST	13.00	58.65	Ground	
	Average	13.00		Other	1
MISS-5B	1055	15.55	Top of Riser	Protective CSG	X
Permit #		15.55	Elevation:	Riser CSG X	
		15.55	59.76	Ground	
	Average	15.55		Other	
MISS-6A		8.05	Top of Riser	Protective CSG	an wije en traen mee
Permit #	A CALL ALL THE STATE	8.05	Elevation:	Riser CSG X	
		8.05	58.26	Ground	
(1) 和此 <u>的</u> 在这个人	Average	8.05	Prot.Cas.damaged	Other	
MISS-7A	11.04	8.71	Top of Riser	Protective CSG	X
Permit # 🚲 🐪		8.71	Elevation:	Riser CSG X	See.
		8.71	55.6	Ground	
	Average	8.71		Other	

Date: 9/29/2000

Site:MISS

Page 3 of 6

Measured by: <u>M. Hanashy</u>

<u>G. Moyer</u>

Battery Check
 Electric Sounder

Funct. CheckChalked Tape

Physical Exam. Other _____

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
MISS-7B	1105	10.90	Top of Riser	Protective CSG	X
Permit #	海洋建立 经济	10.90	Elevation:	Riser CSG X	1945
		10.90	55.77	Ground	
	Average	10.90		Other	
B38W01S	1015	6.20	Top of Riser	Protective CSG	X
Permit #	1. 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	6.20	Elevation:	Riser CSG X	
	dia di serie	6.20	60.72	Ground	
但因素 2012年至1	Average	6.20		Other	
B38W02D	1020	16.85	Top of Riser	Protective CSG	X
Permit #		16.85	Elevation:	Riser CSG X	
		16.85	67.7	Ground	
	Average	16.85	Needs Lock	Other	
B38W03B	1040	9.80	Top of Riser	Protective CSG	X
Permit #		9.80	Elevation:	Riser CSG X	
S. Hatter		9.80	58.27	Ground	NA.
	Average	9.80		Other	之影
B38W04B	1032	10.15	Top of Riser	Protective CSG	
Permit #	ME AND A STATE	10.15	Elevation:	Riser CSG X	2 cr
		10.15	65.85	Ground	100
A ALL AND THE	Average	10.15	Cas. Cover rusted	Other	
B38W05B	940	12.75	Top of Riser	Protective CSG	X
Permit #		12.75	Elevation:	Riser CSG X	
		12.75	71.05	Ground	
特别的问题是	Average	12.75		Other	

X - if well head and pad are in good condition FUSRAP SOP: SW-MWD-410-0 Rev: 0

.....

Date: 9/29/2000

Site:MISS

Page 4 of 6

Physical Exam.

Other _____

Measured by: M. Hanashy

Battery Check

Electric Sounder

<u>G. Moyer</u>

Funct. CheckChalked Tape

Calibration of electric sounder Date of last calibration:

Weil No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
B38W06B	1035	10.54	Top of Riser	Protective CSG	T X
Permit #		10.54	Elevation:	Riser CSG X	M. Star
	4.4 J. 1 - X - X - X	10.54	54.41	Ground	
A DE LA STREET	Average	10.54		Other	
B38W07B	1055	9.50	Top of Riser	Protective CSG	Tx
Permit #		9.50	Elevation:	Riser CSG X	12.20
		9.50	54.63	Ground	
	Average	9.50		Other	-
B38W12A	1027	6.25	Top of Riser	Protective CSG	X
Permit #		6.25	Elevation:	Riser CSG X	
		6.25	50.1	Ground	
	Average	6.25		Other	
B38W12B	1025	5.75	Top of Riser	Protective CSG	X
Permit #		5.75	Elevation:	Riser CSG X	
		5.75	49.78	Ground	
	Average	5.75		Other	Start.
B38W14S	1000	4.89	Top of Riser	Protective CSG	X
Permit #		4.89	Elevation:	Riser CSG X	
		4.89	43.89	Ground	-
	Average	4.89		Other	-
B38W14D	1005	3.68	Top of Riser	Protective CSG	X
Permit #		3.68	Elevation:	Riser CSG X	
深的新闻社会		3.68	43.79	Ground	
	Average	3.68		Other	

Date: 9/29/2000

Site:MISS

Page 5 of 6

Measured by:

Battery Check

Electric Sounder

G. Moyer

M. Hanashy

Funct. Check

Chalked Tape

Physical Exam. Other _____

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
B38W15S	957	5.80	Top of Riser	Protective CSG	X
Permit #	编制的中国主义	5.80	Elevation:	Riser CSG X	
and the second		5.80	45.7	Ground	1844 194
	Average	5.80		Other	
B38W15D	958	4.80	Top of Riser	Protective CSG	X
Permit #	A Contract of the	4.80	Elevation:	Riser CSG X	
		4.80	45.89	Ground	
	Average	4.80		Other	
B38W17A	950	9.07	Top of Riser	Protective CSG	X
Permit #		9.07	Elevation:	Riser CSG X	and the second
		9.07	53.24	Ground	
	Average	9.07		Other	
B38W17B	951	9.10	Top of Riser	Protective CSG	X
Permit #.		9.10	Elevation:	Riser CSG X	
	Same in the	9.10	53.28	Ground	
	Average	9.10		Other	
B38W18D	1315	4.98	Top of Casing	Protective CSG	X
Permit #		4.98	Elevation:	Riser CSG X	
		4.98	57.85	Ground	
5. Ball 2 (2	Average	4.98		Other	
B38W19S	1100	15.60	Top of Riser	Protective CSG	X
Permit #	a	15.60	Elevation:	Riser CSG X	
		15.60	59.91	Ground	
	Average	15.60		Other	

X - if v	well head and pad are in good condition
FUSR	AP SOP: SW-MWD-410-0
Rev:	0

Date: 9/29/2000		Site:MISS		Page 6 of 6	
Measured by:	M. Hanashy				
 Battery Check Electric Sound Calibration of Date of last calibration 	G. Moyer k der electric sounder alibration:	Funct. Check Chalked Tape	_	Physical Exam. Other	
Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete Well No.)	(24-hour format)	water (0.01 ft)		Reference Point	
B38W19D	1101	15.80	Top of Riser	Protective CSG	
Permit #		15.80	Elevation:	Riser CSG X	
		15.80	59.98	Ground	
	Average	15.80		Other	
B38W24S	1045	9.51	Top of Riser	Protective CSG	X
Permit #		9.51	Elevation:	Riser CSG X	
		9.51	55.04	Ground	
	Average	9.51		Other	
B38W24D	1047	9.04	Top of Casing	Protective CSG	X
Permit #		9.04	Elevation:	Riser CSG X	<u>19</u> 27
		9.04	54.91	Ground	
	Average	9.04		Other	
B38W25S	1117	6.01	Top of Riser	Protective CSG	X
Permit #		6.01	Elevation:	Riser CSG X	
	1 there is a second	6.01	57.44	Ground	
	Average	6.01		Other	
B38W25D	1118	6.60	Top of Riser	Protective CSG	X
Permit #		6.60	Elevation:	Riser CSG X	
		6.60	58.24	Ground	
	Average	6.60	Prot.Cas damaged	Other	
				Protective CSG	
Permit #			L	Riser CSG X	da an
				Ground	an a
	Average			Other	4

Date: 11/29/2000

Site:MISS

Page 1 of 6

Measured	by:	M. Myhowich
mouourou	~y.	

<u>G. Moyer</u>

Battery Check
 Electric Sounder

Funct. CheckChalked Tape

Physical Exam. Other _____

Calibration of electric sounder

Date of last calibration:

Well No. (Enter Complete Well No.)	Time (24-hour format)	Depth to water (0.01 ft)	Remarks	Measurement Reference Point	x
MISS-1AA	1030	16.78	Top of Riser	Protective CSG	X
Permit #		16.78	Elevation:	Riser CSG X	
		16.78	62.7	Ground	
	Average	16.78		Other	
MISS-1B	1032	16.69	Top of Riser	Protective CSG	X
Permit #	MER APPLY	16.69	Elevation:	Riser CSG X	
	1	16.69	61.98	Ground	
	Average	16.69		Other	a de la compañía de la
MISS-2A	1037	9.70	Top of Riser	Protective CSG	X
Permit #		9.70	Elevation:	Riser CSG X	
计方 远离 异常 月		9.70	61.47	Ground	
	Average	9.70		Other	
MISS-2B	1039	9.48	Top of Riser	Protective CSG	X
Permit #		9.48	Elevation:	Riser CSG X	
	erten (9.48	61.64	Ground	
	Average	9.48		Other	
MISS-3A	948	9.06	Top of Riser	Protective CSG	X
Permit # 🛸 🛼 👘		9.06	Elevation:	Riser CSG X	
	P. C. P. Start	9.06	58.52	Ground	
	Average	9.06		Other	845 ·
MISS-3B	949	10.06	Top of Riser	Protective CSG	
Permit #		10.06	Elevation:	Riser CSG X	
r.		10.06	57.66	Ground	
	Average	10.06	Prot cas.damaged	Other	

Date: 11/29/2000	D	Site:MISS	Page 2 of 6
Measured by:	M. Myhowich		
	<u>G. Moyer</u>		
Battery Chec	k 🗌	Funct. Check	Physical Exam.
Electric Soun	der 🗌	Chalked Tape	Other
Calibration of	electric sounder		

Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Weli No.)	format)	(0.01 ft)		Point	
MISS-4A	935	10.41	Top of Riser	Protective CSG	X
Permit #		10.41	Elevation:	Riser CSG X	1.0
		10.41	57.17	Ground	
	Average	10.41		Other	
MISS-4B	931	11.06	Top of Riser	Protective CSG	
Permit #		11.06	Elevation:	Riser CSG X	
		11.06	56.42	Ground	
	Average	11.06	Oter cas. bent	Other	
MISS-5A	917	13.86	Top of Riser	Protective CSG	X
Permit #		13.86	Elevation:	Riser CSG X	
	And the second second	13.86	58.65	Ground	139.7
	Average	13.86		Other	驚然
MISS-5B	915	16.09	Top of Riser	Protective CSG	X
Permit #		16.09	Elevation:	Riser CSG X	
		16.09	59.76	Ground	
	Average	16.09		Other	
MISS-6A	1030	8.24	Top of Riser	Protective CSG	1
Permit #		8.24	Elevation:	Riser CSG X	
		8.24	58.26	Ground	
	Average	8.24	Prot.Cas.damaged	Other	
MISS-7A	932	8.20	Top of Riser	Protective CSG	X
Permit #	·洛·斯尔尔特于2014	8.20	Elevation:	Riser CSG X	
	San Dar West, P.	8.20	55.6	Ground	
	Average	8.20		Other	

Date: 11/29/2000

Site:MISS

Page 3 of 6

Measured by:

Battery Check

Electric Sounder

G. Moyer

M. Myhowich

Funct. CheckChalked Tape

Physical Exam.
Other ______

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour format)	water		Reference	
	020	(0.0111)		Point	
IVII33-7B	<u> </u>	11.22	Top of Riser	Protective CSG	
		11.22	Elevation:	Riser CSG X	140
Fr. A. L. Mar		11.22	55.77	Ground	
	Average	11.22	Cracked conc. Pad	Other	
B38W01S	825	6.23	Top of Riser	Protective CSG	X
Permit #	1 State of the	6.23	Elevation:	Riser CSG X	
	学人类人名加尔尔	6.23	60.72	Ground	
の変化の変化	Average	6.23		Other	
B38W02D	835	16.85	Top of Riser	Protective CSG	X
Permit #		16.85	Elevation:	Riser CSG X	
		16.85	67.7	Ground	
	Average	16.85	Needs Lock	Other	
B38W03B	953	10.20	Top of Riser	Protective CSG	
Permit #		10.20	Elevation:	Riser CSG X	See.
	Sale 1 1	10.20	58.27	Ground	
	Average	10.20	Cracked conc. Pad	Other	
B38W04B	1002	11.60	Top of Riser	Protective CSG	
Permit #"	14 A A 26 26 1	11.60	Elevation:	Riser CSG X	Salar Salar
		11.60	65.85	Ground	
法代达 法法法	Average	11.60	Cas. cover rusted	Other	
B38W05B	900	15.11	Top of Riser	Protective CSG	X
Permit #		15.11	Elevation:	Riser CSG X	
1		15.11	71.05	Ground	
和 译的12.00%(1	Average	15.11		Other	

Date: 11/29/2000

Site:MISS

Page 4 of 6

Measured by: M. Myhowich

Battery Check

Electric Sounder

G. Moyer

Funct. CheckChalked Tape

Physical Exam.
 Other ______

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
B38W06B	956	10.69	Top of Riser	Protective CSG	X
Permit # 22		10.69	Elevation:	Riser CSG X	
		10.69	54.41	Ground	
	Average	10.69		Other	
B38W07B	907	9.82	Top of Riser	Protective CSG	X
Permit #		9.82	Elevation:	Riser CSG X	a farma
		9.82	54.63	Ground	
	Average	9.82		Other	
B38W12A	748	6.64	Top of Riser	Protective CSG	X
Permit #.	18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	6.64	Elevation:	Riser CSG X	
		6.64	50.1	Ground	
建筑和各种学生	Average	6.64		Other	
B38W12B	749	6.39	Top of Riser	Protective CSG	X
Permit #4		6.39	Elevation:	Riser CSG X	
		6.39	49.78	Ground	525
	Average	6.39		Other	
B38W14S			Top of Riser	Protective CSG	
Permit #	A A		Elevation:	Riser CSG X	
1999 - A.			43.89	Ground	
	Average			Other	
B38W14D			Top of Riser	Protective CSG	
Permit #			Elevation:	Riser CSG X	SALL SAL
			43.79	Ground	1.1.1
法的行为于	Average			Other	

Date: 11/29/2000

Site:MISS

Page 5 of 6

Measured by:

Battery Check

Electric Sounder

G. Moyer

M. Myhowich

Funct. CheckChalked Tape

Physical Exam. Other _____

Calibration of electric sounder Date of last calibration:

Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete	(24-hour	water		Reference	
Well No.)	format)	(0.01 ft)		Point	
B38W15S	811	6.18	Top of Riser	Protective CSG	X
Permit # 🛼 🖕	The second	6.18	Elevation:	Riser CSG X	
		6.18	45.7	Ground	
	Average	6.18		Other	
B38W15D	810	5.36	Top of Riser	Protective CSG	X
Permit #		5.36	Elevation:	Riser CSG X	
		5.36	45.89	Ground	
時間の	Average	5.36		Other	
B38W17A	800	9.63	Top of Riser	Protective CSG	X
Permit #		9.63	Elevation:	Riser CSG X	
		9.63	53.24	Ground	
	Average	9.63		Other	
B38W17B	801	9.67	Top of Riser	Protective CSG	X
Permit #	会议。一会解释这些	9.67	Elevation:	Riser CSG X	
		9.67	53.28	Ground	
	Average	9.67		Other	
B38W18D	1102	4.52	Top of Casing	Protective CSG	X
Permit #		4.52	Elevation:	Riser CSG X	
		4.52	57.85	Ground	
	Average	4.52		Other	
B38W19S	920	16.11	Top of Riser	Protective CSG	X
Permit #		16.11	Elevation:	Riser CSG X	
		16.11	59.91	Ground	
来自己的问题。	Average	16.11		Other	

Date: 11/29/2000	1	Site:MISS		Page 6 of 6	
Measured by:	M. Myhowich				
 Battery Check Electric Sound Calibration of Date of last calibration 	G. Moyer	Funct. Check Chalked Tape	_	Physical Exam. Other	
Well No.	Time	Depth to	Remarks	Measurement	X
(Enter Complete Well No.)	(24-hour format)	water (0.01 ft)		Reference Point	
B38W19D	924	16.27	Top of Riser	Protective CSG	X
Permit #		16.27	Elevation:	Riser CSG X	
		16.27	59.98	Ground	
	Average	16.27		Other	
B38W24S	944	10.18	Top of Riser	Protective CSG	X
Permit # 3		10.18	Elevation:	Riser CSG X	
		10.18	55.04	Ground	
	Average	10.18		Other	
B38W24D	942	9.58	Top of Casing	Protective CSG	X
Permit#		9.58	Elevation:	Riser CSG X	
		9.58	54.91	Ground	2537
The second second	Average	9.58		Other	
B38W25S	956	6.05	Top of Riser	Protective CSG	X
Permit #		6.05	Elevation:	Riser CSG X	
		6.05	57.44	Ground	
	Average	6.05		Other	
B38W25D	955	6.65	Top of Riser	Protective CSG	X
Permit #		6.65	Elevation:	Riser CSG X	
	¥4067 号406 表示	6.65	58.24	Ground	
	Average	6.65	Prot.Cas damaged	Other	
				Protective CSG	
Permit # 🔬				Riser CSG X	102
				Ground	
(2) 就多來了。	Average			Other	

Annual NESHAPS Compliance Report for the Year 2000

New York District Formerly Utilized Sites Remedial Action Program Maywood Superfund Site

Prepared by: Stone & Webster, Inc. 100 West Hunter Ave. Maywood, New Jersey 07607

Ĭ

US Army Corps of Engineers for: US Army Corps of Engineers - Kansas City District Formerly Utilized Sites Remedial Action Program Contract No. DACW41-99-D-9001

Revision 1 June 2001

ANNUAL NESHAP COMPLIANCE REPORT – YEAR 2000

FUSRAP MAYWOOD SUPERFUND SITE MAYWOOD, NEW JERSEY

SITE-SPECIFIC ENVIRONMENTAL RESTORATION CONTRACT NO. DACW41-99-D-9001 TASK ORDER No. 0001 WAD 02, WBS07

Submitted to:

Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106 Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10007

Submitted by:

S

Stone & Webster Incorporated 100 West Hunter Avenue Maywood, NJ 07607

Revision 1, June 2001

Issued to:		Date:
Сору #: [Controlled	Uncontrolled

ANNUAL NESHAP COMPL	IANCE REPORT – YEAR 2000
FUSRAP MAYWOO MAYWOOD	DD SUPERFUND SITE , NEW JERSEY
SITE-SPECIFIC ENVIRO CONTRACT NO. TASK ORI WAD 0	NMENTAL RESTORATION DACW41-99-D-9001 DER No. 0001 2, WBS07
Subm	itted to:
Department of the Army U.S. Army Engineer District, Kansas City Corps of Engineers 700 Federal Building Kansas City, Missouri 64106	Department of the Army U.S. Army Engineer District, New York Corps of Engineers FUSRAP Project Office 26 Federal Plaza New York, New York 10007
Submit Stone & Webst 100 West Hu Maywood,	tted by: There Incorporated Anter Avenue NJ 07607
June	2001
Reviewed/ Approved by: <u>Samy Rice</u> Sam Rice, P.E. Project Manager	Date: 4/21/01
Reviewed/ Approved by <u>Seven F Donnelly</u> Kevin F. Donnelly, P.E. Project Environmental Engineer	Date: 6/21/01
Reviewed/ Approved by All All All All All All All All All Al	Date: 6/21/01
Reviewed/ Approved by: Dansur During Barbara Reider	Date: 6 21 02 -

REVISIONS

Revision No.	Description of Revision	Date
А	Internal Original Issue	March 2001
В	Draft – for USACE Review	May 2001
С	Final – for USACE Review	June 2001
0	Final – for Issue to USACE, NJDEP & USEPA	June 2001
1	Final – Revised per USACE Review. Added Section 4.	June 2001

TABLE OF CONTENTS

REVISIONS	iv
LIST OF TABLES	vi
LIST OF APPENDICES	vi
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS AND ACRONYMS	vii
1.0 FACILITY INFORMATION	1-1
1.1 SITE DESCRIPTION	1-1
1.2 SITE HISTORY	1-1
1.3 MODEL SOURCES	1-2
1.4 DETAILED SOURCE DESCRIPTIONS	1-4
1.4.1 TCRA for the Swale	1-4
1.4.2 Ballod Property Remediation and Restoration	1-5
1.4.3 Operation of Pilot Demonstration Facility	1-6
1.4.4 In Situ Wind Erosion	1-8
1.4.5 System Exhaust for Soil Sample Preparation Laboratory	1-8
2.0 AIR EMISSIONS DATA	2-1
3.0 DOSE ASSESSMENTS	3-1
3.1 DESCRIPTION OF DOSE MODEL	3-1
3.2 SUMMARY OF INPUT PARAMETERS	3-2
3.3 COMPLIANCE ASSESSMENT	3-2
3.4 CERTIFICATION	3-4
4.0 RADON FLUX MONITORING	4-1
4.1 Radon-222 Flux	4-1
5.0 REFERENCES	5-1

LIST OF TABLES

Table 1	Ballod Property – Average Soil Radionuclide Concentrations by Zone	1-5
Table 2	Description of Radionuclide Particulate Emissions Sources	
Table 3	Year 2000 Airborne Radionuclide Emissions at MISS (Ci/yr) ⁺	
Table 4	Maximum Annual Effective Dose Equivalents	
Table 5	Radon Flux Monitoring Results	

LIST OF APPENDICES

- A Figures
- B Calculations

LIST OF FIGURES

Figure 1	MISS General Location Map	. Appendix A
Figure 2	Aerial View of MISS and Adjacent Properties	. Appendix A
Figure 3	Site Location Plan	. Appendix A
Figure 4	TCRA at Swale – Selected Photographs	. Appendix A
Figure 5	Ballod Property Remediation & Restoration – Selected Photographs	. Appendix A
Figure 6	Pilot Demonstration Area – Selected Photographs	. Appendix A
Figure 7	Soil Sample Preparation Laboratory – Selected Photographs	. Appendix A
Figure 8	Radon Flux Measurement Locations	. Appendix A

LIST OF ABBREVIATIONS AND ACRONYMS

AEC	Atomic Energy Commission
AP-42	Compilation of Air Pollutant Emission Factors – Volume 1
BP	Ballod Property
BNI	Bechtel National, Incorporated
°C	Degrees Centigrade
CAA	Clean Air Act
CAP88-PC	Clean Air Act Assessment Package 1988 – Personal Computer (Version 2)
CERCLA	Comprehensive Environmental Response, Compensation and Liabilities Act
Ci/yr	Curies per year
Cm	centimeters
CFR	Code of Federal Regulations
DOE	Department of Energy
EPA	U.S. Environmental Protection Agency
°F	Degrees Fahrenheit
FFA	Federal Facilities Agreement
ft	feet
ft ²	square feet
FUSRAP	Formerly Utilized Sites Remedial Action Program
g	gram
HEPA	High Efficiency Particulate Air
in.	inches
ICRP	International Commission on Radiological Protection
kph	kilometers per hour
km	kilometers
m m ² MCW MISS mph mSv/yr	meters square meters miles Maywood Chemical Works Maywood Interim Storage Site miles per hour millisievert per year
mrem	millirem
mrem/yr	millirem per year

LIST OF ABBREVIATIONS AND ACRONYMS

NJDEP	New Jersey Department of Environmental Protection
NESHAP	Nation Emission Standards for Hazardous Air Pollutants
NOAA	National Oceanic and Atmospheric Administration
NRC	Nuclear Regulatory Commission
ORAU	Oak Ridge Associated Universities
ORNL	Oak Ridge National Laboratory
pCi/g	Picocuries per gram
PDA	Pilot Demonstration Area
Ra	radium
Rn	radon
TCRA	Time Critical Removal Action
Th	Thorium
U	Uranium
USACE	U. S. Army Corps of Engineers
0.0.102	c. s. r m j corps of 2000015

1.0 FACILITY INFORMATION

1.1 SITE DESCRIPTION

The Maywood Interim Storage Site (MISS) is a 4.7 hectare (11.7 acres) property located in the borough of Maywood and the township of Rochelle Park in Bergen County, New Jersey. MISS lies approximately 20 km (12 mi) northwest of New York City and 21 km (13 mi.) northeast of Newark, New Jersey (see Figure 1). The MISS property was previously part of a 30-acre property owned by the Stepan Company and it was formerly part of the Maywood Chemical Works (MCW). The property is bordered on the west by State Route 17, on the north by a New York, Susquehanna, and Western Railroad line, and on the south and east by commercial and industrial properties.

Land use in the vicinity is primarily commercial and residential (see Figure 2). The nearest commercial buildings are approximately 110 m (360 ft) southeast of the Pilot Demonstration Area (PDA), 35 m (115 ft) south-southwest of the Ballod Property (BP) and 12 m (40 ft) west of the Swale (see Figure 3). The nearest residences are approximately 140 m (460 ft) northeast of the PDA, 35 m (115 ft) south-southwest of the BP and 175 m (575 ft) east of the Swale. The nearest schools are 0.8 km (0.5 mi) northeast and northwest of the MISS. There is no farm land in the vicinity of MISS.

Based on the National Oceanic and Atmospheric Administration (NOAA) records for the year 2000 for Teterboro Airport, monthly average temperatures ranged from -1.1 °C (30.0 °F) in January to 22.8 °C (73.1 °F) in July. Total monthly precipitation ranged from 1.78 cm (0.70 in) in October to 12.5 cm (4.93 in) in September. Monthly average wind speed ranged from 9.65 kilometers per hour (kph) or 6.0 mph from the north-northwest in October to 15.45 kph (9.6 mph) from the northwest in January.

Due to the absence of onsite meteorological monitoring data, observations from Teterboro Airport were used to represent the general climatic conditions at MISS. Teterboro Airport is located approximately 3 miles south of the MISS and thus, meteorological data collected at this location is considered to be the best available data to represent the climatic regime at the MISS.

1.2 SITE HISTORY

MISS was established to provide storage for low level radioactive soils found in the vicinity of the former MCW. From 1916 through 1959, the MCW processed monazite sand (a thorium-containing ore) for industrial uses. Process wastes were placed in surface impoundments onsite. Some of these process wastes migrated offsite via surface water drainage and some were later used as mulch and fill on nearby properties, contaminating them with radioactive thorium.

After the enactment of the Atomic Energy Act of 1954, the Atomic Energy Commission (AEC) issued a license to the MCW for the processing and manufacture of radioactive material. The MCW stopped processing thorium in 1959 and shortly thereafter was sold to the Stepan Company. Based on AEC inspections and information, remedial actions were performed by the Stepan Company.

Subsequent radiological surveys from 1980 to 1984 identified additional areas of contamination, both onsite and offsite. Through a provision of the Energy and Water Development Appropriations Act of 1984,

Congress authorized the Department of Energy (DOE) to conduct a decontamination research and development project at the Maywood site. The site was assigned to the Formerly Utilized Sites Remedial Action Program (FUSRAP). In 1984, the DOE negotiated a lease for Stepan Company land on which MISS would be established. The land was transferred in 1985 to DOE ownership and currently provides interim storage for contaminated materials removed from vicinity properties.

FUSRAP was transferred from DOE to the U.S. Army Corps of Engineers (USACE) by Congressional action. The limits of USACE's responsibilities for the Maywood site are defined under a Federal Facilities Agreement (FFA) between DOE and the U.S. Environmental Protection Agency (EPA), Region II, that became effective April 22, 1991. The USACE became a successor to the DOE as of March 17, 1999.

1.3 MODEL SOURCES

The computer program used to model potential offsite exposure from airborne emissions is the Clean Air Act Assessment Package – 1988 Personal Computer (CAP88-PC) program (Version 2.0). Airborne emissions contributing to offsite exposure could occur from areas where the radioactively contaminated soil is exposed to the elements and from operations that generate airborne emissions (see Figure 3). During the year 2000, the potential sources of airborne emissions at MISS and nearby properties were:

- In situ, contaminated areas totaling approximately 59,000 m² (635,000 ft²) of MISS and the adjacent Stepan Company property (within the MISS fence line) were potentially exposed to wind erosion during the year 2000.
- The performance of a Time-Critical Removal Action (TCRA) at a drainage feature located at the FUSRAP Maywood Superfund Site hereinafter referred to as the "swale". The principal purpose of the TCRA was to restore hydraulic flow to the swale to reduce the potential for area-wide flooding by the removal of accumulated contaminated sediment as well as vegetation and debris. This action involved the excavation of approximately 563 tons of material which was transported by truck to the MISS for future offsite disposal.
- The remediation and restoration of a 1.5 acre portion of the Ballod Property located adjacent to the MISS. The property is bounded the New York, Susquehanna and Western Railroad on the north, the Route 17 embankment on the east, commercial/residential properties on the west, and the previously remediated section of the Ballod property on the south. This work consisted of the removal of vegetation and contaminated soil, placement of clean backfill and the revegetation of the site. All excavated contaminated soil and vegetation was transported to the MISS for future offsite disposal. This action involved the excavation and transport of approximately 5, 913 tons of contaminated soil.
- The operation of a pilot facility, which utilized gravel separation and rinse technology as well as radiological sorting technology, for approximately a four month period to determine its' effectiveness in reducing the volume of contaminated soil requiring offsite disposal. The pilot facility focused on determining the effectiveness of the above two soil management technologies in separating excavated material into components above and below selected radioactivity criteria, and evaluating the benefits of materials management of the resulting

processed soils. This operation involved the processing of approximately 6,965 tons of contaminated soil.

• The operation of the exhaust system for the soil sample preparation laboratory located in Building 76 (see Figure 3). Soil samples collected from various locations associated with the operation of the Pilot Demonstration Facility were brought to this laboratory to prepare the samples for radiological analysis. The individual soil samples were dried and then ground before placing the soil into sealed containers. The grinding operations, which generated very small amounts of dust, were performed under a laboratory hood. Air from the exhaust hood is passed through a high efficiency particulate air (HEPA) filter prior to discharge to the ambient air.

The simulated airborne emissions from these potential sources are used by CAP88-PC to estimate the annual dose from airborne particulates to the population within 80 km (50 mi) of the site (see Appendix). In addition, for user-defined distances from the center of the emission areas, CAP88-PC estimates individual effective dose equivalents in all compass directions. For specific potentially exposed individuals (workers and residents) at known distances and compass directions from the site, the user can determine and compare the calculated effective dose equivalents.

Analyses are performed separately for the TCRA at the swale, Ballod Property and Pilot Demonstration Area given the differences in receptor locations most affected by each of these areas. The in situ wind erosion emissions and the exhaust hood emissions were found to be negligible and thus, these sources were not included in the modeling analyses. Where individual receptors are affected by more than one emission source, doses caused by those sources are added. The individual (worker and resident) corresponding to the maximum effective dose equivalent is identified as the hypothetical maximally exposed individual. Because dose from airborne emissions is dependent on prevailing wind direction in addition to proximity to the site, the hypothetical maximally exposed individual is not necessarily the person nearest the site. The model was used to predict the annual effective dose at numerous receptors resulting from the combined impact of the above three sources. Although the model determined the annual effective dose at numerous receptors, only the hypothetical maximally exposed resident and worker are discussed in this report.

The individual effective dose equivalents given in the CAP88-PC output are based on the default assumption that the receptor occupies the location 100 percent of the time (i.e., 24 hours per day, 7 days per week, 52 weeks per year). The occupancy factor of 100 percent, although conservative, is considered to be appropriate for a resident. To estimate the dose to an employee working normal hours, an occupancy factor of 24 percent (i.e., 8 hours per day, 5 days per week, 50 weeks per year) is applied to the CAP88-PC result.

The program calculates the effective dose equivalents by combining the inhalation and ingestion intake rates and the air and ground surface concentrations with dose conversion factors, using the weighting factors in "Recommendations of the International Commission on Radiological Protection" (ICRP Publication 26, 1977). CAP88-PC calculates dose to the gonads, breast, lungs, red marrow, thyroid, and endosteum in addition to the 50-year effective dose equivalent. Doses can be tabulated as a function of radionuclide, pathway, location, and organ as shown in the output (see pages 20 - 61 in Appendix B) for the CAP88-PC runs.

1.4 DETAILED SOURCE DESCRIPTIONS

As discussed in the previous section, the key sources of potential airborne radioactive particulate releases to the atmosphere during the year 2000 were the TCRA performed for the swale; the remediation and restoration of the Ballod property; and operation of the pilot demonstration facility. In addition, in-situ wind erosion at MISS and operation of the exhaust system for the sample preparation laboratory in Building 76 were potential sources of radioactive particulates. A more comprehensive discussion of the activities performed at the above sources including the soil radiological concentrations and the potential pathways for the airborne release of contaminated particulates is provided below.

1.4.1 TCRA for the Swale

Six of the twenty-four commercial and governmental properties that comprise the FUSRAP Maywood Superfund Site abut Lodi Brook and the swale. Maywood area storm water empties into the swale at the terminus of West Howcroft Road (see Figure 3). Extremely heavy rainfall associated with Hurricane Floyd on September 16-17, 1999 created regional and localized flooding. The extremely heavy rainfall resulted in the backup of storm water due to extensive sedimentation within the swale and Lodi Brook. Some of the sediments in the swale and Lodi Brook contained elevated levels of radium-226, thorium-232 and uranium-238.

These sediments required removal because additional rainfall had the potential to cause their migration and release onto adjacent and nearby properties. The United States Army Corps of Engineers (USACE) performed a TCRA at the swale pursuant to the requirements of the Comprehensive Environmental Response, Compensation, and Liabilities Act (CERCLA) of 1980, as amended, and the National Oil and Hazardous Substances Pollution Contingency Plan. The TCRA addressed the removal of sediments within the swale and Lodi Brook to restore hydraulic flow and stabilize the swale to reduce the potential for the release of contaminated sediments onto adjacent properties (see Reference 1 for the complete details of this operation).

After Hurricane Floyd in September 1999 and subsequent heavy rains, the USACE collected a total of 52 sediment samples from 15 discrete locations along the swale and in a small section of Lodi Brook. Samples were collected in the sediment/silt layers and were obtained at 6 inch intervals until firm, native soil or clay was encountered.

Analysis of these samples revealed the presence of elevated (i.e., above background) levels of radium-226, thorium-232 and uranium-238 in the sediment found along large sections of the swale and in Lodi Brook. This data was used to determine the average concentrations of the above radioisotopes in the excavated soil that was used to generate the data inputs to the CAP-88-PC dispersion model. The average swale sediment radionuclide concentrations used in the modeling analyses for thorium-232, radium-226 and uranium-238 were 23.8 pCi/g, 0.88 pCi/g and 6.6 pCi/g; respectively.

To establish the appropriate hydraulic grade within the swale and Lodi Brook, soil, vegetation and debris were removed. The excavated soil was placed on the ground adjacent to the swale for drying. This soil was collected and stockpiled and subsequently placed into roll-off containers for transport by truck to MISS. The containers were emptied using the dump ramp and the excavated soil was moved to a dedicated storage area and ultimately transferred to the general soil staging area.

The stockpiled material was covered with tarps and sandbags to prevent the generation of airborne particulate emissions due to wind erosion. The TCRA involved the excavation and transport to MISS of approximately 563 tons of soil. Figure 4 shows selected photographs of the swale at various locations...

1.4.2 Ballod Property Remediation and Restoration

The Ballod property is located in Rochelle Park, New Jersey adjacent to the MISS. The property is bounded by the Route 17 embankment on the east, the New York, Susquehanna and Western Railroad on the north, commercial/industrial properties on the west and the previously remediated portion of the Ballod property on the south. The Ballod property was once part of the MCW site and was used, at least in part, for the disposal of thorium process waste. The area consists of a 1.5-acre parcel where the depth of the radiological contamination varied from one foot or less to four feet in the vicinity of a former dike.

The Oak Ridge Associated Universities (ORAU) performed a detailed radiological characterization of the Ballod property in 1981 (see Reference 2). This investigation, which included the collection of surface and subsurface soil samples, covered the Phase I Ballod property and the adjacent property now occupied by an extended care facility. The results of this investigation formed the basis for the construction work plan for the remediation and restoration of the Ballod property.

The ORAU study demonstrated that the soil radiological concentrations at the Ballod property varied considerably with the highest concentrations in the former diked area bounded by the New York, Susquehanna and Western railroad tracks on the north and Route 17 on the east. Within the former diked area, the measured soil radiological concentrations in the southern portion of the dike were considerably lower than in the northern portion. The soil radiological concentrations were also much lower outside of the former diked area.

Based on the above, the Ballod property was divided into three separate zones for modeling purposes (see Figure 3). For each of these zones, average soil radionuclide concentrations for thorium-232, radium-226 and uranium-238 were computed based on the ORAU sampling data (see Table 1 below). In addition, the corresponding tonnage of excavated soil for each of the three zones was determined.

Zone	Thorium-232 (pCi/g)	Radium-226 (pCi/g)	Uranium-238 (pCi/g)	Tonnage	Surface Area (Ft ²)
1	2.2	0.4	3.5	1,985	29,560
2	574	26.2	64	1,760	7,870
3	155	18.9	82	2,168	9,690

Table 1 Ballod Property – Average Soil Radionuclide Concentrations by Zone

The remediation consisted of the removal of vegetation and the contaminated soil, placement of clean backfill and the revegetation of the site. All excavated contaminated soil and vegetation was transported to MISS by truck for future offsite disposal via rail shipment. In the vicinity of the former dike, the soil was excavated down to an average depth of approximately 5 feet (Zones 2 and 3). In the area west of the dike, the soil was excavated down to an average depth of approximately 1.5 feet (Zone 1).

The remediation involved the excavation and transport to MISS of approximately 5,913 tons of contaminated soil. The breakdown of the amount of excavated soil for Zones 1, 2 and 3 were 1,985 tons, 1,760 and 2,168 tons; respectively.

The excavated soil was placed into piles near the work area, picked up by a front-end loader and either loaded directly into a dump truck or transferred to another onsite storage pile before being loaded into a dump truck. The dump truck transported the excavated soil to the MISS where it was then placed into the main soil staging area. The stockpiled material was covered with tarps and sandbags to prevent the generation of airborne particulate emissions due to wind erosion. Figure 5 shows selected photographs depicting the remediation of the Ballod property.

1.4.3 Operation of Pilot Demonstration Facility

The CERCLA mandates that remedial actions utilize alternative treatment technologies to the maximum extent practicable in providing permanent and significant reduction of toxicity, mobility and volume of hazardous substances or contaminants. Additionally, the National Oil and Hazardous Substances Contingency Plan mandates that an assessment be performed of the degree to which the remedy employs recycling, or treatment, that has reduced the toxicity, mobility, or volume of hazardous substances.

In support of the above volume reduction initiative, an evaluation was performed of various soil processing technology alternatives that may be applicable to the FUSRAP Maywood Superfund Site. Through the appropriate management and waste characterization of the processed soils, the volume of radioactively contaminated material may be reduced.

Previous characterizations of the site have shown that the volume of in-situ soil that may need to be remediated is approximately 200,000 cubic yards. Remediation in the form of excavation and offsite disposal of contaminated soil is being considered for the site. This type of remediation invariably results in the excavation of soil which is below the radiological clean-up levels. This "over-excavation" of material incurs additional costs in excavation, transport and the disposal of soils.

Unless the volume of soil requiring such offsite disposal is appropriately managed, the remediation will incur a significant cost in the disposal of the material alone. By employing a soil processing technology that can separate soil that is radiologically below criteria from radiologically contaminated (above criteria) soil, the cost of remediation may be reduced.

Based on the results of the technology evaluation and subsurface soils investigation (i.e., test pits), it was decided to employ gravel separation and rinse technology as well as radiological sorting technology in the pilot demonstration. The pilot demonstration focused on determining the effectiveness of the two soil management technologies in separating excavated material into components above and below selected

radioactivity criteria, and evaluating the benefits of materials management of the resulting processed soil (see References 3 and 4 for a more thorough discussion of this project).

The goal of the pilot demonstration is to determine the full-scale equipment configurations and operating procedures as well as to evaluate economic considerations. The relative success of any soil processing technology resides in the effectiveness of the technology to realize appreciable cost savings in the remediation of the site and to provide community and other benefits relating to waste transport and disposal of the radiologically contaminated material.

The overall configuration of the pilot demonstration facility consisted of the following areas/components: soil acquisition area; temporary storage pile; gravel separation/rinse system; radiological sorting system; above criteria and below criteria storage process piles; 3/8 inch soil stockpile; 3/8 inch to 6 inch gravel stockpile; and oversize material pile (see Figure 3). In order to assess the efficacy of the pilot demonstration facility for the MISS, it was important that the feed soil have similar characteristics to the majority of the soil that would be processed assuming full scale soil processing would eventually be implemented on the project. Radiological heterogeneity and particle size distributions are the primary soil characteristics that will contribute to operational performance and was the basis for selecting the soil acquisition area.

A track-mounted excavator was used to perform the excavation at the soil acquisition area. The excavated soil was then transported by truck to a temporary soil staging area located adjacent to the load ramp for the pilot process train. During operation of the pilot facility, soil from the temporary storage pile was transported by front-end loaders via the load ramp and placed into the hopper leading to the gravel separation system/rinse system and radiological sorting system.

The gravel separation system used a coarse screening system (grizzly) to separate material greater than 6 inches in nominal diameter, followed by a vibrating screen that separated soil particles larger than 3/8 inch in nominal diameter. After the vibratory action, two streams were formed from the separation: material greater than 3/8 inch but less than 6 inches, and materials less than 3/8 inch. Material greater than 6 inches (oversize materials) was periodically collected using a front-end loader and placed in the main soil staging area or used as backfill.

The separated material greater than 3/8 inch was conveyed through a radial conveyor belt to the rinse system. Within the enclosed rinse system, the gravel was sprayed with water to remove adhering fine sand and silts. The rinse water passed through a filtration system to remove the fines and the filtered water was recycled to the rinse unit forming a closed system.

The less than 3/8 inch stream was directed via a conveyor belt to a feed hopper for the radiological sorting system. On occasion, this stream was directed to a less than 3/8 inch stockpile in order to assess the gravel separation unit's ability to run at full capacity.

The radiological sorting system consisted of a transportable gamma radiation system with motorized conveyor belts, a variable belt speed motor controller, air actuated gates for diverting soil, two arrays of eight sodium iodide (NaI) detectors in each array, and a computer for performing radionuclide assays. Material that was less than 3/8 inch nominal diameter was fed to the radiological sorting system via conveyor from the gravel separation system. The material entered a grizzly with a 1½ inch screen to remove gravel that might not have been removed by the gravel separation system.

The material was spread to a 2 inch thickness and conveyed under two sets of eight NaI detectors. These instruments were calibrated for the detection of thorium-232, radium-226 and uranium-238. The detectors performed a continuous assay of the material. The detectors then signaled the segmented gates which either opened or closed to divert soil that was below a selected threshold level to a "below criteria" stockpile. The remaining soil with radioactivity above the selected threshold level was directed to an "above criteria" stockpile.

The "above criteria" and "below criteria" soil piles were subsequently collected and transported to the main soil storage area at MISS for future offsite disposal. Figure 6 shows selected photographs depicting the operation of the Pilot Demonstration facility.

Operation of the pilot demonstration facility involved the processing of approximately 6,965 tons of contaminated soil. The average radionuclide concentrations of thorium-232, radium-226 and uranium-238 for the processed soil that was used in the modeling analyses were 10.1 pCi/g, 2.1 pCi/g and 2.9 pCi/g; respectively.

1.4.4 In Situ Wind Erosion

The MISS and adjacent Stepan Company property (within the MISS fence line) consists of approximately $59,000 \text{ m}^2$ ($635,000 \text{ ft}^2$) of contaminated areas that were potentially exposed to wind erosion throughout the year 2000. The surface characteristics of the northern portion of the MISS (north of the soil load-out rail spur) has changed considerably during the year 2000.

The amount of bare soil present at MISS, which has the greatest wind erosion potential, has decreased considerably from past years due to the placement of gravel/stone and a plastic liner over much of the area. At present, the approximate breakdown of the types of various surfaces found at MISS (see Figure 3) is the following: bare soil - $5,000 \text{ m}^2 (54,000 \text{ ft}^2)$, vegetation - $22,760 \text{ m}^2 (245,000 \text{ ft}^2)$, gravel/stone - $22,110 \text{ m}^2 (238,000 \text{ ft}^2)$, water basin -740 m² (8,000 ft²) and asphalt - 835 m² (90,000 ft²).

Other than for bare soil, the wind erosion potential for the other surfaces is negligible. It should be noted that any storage piles created as a result of remediation activities and operation of the pilot facility were covered with tarps and sandbags to prevent wind erosion. In addition, best management practices such as spraying water on dry soil were used during the year to reduce the potential for wind erosion.

In order to assess the amount of wind erosion that occurred during the year 2000 at MISS, it is necessary to determine the fastest 2-minute wind speeds over the course of the year and then compare them to the friction velocity most representative of bare soil as defined in EPA's AP-42 publication (Industrial Wind Erosion). As mentioned previously, meteorological data from nearby Teterboro Airport was used to represent conditions at MISS. The results of this analysis showed that the fastest 2-minute wind speeds obtained from Teterboro Airport for the year 2000 do not result in the threshold friction velocity being exceeded at any time during the year. Thus, by definition, no in situ wind erosion occurred at MISS during the year 2000.

1.4.5 System Exhaust for Soil Sample Preparation Laboratory

The soil sample preparation laboratory is located in Building 76 (see Figure 3). Soil samples collected for the pilot demonstration facility were taken to this laboratory to prepare them for radiological analysis. Each

sample was dried thoroughly to minimize the moisture content and then ground to create a homogeneous mixture. The presence of moisture, rocks or void spaces in the prepared sample could lead to inaccurate radioanalytical laboratory results.

The laboratory operates two electric ovens to dry the samples. These ovens are vented directly to the main laboratory fume hood for the removal of waste heat. The grinding of the soil samples is performed in a bench grinder positioned under the main laboratory fume hood. Each soil sample is weighed before and after the grinding process. The grinding of the individual soil samples produces minimal particulate emissions; the operators calculated that on average a 3 percent loss of the sample occurred during the grinding process.

The fume hood operates anytime that the ovens or grinder are operational. Dust generated by the grinding process is collected by the fume hood and passed through a HEPA filter with a 99.97 % removal efficiency before being discharged to the outside air.

Approximately 600 samples were prepared for radiological analysis during December 12 - 21, 2000. The total time that grinding was performed during this period was 90 hours. Each soil sample weighed 400 grams before preparation. The average amount of particulate emissions per sample generated by grinding operations was 12 grams. The average radionuclide concentrations of thorium-232, radium-226 and uranium-238 of the prepared soil was 16.0 pCi/g, 3.3 pCi/g and 4.3 pCi/g; respectively.

The total amount of particulate emissions generated during the preparation of all the soil samples was 7,200 grams. However, after passage through the HEPA filter, the particulate emissions discharged to the outside air was approximately 2 grams; a miniscule amount compared to the total amount of particulates (5,722 grams) that were emitted to the atmosphere from the other sources. The discharge of this miniscule amount of contaminated particulate to the atmosphere would have a negligible impact on the offsite exposure; therefore, this source was not included in the CAP88-PC modeling analyses.

2.0 AIR EMISSIONS DATA

The radionuclide particulate emission sources and controls are summarized in Table 2.

Point Sources	Type Control	Efficiency
Soil Sample Preparation	HEPA Filter	99.97 percent
Laboratory		-
Non-Point Sources	Type Control	Efficiency
In situ soil	Gravel/Stone	99 percent
	Vegetative cover	99 percent
	Bare Soil	0 percent
Pilot Demo. Area soil	Water Sprays for Dust	No credit taken for dust controls
transfers	Suppression. Use of tarps to	
	cover storage piles.	
Ballod Property soil	Water Sprays for Dust	No credit taken for dust controls
transfers	Suppression. Use of tarps to	
	cover storage piles.	
Swale excavation	Water Sprays for Dust	No credit taken for dust controls
	Suppression Use of tarps to cover	
	storage piles.	

Table 2Description of Radionuclide Particulate Emissions Sources

Radionuclide emission rates are based on the particulate release rates and average radionuclide source concentrations determined from sample measurements. The radioactive particulate release rates from in situ wind erosion, the TCRA at the swale, BP remediation and restoration and PDA soil transfers are calculated using EPA's Compilation of Air Pollutant Emission Factors – Volume 1:Stationary Point and Area Sources known as AP-42.

Source concentration for isotopes of thorium-232, radium-226 and uranium-238 are based on average values for the in situ soils and average values measured for the excavated soils resulting from the TCRA at the swale, BP remediation and operation of the pilot facility. Unknown radionuclide source concentrations are based on the known source concentrations assuming secular equilibrium in the decay chains. The radionuclide emissions for the year 2000 from each of the above emission sources, with the exception of the soil sample preparation laboratory, are shown in Table 3.

Non Point Source	In Situ	PDA Soil	BP	BP	BP	Swale
Radionuclides	Soil [*]	Transfer	Zone 1	Zone 2	Zone 3	Excavation
U-238	0	1.00E-08	2.43E-09	3.95E-08	6.23E-08	1.56E-09
Th-234	0	1.00E-08	2.43E-09	3.95E-08	6.23E-08	1.56E-09
Pa-234m	0	1.00E-08	2.43E-09	3.95E-08	6.23E-08	1.56E-09
Pa-234	0	1.31E-11	3.16E-12	5.13E-11	8.09E-11	2.03E-12
U-234	0	1.07E-08	2.60E-09	4.22E-08	6.66E-08	1.67E-09
Th-230	0	1.07E-08	2.60E-09	4.22E-08	6.66E-08	1.67E-09
Ra-226	0	7.07E-09	2.78E-10	1.62E-08	1.44E-08	2.08E-10
Po-218	0	7.07E-09	2.78E-10	1.62E-08	1.44E-08	2.08E-10
Pb-214	0	7.07E-09	2.78E-10	1.61E-08	1.43E-08	2.08E-10
Bi-214	0	7.07E-09	2.78E-10	1.62E-08	1.44E-08	2.08E-10
Po-214	0	7.07E-09	2.78E-10	1.61E-08	1.43E-08	2.08E-10
Pb-210	0	7.07E-09	2.78E-10	1.62E-08	1.44E-08	2.08E-10
Bi-210	0	7.07E-09	2.78E-10	1.62E-08	1.44E-08	2.08E-10
Po-210	0	7.07E-09	2.78E-10	1.62E-08	1.44E-08	2.08E-10
U-235	0	4.70E-10	1.14E-10	1.85E-09	2.91E-09	7.30E-11
Th-231	0	4.70E-10	1.14E-10	1.85E-09	2.91E-09	7.30E-11
Pa-231	0	4.70E-10	1.14E-10	1.85E-09	2.91E-09	7.30E-11
Ac-227	0	4.70E-10	1.14E-10	1.85E-09	2.91E-09	7.30E-11
Th-227	0	4.64E-10	1.12E-10	1.82E-09	2.87E-09	7.20E-11
Fr-223	0	6.49E-12	1.57E-12	2.55E-11	4.02E-11	1.01E-12
Ra-223	0	4.70E-10	1.14E-10	1.85E-09	2.91E-09	7.30E-11
Po-215	0	4.70E-10	1.14E-10	1.85E-09	2.91E-09	7.30E-11
Pb-211	0	4.70E-10	1.14E-10	1.85E-09	2.91E-09	7.30E-11
Bi-211	0	4.70E-10	1.14E-10	1.85E-09	2.91E-09	7.30E-11
Po-211	0	1.28E-12	3.11E-13	5.04E-12	7.96E-12	1.99E-13
T1-207	0	4.69E-10	1.14E-10	1.84E-09	2.91E-09	7.28E-11
Th-232	0	3.45E-08	1.53E-09	3.54E-07	1.18E-07	5.63E-09
Ra-228	0	3.45E-08	1.53E-09	3.54E-07	1.18E-07	5.63E-09
Ac-228	0	3.45E-08	1.53E-09	3.54E-07	1.18E-07	5.63E-09
Th-228	0	3.45E-08	1.53E-09	3.54E-07	1.18E-07	5.63E-09
Ra-224	0	3.45E-08	1.53E-09	3.54E-07	1.18E-07	5.63E-09
Po-216	0	3.45E-08	1.53E-09	3.54E-07	1.18E-07	5.63E-09
Pb-212	0	3.45E-08	1.53E-09	3.54E-07	1.18E-07	5.63E-09
Bi-212	0	3.45E-08	1.53E-09	3.54E-07	1.18E-07	5.63E-09
Po-212	0	2.21E-08	9.80E-10	2.27E-07	7.54E-08	3.60E-09
T1-208	0	1.24E-08	5.50E-10	1.27E-07	4.23E-08	2.02E-09

 Table 3
 Year 2000 Airborne Radionuclide Emissions at MISS (Ci/yr)⁺

The in situ soil emissions are zero as the fastest 2-min wind speeds at Teterboro Airport for the year 2000 do not result in the threshold friction velocity being exceeded at any time.

Soil sample preparation laboratory is not considered a source due to the miniscule amount of particulates released to the atmosphere.

t

3.0 DOSE ASSESSMENTS

3.1 DESCRIPTION OF DOSE MODEL

The effective dose equivalent for the collective population and for the hypothetical maximally exposed individual were calculated in a two step process. The first step was to model the release of particulates from the site using the methodology given in the EPA's "Estimation of Air Impacts from Area Sources of Particulate Matter Emissions at Superfund Sites" (EPA-451/R-93-004). Particulate emissions were determined based on the number of times the soil was disturbed (e.g., excavated, stockpiled, loaded into trucks/containers, unloaded, moved) at both the source and at MISS. The second step was to input these particulate release rates, along with local population and meteorological data, into the CAP88-PC program (EPA 402-B-92-001).

The model was used to predict the annual effective dose at numerous receptors resulting from the combined impacts of particulate emissions from the TCRA at the swale, Ballod Property remediation and operation of the Pilot Demonstration Facility. Although the emission of radon gas is not considered in this analysis, the daughters of radon gas generated by the decay of radon-226 in dust offsite is accounted for by the model in the computation of the effective dose equivalents for the various internal and external exposure pathways.

The CAP88-PC model uses a modified Gaussian plume equation to estimate the average dispersion of radionuclides released from a site. Assessments are done for a circular grid of distances and directions for a radius of 80 km (50 mi.) around the site. The program computes radionuclide concentrations in air, rates of deposition on ground surfaces, concentrations in food, and intake rates to people from ingestion of food produced in the assessment area.

By coupling the output of the atmospheric transport models with the terrestrial food chain models from the U.S. Nuclear Regulatory Commission Regulatory Guide 1.109 ("Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I"), the program estimates the radionuclide concentrations in produce, leafy vegetables, milk, and meat consumed by humans. The population distribution array used in the computer model was calculated from known land uses surrounding the site and 1990 census figures.

CAP88-PC also uses a modified version of DARTAB (ORNL5692) and a database of dose and risk factors generated by RADRISK (ORNL7105 and ORNL7745) for estimating dose and risk. Dose and risk factors are provided for the pathways of: ingestion and inhalation intake; ground level immersion; and ground surface irradiation. For assessments where Rn-222 decay products are not considered, the dose estimates are made by combining the inhalation and ingestion intake rates as well as the air and ground surface concentrations with the appropriate dose conversion factors.

3.2 SUMMARY OF INPUT PARAMETERS

- Average Annual Temperature: 11.8 C (53.3 F)
- Total Annual Precipitation: 85.6 cm (33.7 in.)
- Wind Speed and Direction: Teterboro Airport, NJ STAR Data (1989-1999)
- Population Distribution: calculated from 1990 census
- Annual Radionuclide Emission Rates (see Table 3)
- Surface areas of Emission Points
- Distances to Individual Resident and Worker Receptor Locations

3.3 COMPLIANCE ASSESSMENT

The maximum annual effective dose to residents and workers resulting from each of the key sources during the year 2000 (the TCRA at swale, Ballod Property remediation, and operation of the pilot demonstration facility) as determined by the CAP88-PC modeling analyses are shown in Table 4. The annual effective dose to the maximally exposed resident and worker, as well as the collective population dose, resulting from total site activities during the year 2000 are the following:

- Resident located 35m SSW of BP (100% occupancy): 8.41x10⁻⁴ mSv/yr (8.41x10⁻² mrem/yr)
- Employee located 35m SSW of BP (24% occupancy): 2.02x10⁻⁴ mSv/yr (2.02 x10⁻² mrem/yr)
- Annual effective dose to the public within 80 km of MISS: 2.11×10^{-2} person-rem/year

The maximum annual effective dose to the residents and workers are well below the Subpart H NESHAP's standard of 10 mrem/yr (40 CFR 61.92). The maximum annual effective doses are almost entirely the result of the internal doses received from the inhalation of dust particles with a small contribution from the ingestion of plant borne dust. Air immersion in the dust plume and ground surface irradiation contribute a negligible amount to the total dose.

Source	Location of	Annual Dose	Occupancy	Annual
	Maximum Impact	(mrem/yr)	Factor (%)	Effective Dose
	mpact			(mrem/yr)
Pilot Demonstration Area				
• Population (person-rem/yr)	N/A	1.50E-03	N/A	1.50E-03
• Maximally Exposed Resident	140 m NE	5.60E-04	100	5.60E-04
• Maximally Exposed Worker	120 m NNE	7.70E-04	24	1.85E-04
Ballod Property				
• Population (person-rem/yr)	N/A	1.94E-02	N/A	1.94E-02
• Maximally Exposed Resident	35 m SSW	8.40E-02	100	8.40E-02
• Maximally Exposed Worker	35 m SSW	8.40E-02	24	2.02E-02
Swale				
• Population (person-rem/yr)	N/A	2.40E-04	N/A	2.40E-04
• Maximally Exposed Resident	175 m E	6.00E-05	100	6.00E-05
• Maximally Exposed Worker	12 m W	7.80E-03	24	1.87E-03
Total Site*				
• Population (person-rem/yr)	N/A	2.11E-02	N/A	2.11E-02
• Maximally Exposed Resident	35 m SSW	8.41E-02	100	8.41E-02
Maximally Exposed Worker	35 m SSW	8.41E-02	24	2.02E-02

1 able 4 Maximum Annual Effective Dose Equivalents
--

* The total site dose for the maximally exposed resident and worker represent the combined impacts of particulate emissions from the TCRA at the swale, Ballod Property remediation, and operation of the Pilot Demonstration Facility at the specified location.

3.4 CERTIFICATION

I certify under penalty of law that I have personally examined, and am familiar with, the information submitted herein and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment. (See, 18 U.S.C. 1001.)

Name/Title:			
_			

Signature:

Date: _____

Revision 1

June 2001

4.0 RADON FLUX MONITORING

4.1 RADON-222 FLUX

Radon flux data was obtained for the storage pile on the MISS to verify compliance with 40 CFR Part 61, Subpart Q. To determine radon flux from a storage pile, charcoal canisters were placed on the pile at 25 ft intervals; the canisters remained on the pile for 24 hours. Radon flux measurements for 2000 are presented in Table 5; measurement locations are shown in Figure 8.

Analytical results from measurements obtained at the MISS in January 2001 ranged from non-detect to a maximum of 0.54 pCi/m2/s. All results are well below the 20 pCi/m2/s radon flux standard specified in 40 CFR part 61, Subpart Q.

Revision 1	
June 2001	

				0			
	Date	Date		Result			$\mathbf{MDA}^{\mathbf{b}}$
Sample ID ^a	Collected	Analyzed	Analyte	pCi/m2s		Error	pCi/m2s
RC-1	01/24/2001	01/25/2001	RN-222	0.049	±	0.036	0.077
RC-10	01/24/2001	01/25/2001	RN-222	0.137	±	0.047	0.120
RC-10-DUP	01/24/2001	01/25/2001	RN-222	0.118	±	0.025	0.041
RC-11	01/24/2001	01/25/2001	RN-222	0.055	\pm	0.041	0.107
RC-12	01/24/2001	01/25/2001	RN-222	0.098	\pm	0.055	0.147
RC-13	01/24/2001	01/25/2001	RN-222	0.061	\pm	0.030	0.081
RC-14	01/24/2001	01/25/2001	RN-222	0.059	\pm	0.045	0.114
RC-15	01/24/2001	01/25/2001	RN-222	0.073	\pm	0.034	0.087
RC-16	01/24/2001	01/25/2001	RN-222	0.126	±	0.057	0.150
RC-17	01/24/2001	01/25/2001	RN-222	0.034	±	0.025	0.069
RC-18	01/24/2001	01/25/2001	RN-222	0.039	±	0.042	0.106
RC-19	01/24/2001	01/25/2001	RN-222	0.085	\pm	0.039	0.095
RC-2	01/24/2001	01/25/2001	RN-222	0.103	±	0.046	0.109
RC-20	01/24/2001	01/25/2001	RN-222	0.519	±	0.078	0.055
RC-20-DUP	01/24/2001	01/25/2001	RN-222	0.541	±	0.079	0.092
RC-21	01/24/2001	01/25/2001	RN-222	0.085	±	0.041	0.094
RC-22	01/24/2001	01/25/2001	RN-222	0.075	±	0.046	0.123
RC-23	01/24/2001	01/25/2001	RN-222	0.063	±	0.030	0.078
RC-24	01/24/2001	01/25/2001	RN-222	0.063	±	0.048	0.130
RC-25	01/24/2001	01/25/2001	RN-222	0.082	±	0.049	0.096
RC-26	01/24/2001	01/25/2001	RN-222	0.105	±	0.069	0.154
RC-27	01/24/2001	01/25/2001	RN-222	0.051	\pm	0.031	0.074
RC-28	01/24/2001	01/25/2001	RN-222	0.040	±	0.034	0.096
RC-29	01/24/2001	01/25/2001	RN-222	-0.003	\pm	0.029	0.057
RC-3	01/24/2001	01/25/2001	RN-222	0.080	±	0.050	0.133
RC-30	01/24/2001	01/25/2001	RN-222	0.045	±	0.036	0.101
RC-30-DUP	01/24/2001	01/25/2001	RN-222	0.061	\pm	0.044	0.117
RC-31	01/24/2001	01/25/2001	RN-222	0.084	\pm	0.040	0.097
RC-4	01/24/2001	01/25/2001	RN-222	0.115	±	0.050	0.113
RC-5	01/24/2001	01/25/2001	RN-222	0.083	±	0.048	0.129
RC-6	01/24/2001	01/25/2001	RN-222	0.111	±	0.048	0.111
RC-7	01/24/2001	01/25/2001	RN-222	0.061	±	0.043	0.116
RC-8	01/24/2001	01/25/2001	RN-222	0.142	±	0.028	0.049
RC-9	01/24/2001	01/25/2001	RN-222	0.083	\pm	0.048	0.122

Table 5Radon Flux Monitoring Results

^aAll monitoring locations for the storage pile are shown in figure 5.

^bMinimum detectable Activity (MDA).

5.0 REFERENCES

- Stone and Webster Environmental Technology and Services (Stone & Webster), July 2000. <u>Construction</u> <u>Work Plan for Remediation and Restoration of the Ballod Property</u>. Prepared for U.S. Army Corps of Engineers – Kansas City District.
- Stone and Webster Environmental Technology and Services (Stone & Webster), February 2000. <u>Draft</u> <u>Final - Pilot Demonstration Work Plan</u>. Prepared for the U.S. Army Corps of Engineers – Kansas City District.
- Stone and Webster, Inc., April 2001. <u>Pilot Demonstration Report (Work in Progress)</u>. Prepared for the U.S. Army Corps of Engineers Kansas City District.
- Parks, Barry, <u>CAP88-PC Version 2.0 User's Guide</u>. U.S. Department of Energy, ER-8/GTN, Germantown, Maryland, June 1997.
- U.S. Environmental Protection Agency, <u>Compilation of Air Pollutant Emission Factors</u>, <u>Volume 1:</u> <u>Stationary Point and Area Sources</u>, 5th Edition, AP-42, January 1, 1995 (Sections 13.2.4 and 13.2.5).
- National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Climatic Data Center. Unedited Local "Climatological Data" for January through December, 2000. Teterboro Airport, NJ.
- U.S. Environmental Protection Agency, "Rapid Assessment of Exposure to Particulate Emissions from Surface Contaminated Sites"" <u>EPA Report No. EPA-600/8-85/002</u>, Office of Health and Environmental Assessment, Washington, D.C., February, 1985.
- U.S. Environmental Protection Agency, "Estimation of Impacts from Area Sources of Particulate Matter Emissions at Superfund Sites", <u>EPA Report No. EPA-451/R-93/004</u>, Office of Air Quality Planning and Standards, Research Triangle Park, NC, April 1993.
- Stability Array (STAR) data for Teterboro Airport, NJ for the period 1989 1999 supplied by the National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC.
- Shlein, <u>The Health Physics and Radiological Health Handbook</u>, Revised Edition, Scinta, Inc, Silver Springs, MD, 1992.
- Bechtel National, Inc. (BNI), <u>Natural Uranium Specific Activity</u>, 14501-191-CV-005, Rev. 2, Oak Ridge, TN, 1995.
- Bechtel National, Inc. (BNI), "Characterization Report for the Maywood Interim Storage Site, Maywood, New Jersey". DOE/OR/20722-139, Oak Ridge, TN, June 1987.

APPENDICES

Appendix A

Figures

Figure 1 MISS General Location Map

X:\Maywood\Task0207\Annual Report\Annual NESHAP 2000 Rev 0 Jun 01.doc

Figure 2 - Aerial view of MISS and adjacent properties

March 2, 2000 – View of the Swale looking West toward the Uniform Fashions Building.

Soil is excavated and stockpiled for drying. The pile is covered to reduce dust.

Excavated soils were placed into roll-off containers for transport to MISSS

Roll-off containers were emptied using a ramp. Soil was stockpiled for off-site disposal.

March 24, 2000 – View of Swale looking West after restoration activities.

View of culvert at the terminus of W. Howcroft Avenue after restoration activities.

Figure 4 TCRA at Swale – Selected Photographs

Ballod Property – April 28, 2000 Before trees and brush have been cleared.

August 25, 2000 – After clearing. Stockpile of grubbing and cleared materials.

Dust control measures during excavation down to a depth of one-foot (controlled lift).

September 12th – Excavation down to a depth of three-feet (controlled lift).

October 2nd, 2000 – Transport of excavated soil to stockpile at MISS for future off-site disposal.

December 19, 2000 – Remediated rail spur and property with winter rye seed & hay mulch.

Figure 5 Ballod Property Remediation and Restoration – Selected Photographs

Soil acquisition area. First controlled cut. Kobelco excavator.

Acquisition soils fed into first hopper – Gravel Separation System (GSS)

Gravel separated from acquisition soil. Material transported to soil staging area.

Separated soil feed into hopper to Thermo-Nutech SGS system for radiological sorting.

Thermo-Nutech SGS radiological processing unit.

Behind shovel are processed soils. Feeder pile on left. Storage pile in rear, covered.

Figure 6 Pilot Demonstration Area – Selected Photographs

Building 76 on MISS – Location of Soil Sample Preparation Laboratory.

Electric ovens are used to dry the soil samples prior to grinding.

Grinding of soil samples is performed under the fume hood which exhausts to the HEPA filter.

Exhaust fan and HEPA filter in rear of lab. Air monitor is stored in cat carrier for protection from elements.

Figure 7 Soil Sample Preparation Laboratory – Selected Photographs

Appendix B

Calculations

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION TITLE PAGE

CLIENT & PRO	JECT: ORPS OF ENGINE	PAGE 1 of 61 Total Pages: 70 w/attachments pages 9			
CALCULATION MISS 2000 An	TITLE:				
	CALCULATION IDE	NTIFICATION NUMBER			
JOB ORDER NO.	DISCIPLINE	CURRENT CALC NO	OPTIONAL TASK CODE		
08575.0207	E(B)	03		- WORKT AOF	MUE NU.
APP	ROVALS - SIGNATURE	& DATE	REVISION NO. OR	SUPERSEDES CALCULATION	CONFIRMATION
PREPARES(S) / DATE(S)	REVIEWER(S) /	INDEPENDENT	NEW CALCULATION NO.	NO. OR REVISON NO.	TES NO
Stephen A. Vigeant Stephen G. Ingeand 5-8-01	Joseph McLaughlin		0		
		DISTRI	BUTION		
GROUP	NAME & LOCATION	COPY SENT (~)	GROUP	NAME & LOCATION	COPY SENT (V)
ecord Mgmt. File or Fire File if none) roject File	J. McLaughlin: New York	Original			
pecialist	Stephen A. Vigeant: Stoughton - 4	cc			
	-				

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CALCULATION IDENTIFICATION NUMBER									
~ 、	JOB ORDER N	10. C	SCIPLINE	CALCU	ATION NO.		REVISION N	UMBER	<u> </u>	PAGE
	00375.0207	<u> </u>	E(B)		03		0			2 OF 61
				CHANG	E HISTORY	PAGI	E			
	REVISION NO.	DESCRI	PTION OF C	HANGES	PAGES REVI	SED	PAGES ADD		PAGES B	
	0		N/A		N/A		N/A		NGLO M	VA
										۷A
		-								

 $\widehat{}$

-

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER							
JOB ORDER NO. 08575.0207	DISCIPLINE E(B)	CALCULATION NO. 03	REVISION NUMBER 0	PAGE			
			:NTS				
				1			
	NTS						
OBJECTIVE			•••••••••••••••••••••••••••••••••••••••				
METHODOLOGY				····· 4			
ASSUMPTIONS				5			
EQUATIONS							
INPUT DATA				13			
CALCULATION				17			
RESULTS				17			
CONCLUSIONS							
REFERENCES				19			
CAP88-PC OUTPUT	•			20 - 61			
ATTACHMENTA - E	xcel Spreadsnee	t Results		A1-A9			
-		-					
	JOB ORDER NO. 08575.0207 COVER PAGE CHANGE HISTORY TABLE OF CONTE OBJECTIVE METHODOLOGY ASSUMPTIONS EQUATIONS EQUATIONS CALCULATION RESULTS CONCLUSIONS REFERENCES CAP88-PC OUTPUT ATTACHMENT A - E	JOB ORDER NO. DISCIPLINE 08575.0207 E(B)	JOB ORDER NO. DISCIPLINE CALCULATION NO. 08575.0207 DISCIPLINE CALCULATION NO. TABLE OF CONTENTS. COVER PAGE	JOB ORDER NO. DISCIPLINE CALCULATION NO. REVISION NUMBER 08575.0207 E(B) 03 0 0 TABLE OF CONTENTS COVER PAGE CHANGE HISTORY PAGE TABLE OF CONTENTS OBJECTIVE METHODOLOGY ASSUMPTIONS EQUATIONS CALCULATION REFERENCES CONCLUSIONS REFERENCES CAP88-PC OUTPUT ATTACHMENT A - Excel Spreadsheet Results			

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER					
JOB ORDER NO. 08575.0207	DISCIPLINE E(B)	CALCULATION NO. 03	REVISION NUMBER	PAGE	

OBJECTIVE

To estimate the annual effective dose from airborne radioactivity releases at the Maywood Interim Storage Site (MISS) generated during calendar year 2000 from: in situ wind erosion; Time Critical Removal Action (TCRA) at the swale; Ballod Property (BP) remediation and restoration; Pilot Demonstration Area (PDA) soil transfers; and Soil Sample Preparation Laboratory exhaust system operation.

METHODOLOGY

The calculation is performed using the U.S. Environmental Protection Agency (EPA) Clean Air Act Assessment Package - 1988 (CAP88-PC) model (Ref. 1) to estimate air doses to the population and hypothetical maximally exposed individuals. The radioactive particulate release rates from in situ wind erosion, the TCRA at the swale, BP remediation and restoration and PDA soil transfers are calculated using EPA's Compilation of Air Pollutant Emission Factors - Volume 1:Stationary Point and Area Sources known as AP-42 (Ref. 2). The AP-42 expressions used to perform these calculations are provided in the "Equations" section of this calculation. The actual calculations were performed using an Excel spreadsheet, the results of which are provided in Attachment A.

Radionuclide emission rates are based on the particulate release rates and average radionuclide source concentrations based on sample measurements. Source concentrations for isotopes of uranium (U_{238}), radium (R_{226}), and thorium (Th_{232}) are based on average values for in situ soil (Ref. 7) and average values measured during the TCRA at the swale, BP remediation and restoration and PDA soil transfers. Unknown radionuclide source concentrations are based on the known source concentrations assuming secular equilibrium in the decay chains (Ref. 4).

The CAP88-PC computer model is a set of computer programs, databases, and associated utility programs developed by the EPA for estimation of dose and risk from radionuclide emissions to air. CAP88-PC is used for the purpose of demonstrating compliance with Subpart H of the National Emission Standards for Hazardous Air Pollutants (NESHAPS) as codified in 40 CFR 61.93a. CAP88-PC performs dose and risk assessments for both collective populations and maximally-exposed individuals.

This computer code estimates the average dispersion of radionuclides released from up to six sources. The sources may be either elevated stacks or uniform area sources. All sources are modeled as if located at the same point. Uniform contamination is assumed for area sources. Plume rise can be calculated assuming either a momentum or buoyancy driven plume. Assessments are done for a circular grid of distances and directions with a radius of 80 kilometers around the facility. The program computes radionuclide concentrations in air, rates of deposition on ground surfaces, concentrations in food and intake rates to people from ingestion of food produced in the assessment area.

CAP88-PC uses a modified version of the AIRDOS-EPA (Mo79) program to calculate environmental transport. Plume dispersion is based on the Gaussian plume equation of Pasquill as modified by Gifford, using sector-average concentrations. Plume rise is calculated using either Rupp's equation for momentum dominated plume rise or Briggs equation for buoyancy dominated plume rise. Dry deposition is handled using a proportionality constant applied to the ground-level concentration of the radionuclide and wet deposition is based on a scavenging coefficient related to the rainfall rate. Radionuclides are depleted from the plume by precipitation scavenging, dry deposition, and radioactive decay.

CAP88-PC also uses a modified version of DARTAB (ORNL5692) and a database of dose and risk factors generated by RADRISK (ORNL7105 and ORNL7745) for estimating dose and risk. Dose and risk factors are provided for the pathways of: ingestion and inhalation intake; ground level immersion; and ground surface irradiation. For assessments where Rn-222 decay products are not considered, the dose estimates are made by combining the inhalation and ingestion intake rates as well as the air and ground surface

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER							
JOB ORDER NO. 08575.0207	DISCIPLINE E(B)	CALCULATION NO. 03	REVISION NUMBER 0	PAGE			

concentrations with the appropriate dose conversion factors. CAP88-PC calculates dose to the gonads, breast, lungs, red marrow, thyroid, and endosteum in addition to the 50-year effective dose equivalent. Doses can be tabulated as a function of radionuclide, pathway, location, and organ.

For a given distance, the CAP88-PC model computes the annual effective dose equivalent for all compass directions. Specifically, the model computes the annual dose at a user-defined distance for all 22.5 degree compass point sectors (i.e., N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW). The CAP88-PC model computes an average sector concentration; thus, the annual dose computed for receptors at a given distance within a sector will be the same.

A review of land use surrounding the site and the prevailing wind directions was performed to select the appropriate receptors for inclusion in the modeling analyses. Analyses are performed separately for the TCRA at the swale, BP remediation and restoration and PDA soil transfers given the differences in receptor locations most affected by each of these areas. Where individual receptors are affected by more than one emission source, doses caused by those sources are added. Based on this information, residences and commercial properties located to the north, northeast and east of the MISS PDA along Central Avenue were selected as the receptors of most concern for this area. Receptor locations in other compass directions such as west and west-southwest of the PDA (west of Route 17) and north, south and west of the BP were also selected, along with receptors east, south and northwest of the swale, to envelope the MISS. These receptor locations were used to establish the downwind distances that were input into the model to capture the maximally exposed individual (see Assumptions sections below for specific receptor locations).

ASSUMPTIONS

- 1. The contamination is uniformly distributed over a symmetrical land area with the concentration in respirable particles (PM-10) equaling the bulk contamination concentration in the surface material.
- 2. The erodibility classification of the site is "limited reservoir" characterized by a finite availability of erodible particles impregnated with nonerodible elements.
- 3. Emissions due to wind erosion and mechanical entrainment processes are continuous and steady state.
- 4. The locations of potential maximally exposed individuals (nearest residents and off-site workers) are based on a central point representative of each of the MISS site area emissions as follows:

Area	<u>Distance</u> (meters)	Direction
Pilot Demo. Area		
Residents:	140	Northeast
	175	North-northwest
	180	East-northeast
	185	North-northeast
	200	East
	215	West
	220	West-southwest
	300	Northwest

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CALCULATION IDENTIFICATION NUMBER				
	JOB ORDER NO.	DISCIPLINE	CALCULATION N	NO .	REVISION NUMBER	PAGE
	085/5.020/	E(B)	03		0	6 OF 61
	Workers:	4	10	So	utheast	
		1	20	No	rth-northeast	
		1	20	No	rth	
		1	55	No	rth-northwest	
		1	75	Eas	st-southeast	
		2	240	So	uth	
		. 2	270	No	rthwest	
	Ballod Prope	<u>iny</u>				
	Residents:	9	5	Sa	,th	
	nesidents.	ວ ຊ	5 5	50	ith-southwost	
		6	0	Sol	ithwest	
		1	20	We	st	
		1	25	We	st-southwest	
		1	25	Sou	uth-southeast	
		1	45	Nor	th-northeast	
		1	50	Nor	th	
		1	80	Nor	th-northwest	
		1	80	Eas	st-northeast	
	Workora	2	F	0		
	WOIKEIS.	3	5	500	IIN	
		8	5	Nor	th-northeast	
		1:	20	Nor	thwest	
		1:	20	Nor	th-northwest	
		1:	25	Eas	t-northeast	
		14	40	Nor	theast	
	o 1	24	40	Eas	t	
	Swale					
	Residents:	4-	75	Fac	+	
	ricoldento.	17	75	Fas	r t-soutboast	
		18	30	Sou	theast	
		20	00	Eas	t-northeast	
		22	25	Sou	th-southeast	
	Workers:	12	2	Wes	st	
		12	-	Wes	st-northwest	
		35)	vves	ST-SOUTNWEST	
		30		Sou	ln th southwost	
		0+ 06		Sou	thwest	
		65		Sou	th-southeast	
		85	•	East		[
		85		East	-southeast	
		10	0	East	-northeast	
1		14	5	Nort	h	
		14	5	Wes	t-northwest	
		15	5	Nort	n-northwest	
1						1

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER					
JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE	
08575.0207	E(B)	03	0	7 OF 61	

- 5. The occupancy factor for the residents is 100 percent and 24 percent for workers (40-hour work week x 52 weeks per year = 2080 hours/8760 hours/year).
- 6. The number of disturbances relative to wind erosion of in situ soil is once per week from April to September and once per month from October to March for a total of 32 disturbances per year. Separate calculations are performed for soils covered by vegetation/gravel and for bare soils.
- 7. Daughters in the decay chain of radionuclides are considered to be in secular equilibrium with their parents until a radionuclide in the chain is encountered with a measured concentration whereupon the measured concentration is used (Ref. 4). Although the direct emission of radon gas is not considered in this analysis, the daughters of radon generated by the decay of Ra-226 in dust offsite is accounted for by the model in the computation of the effective dose equivalents for the various internal and external exposure pathways.

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CAI	_CULATION IDENTIFICATI	ON NUMBER	
JOB ORDER NO. 08575.0207	DISCIPLINE E(B)	CALCULATION NO. 03	REVISION NUMBER	PAGE

EQUATIONS

I. In Situ Wind Erosion Emissions: (Ref. 2, Section 13.2.5, "Industrial Wind Erosion")

The wind speed profile in the surface boundary layer is found to follow a logarithmic distribution:

$$u(z) = \frac{u^{*}}{0.4} \ln \frac{z}{z_{o}} \quad (z > z_{o})$$
(1)

where:

u = wind speed, cm/s u = friction velocity, cm/s z = height above test surface, cm $z_0 =$ roughness height, cm

0.4 = von Karman's constant, dimensionless

The friction velocity (u) is a measure of wind shear stress on the erodible surface, as determined from the slope of the logarithmic velocity profile. The roughness height (z_0) is a measure of the roughness of the exposed surface as determined from the y intercept of the velocity profile, i. e., the height at which the wind speed is zero.

Emissions generated by wind erosion are also dependent on the frequency of disturbance of the erodible surface because each time that a surface is disturbed, its erosion potential is restored. A disturbance is defined as an action that results in the exposure of fresh surface material. On a storage pile, this would occur whenever aggregate material is either added to or removed from the old surface. A disturbance of an exposed area may also result from the turning of surface material to a depth exceeding the size of the largest pieces of material present.

The emission factor for wind-generated particulate emissions from mixtures of erodible and nonerodible surface material subject to disturbance may be expressed in units of grams per square meter (g/m²) per year as follows:

Emission factor = k
$$\sum_{i=1}^{N} P_i$$
 (2)

where:

k = particle size multiplier

- N = number of disturbances per year
- P_i = erosion potential corresponding to the observed (or probable) fastest mile of wind for the ith period between disturbances, g/m²

The particle size multiplier (k) for Equation 2 varies with aerodynamic particle size, as follows:

Aerodynamic F	Particle Size Multipliers Fo	or Equation 2		
30 µm	<15 μm	<10 µm	<2.5 μm	
1.0	0.6	0.5	0.2	

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER					
JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE	
08575.0207	E(B)	03	0	9 OF 61	

This distribution of particle size within the under 30 micrometer (μ m) fraction is comparable to the distributions reported for other fugitive dust sources where wind speed is a factor. This is illustrated, for example, in the distributions for batch and continuous drop operations encompassing a number of test aggregate materials (see Section 13.2.4).

In calculating emission factors, each area of an erodible surface that is subject to a different frequency of disturbance should be treated separately. For a surface disturbed daily, N = 365 per year, and for a surface disturbance once every 6 months, N = 2 per year.

The erosion potential function for a dry, exposed surface is:

$$P = 58 (u^* - u_t^*)^2 + 25(u^* - u_t^*)$$

P = 0 for $u^* \le u_t^*$

(3)

where:

u = friction velocity (m/s)

 u_t = threshold friction velocity (m/s)

Because of the nonlinear form of the erosion potential function, each erosion event must be treated separately. Equations 2 and 3 apply only to dry, exposed materials with limited erosion potential. The resulting calculation is valid only for a time period as long or longer than the period between disturbances.

Threshold friction velocities for several surface types have been determined by field measurements with a portable wind tunnel. These values are presented below:

Material	Threshold Friction Velocity (m/s)	Roughness Height (cm)	Threshold Wind Velocity A 10 m (m/s)	
			$z_o = Act$	$z_o = 0.5$ cm
Overburden ^a	1.02	0.3	21	19
Scoria (roadbed material) ^a	1.33	0.3	27	25
Ground coal (surrounding coal pile) ^a	0.55	0.01	16	10
Uncrusted coal pile ^a	1.12	0.3	23	21
Scraper tracks on coal pile ^{a,b}	0.62	0.06	15	12
Fine coal dust on concrete pad ^c	0.54	0.2	. 11	10

THRESHOLD FRICTION VELOCITIES

Western surface coal mine. Reference 2.

² Lightly crusted.

Eastern power plant. Reference 3.

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER				
JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
08575.0207	E(B)	03	0	10 OF 61

The fastest mile of wind for the periods between disturbances may be obtained from the monthly LCD summaries for the nearest reporting weather station that is representative of the site in question. These summaries report actual fastest mile values for each day of a given month. Because the erosion potential is a highly nonlinear function of the fastest mile, mean values of the fastest mile are inappropriate. The anemometer heights of reporting weather should be corrected to a 10-m reference height using Equation 1.

To convert the fastest mile of wind (u^+) from a reference anemometer height of 10 m to the equivalent friction velocity (u^-) , the logarithmic wind speed profile may be used to yield the following equation:

$$u' = 0.053 u'_{10}$$
 (4)

where:

u = friction velocity (m/s)

 u_{10}^{+} = fastest mile of reference anemometer for period between disturbances (m/s)

This assumes a typical roughness height of 0.5 cm for open terrain. Equation 4 is restricted to large relatively flat piles or exposed areas with little penetration into the surface wind layer.

Implementation of the above procedure is carried out in the following steps:

- 1. Determine threshold friction velocity for erodible material of interest (see above table or determine from mode of aggregate size distribution).
- 2. Divide the exposed surface area into subareas of constant frequency of disturbance (N).
- Tabulate fastest mile values (u⁺) for each frequency of disturbance and correct them to 10 m (u⁺) using Equation 1
- 4. Convert fastest mile values (u₁₀) to equivalent friction velocities (u), taking into account (a) the uniform wind exposure of nonelevated surfaces, using Equation 4.
- 5. Multiply the resulting emission factor for each subarea by the size of the subarea, and add the emission contributions of all subareas. Note that the highest 24-hour (hr) emissions would be expected to occur on the windiest day of the year. Maximum emissions are calculated assuming a single event with the highest fastest mile value for the annual period.
- II. Drop Operations Emissions: (Ref. 2, Section 13.2.4, "Aggregate Handling and Storage Piles")

$$E = k (0.0032) [U/5]^{1.3} [M/2]^{1.4}$$

(5)

where:

E = emission factor (lb/ton)

- k = particle size multiplier (dimensionless)
 - U = mean wind speed, meters per second (mph)
- M = material moisture content (%)

The particle size multiplier in the equation, k, varies with aerodynamic particle size range, as follows:

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CAL	CULATION IDENTIFICATI	ON NUMBER	
JOB ORDER NO. 08575.0207	DISCIPLINE E(B)	CALCULATION NO. 03		PAGE
		· · · · · · · · · · · · · · · · · · ·		

Aerodynamic Particle Size Multiplier (k) For Equation 5					
< 30 µm	< 15 μm	< 10 μm	< 5 µm	< 2.5 μm	
0.74	0.48	0.35	0.20	0.11	

III. Radionuclide Emission Rates

The radionuclide source concentrations (S) for isotopes of uranium (U_{238}), radium (Ra_{226}), and thorium (Th_{232}) are based on average values for in situ soil (Ref. 7) and average values measured during remediation for soil transfers and excavations. These values are as follows:

Emission Source	S_{U238} (pCi/g)	S_{Ra226} (pCi/g))	S_{тh232} (pCi/g)
In situ soil	27.5	4.30	24.80
PDA - Soil Acquisition Area	2.94	2.07	10.1
BP - Zone 1 soil transfer	3.5	0.4	2.2
BP - Zone 2 soil transfer	64.0	26.2	574.0
BP - Zone 3 soil transfer	82.0	18.9	155.0
TCRA at the Swale	6.6	0.88	23.8

Ratios of uranium isotopes are calculated from the percentage of activity of U_{238} , U_{234} , and U_{235} in natural uranium as these components make up total uranium. The percentage (P) of each isotope comprising total uranium activity (Ref. 8) is:

Emission Source	P _{U238}	P _{U234}	P _{U235}
All sources	47.249	50.539	2.212

The source concentrations (S) of total uranium, U_{234} , and U_{235} are then given by:

$$\begin{split} S_{Utot} &= (S_{U238}/P_{U238}) = (27.5/0.47249) = \underline{58.2 \ pCi/g} \ (\text{In situ soil}) \\ S_{U234} &= (S_{Utot} \times P_{U234}) = (58.2 \ pCi/g) \times 0.50539 = \underline{29.4 \ pCi/g} \ (\text{In situ soil}) \\ S_{U235} &= (S_{Utot} \times P_{U235}) = (58.2 \ pCi/g) \times 0.02212 = \underline{1.29 \ pCi/g} \ (\text{In situ soil}) \end{split}$$

The annual radionuclide emissions (R) are then the individual radionuclide source concentrations (S) multiplied by the annual particulate emissions rate (E) for the In situ soil, BP and PDA soil transfers, and swale excavation ($R = S \times E$). Unknown radionuclide source emission rates are based on the known source emission rates assuming secular equilibrium in the decay chains (Ref. 4) as follows:

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	~ ~ ~ ~ ~				
	CAL	CULATION IDENTIFI	CATION NUMBER	<u>}</u>	
JOB ORDER NO.	DISCIPLINE	CALCULATION NO). REV	ISION NUMBER	PAGE
08575.0207	E(B)	03		0	12 OF 61
$R_{Th234} = R_{U2}$	38 R _{Pa234m}	= R _{U238} R _{Pa234}	= 0.0013R _{Pa234m}	$R_{Th230} = R_{U234}$	
$R_{Po218} = R_{Ra}$	226 R _{Pb214} =	0.9998R _{Po218} R _{Bi214}	$= R_{Po218}$	$R_{Po214} = 0.99979$	R _{Bi214}
$R_{Pb210} = R_{Bi2}$	$R_{Bi210} =$	R _{Pb210} R _{Po210}	= 0.9999987R _{Bi2}	$R_{Th231} = R_{U235}$	
$R_{Pa231} = R_{Th2}$	$R_{Ac227} =$	R _{Pa231} R _{Th227}	= 0.9862R _{Ac227}	$R_{Fr223} = 0.0138F$	Ac227
$R_{Ra223} = R_{Ac23}$	27 R _{P0215} =	R _{Ra223} R _{Pb211}	= 0.9999977R _{Po2}	$R_{Bi211} = R_{Po215}$	
$R_{Po211} = 0.00$	$273R_{Bi211}R_{Ti207} =$	R _{Bi211} R _{Ra228}	= R _{Th232}	$R_{Ac228} = R_{Ra228}$	
$R_{Th228} = R_{Ac22}$	$R_{Ra224} = 1$	R _{Th228} R _{Po216}	$= R_{Ra224}$	$R_{Pb212} = R_{Po216}$	
$R_{Bi212} = R_{Pb212}$	R _{P0212} =	0.6407R _{Bi212} R _{TI208}	= 0.3593R _{Bi212}		

Although the direct emission of radon gas is not considered in this analysis, the daughters of radon generated by the decay of Ra-226 in dust offsite is accounted for by the model in the computation of the effective dose equivalents for the various internal and external exposure pathways.

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

JOB ORDER NO. DISCIPLINE CALCULATION NO. REVISION NUMBER	CALCULATION IDENTIFICATION NUMBER					
08575.0207 E(B) 03 0	JOB ORDER NO. 08575.0207	DISCIPLINE E(B)	CALCULATION NO. 03	REVISION NUMBER	PAGE	

INPUT DATA

I. In Situ Soil Wind Erosion Emissions:

k= 0.50 (PM-10) - (Ref. 2, Section 13.2.5) No. of Disturbances = 32 per year (See Assumption 6) Surface Area of MISS vegetative soil = $22,762 \text{ m}^2 (245,000 \text{ ft}^2)$ Surface Area of MISS bare soil = $5,017 \text{ m}^2 (54,000 \text{ ft}^2)$ Surface Area of gravel/crushed stone = $22,111 \text{ m}^2 (238,000 \text{ ft}^2)$ u = 1.02 m/sec - (Ref. 2, Section 13.2.5) Anemometer Height = 6.1 m (Ref. 3)

		Fastest Mile Wind
Month	Week	Speed (mph)
Jan.	1-4	34
Feb.	1-4	29
Mar.	1-4	29
Apr.	1	24
	2	28
	3	24
	4	26
May	1	26
	2	23
	3	30
	4	25
Jun.	1	39
	2	21
	3	22
	4	24
Jul.	1	18
	2	20
	3	24
	4	16
	5	16
Aug.	1	22
	2	17
	3	23
	4	18
•	5	18
Sept.	1	23
	2	22
	3	24
•	4	18
Oct.	1-4	24
Nov.	1-4	23
Dec.	1-4	36 -

II. Drop Operations Emissions:

k= 0.35 (PM-10) - (Ref. 2, Section 13.2.4) U= 7.5 mph - (Ref. 3) M =12.0 % - (Ref. 2, Section 13.2.4)

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CAL	CULATION IDENTIFICA	TION NUMBER	
JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
08575.0207	E(B)	03	0	14 OF 61
PDA - Soil A BP - Zone 1 BP - Zone 2 BP - Zone 3 TCRA at the	cquisition Area	<u>Soil Handled</u> (tons) 48,755 9,925 8,800 10,840 3,375	<u>Surface Area</u> (m ²) 5,773 2,746 731 900 1 897	

The soil handled amounts account for the total tonnage of soil that is moved or transferred and the number of times that it is dropped.

IV. CAP88-PC Input Data

Meteorological Data (1989-1999 Teterboro, NJ data, Ref. 9):

Annual average temperature = 53.3 °F (11.8 °F) – Ref. 3 Annual precipitation = 33.7 inches (85.6 cm) – Ref. 3

ARITHMETIC AVERAGE WIND SPEEDS (WIND TOWARDS) - Ref. 9

Pasquill Stability Class

					····		· · · · · · · · · · · · · · · · · · ·
Dir	А	В	С	D	E	F	G
N	2 572	3 108	1 093	1 719	3 300	2 205	0.000
NINITAL	2.572	3 1 8 8	4.000	4.710	2 1 2 1	2.295	0.000
NTTA7	2.572	3 117	3 070	4.923	3.134 2.000	2.235	0.000
TATATAT	2.072	3 353	2.270	4.010	2.900	2.224	0.000
VVIN VV	2.000	3 004	3.910	J.929 4 D45	2.883	2.145	0.000
	2.000	3.084	4.002	4.245	2.916	2.116	0.000
WSW	2.508	3.180	4.004	4.383	3.045	2.135	0.000
SW	2.5/2	3.061	3.786	4.346	3.141	2.270	0.000
SSW	2.572	2.925	3.915	4.789	3.387	2.309	0.000
S	2.460	3.095	3.933	4.955	3.585	2.265	0.000
SSE	2.572	3.241	4.362	5.782	3.989	2.333	0.000
SE	2.572	3.347	4.585	6.192	4.068	2.408	0.000
ESE	2.572	3.481	4.509	6.238	4.044	2.403	0.000
Е	2.572	3.359	4.464	5.809	3.858	2.363	0.000
ENE	2.572	3.412	4.413	5.407	3.763	2.401	0.000
NE	2.337	3.236	4.159	4.694	3.384	2.293	0.000
NNE	2.494	3.357	4.068	4.362	3.415	2 265	0.000

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CALCULATION IDENTIFICATION NUMBER											
JOB O	RDER NO.	RDER NO. DISCIPLINE CALCULATION NO. REVISION NUMB				IBER	PAGE					
085	75.0207	E(B)		03		0		15 OF 61				
						~1		· _ · · · ·				
-				Pasquill S	stability (Class						
	Dir	A	В	С	D	E	F	G				
	N	0.0030	0.0319	0.1169	0.5521	0.1757	0 1205	0 0000				
	NNW	0.0030	0.0424	0.1054	0.6320	0.1212	0.0960	0.0000				
	NW	0.0066	0.0512	0.1076	0.6499	0.0996	0.0851	0.0000				
	WNW	0.0079	0.0634	0.1156	0.6526	0.0943	0.0662	0.0000				
	W	0.0075	0.0531	0.0937	0.7203	0.0624	0.0630	0.0000				
	WSW	0.0069	0.0438	0.0734	0.7476	0.0578	0.0705	0.0000				
	SW	0.0008	0.0461	0.0977	0.6544	0.0923	0.1088	0.0000				
	SSW	0.0014	0.0337	0.1052	0.6373	0.1114	0.1108	0.0000				
	S	0.0015	0.0339	0.1039	0.5371	0.1580	0.1657	0.0000				
	SSE	0.0016	0.0272	0.1025	0.5851	0.1759	0.1077	0.0000				
	SE	0.0025	0.0267	0.0997	0.6255	0.1680	0.0777	0.0000				
	ESE	0.0025	0.0330	0.1023	0.6281	0.1589	0.0752	0.0000				
	E	0.0026	0.0367	0.1156	0.5691	0.1690	0.1070	0.0000				
	ENE	0.0030	0.0427	0.1109	0.5468	0.1922	0.1044	0.0000				
	NE	0.0028	0.0343	0.1175	0.4804	0.2024	0.1626	0.0000				
	NNE	0.0032	0.0334	0.1027	0.4707	0.2223	0.1678	0.0000				
	TOT	0.0029	0.0361	0.1053	0.5857	0.1555	0.1144	0.0000				

Radionuclide Emission Rates:

See Attachment A (spreadsheet)

Population Data from 1990 Census:

See page 18

Individual Receptors:

Area	Distance (meters)	Direction
Pilot Demo. Area	(· · · · · · · · · · · · · · · · · · ·	
Residents:	140 175 180 185 200 215 221 300	Northeast North-northwest East-northeast North-northeast East West West-southwest Northwest

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CALCULATION IDENTIF			IFICATION NUMBER			
	JOB ORDER NO.	DISCIPLINE	CALCULATIO	N NO.	REVISION NUMBER	PAGE		
	08575.0207	E(B)	03		0	16 OF 61		
	Workers:	1	10	So	utheast			
		1	20	No	rth-northeast			
		1	20	No	rth			
		1	55	No	rth-northwest			
		1	75	Eas	st-southeast			
		2	241	So	uth			
		2	270	No	rthwest			
	Ballod Prope	rty						
	Residents:	3	5	Soi	uth			
		3	5	Sou	uth-southwest			
		6	0	Sou	uthwest			
		1	20	We	st			
		1	25	We	st-southwest			
		1	25	Sou	uth-southeast			
		1	45	Nor	th-northeast			
		1	50	Nor	th			
		1	80	Nor	th-northwest			
		1	80	Fast-northeast				
	Workers:	3	5	South				
		3	5	South-southwest				
		8	5	Nor	th-northeast			
		1:	20	Nor	thwest			
		1;	20	Nor	th-northwest			
		1;	25	Eas	t-northeast			
		1,	40	Nor	theast			
		24	40	Eas	t			
	<u>Swale</u>		:					
	Residents:	17	75	Eas	t			
		17	75	Eas	t-southeast			
		18	30	Sou	theast			
		20	00	Eas	t-northeast			
		22	25	Sou	th-southeast			
	Workers:	12	2	Wes	st			
		12		Wes	st-northwest			
		35		Wes	st-southwest			
		35		Sou	th			
		40		Sou	th-southwest			
		60)	Sou	thwest			
		65		Sout	th-southeast			
		85		East	t			
		85		East	l-southeast			
		10	0	East	-northeast			
		14	5	Nort	h _			
		14	5	Wes	st-northwest			
		15	5	Nort	h-northwest			
1								

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER									
NUMBER	PAGE								
<u>7</u>	NUMBER 0								

CALCULATION

The actual radionuclide emission rate calculations are performed using an Excel spreadsheet, a printout of which is provided in Attachment A. The dose calculations are performed by the CAP88-PC model, the output of which is provided on pages 20-61.

RESULTS

The CAP88-PC output for the annual doses to the maximally exposed individuals and population within 80 km of MISS is provided on pages 20-33 for the Pilot Demonstration Area, on pages 34-47 for the Ballod Property, and on pages 48-61 for the Swale. The maximum annual effective doses are summarized below:

Receptor	Location	Annual Dose	Occupancy Factor (%)	Annual Effective Dose
		(mrem/yr)		(mrem/yr)
Pilot Demonstration Area				
Population (person-rem/yr)	N/A	1.50E-03	N/A	1.50E-03
Maximally Exposed Resident	140 m NE	5.60E-04	100	5.60E-04
Maximally Exposed Worker	120 m NNE	7.70E-04	24	1.85E-04
Ballod Property				
Population (person-rem/yr)	N/A	1.94E-02	N/A	1.94E-02
Maximally Exposed Resident	35 m SSW	8.40E-02	100	8.40E-02
Maximally Exposed Worker	35 m SSW	8.40E-02	24	2.02E-02
Swale				
 Population (person-rem/yr) 	N/A	2.40E-04	N/A	2.40E-04
Maximally Exposed Resident	175 m E	6.00E-05	100	6.00E-05
Maximally Exposed Worker	12 m W	7.80E-03	24	1.87E-03
Total Site				
Population (person-rem/yr)	N/A	2.11E-02	N/A	2.11E-02
Maximally Exposed Resident	35 m SSW	8.41E-02	100	8.41E-02
Maximally Exposed Worker	35 m SSW	8.41E-02	24	2.02E-02

The maximum annual effective doses are almost entirely the result of the internal doses from the inhalation of dust particles and the ingestion of plant borne dust. The air immersion in the dust plume and ground surface irradiation from dust deposition pathways contribute a negligible amount to the total dose. The dominant pathway is inhalation as shown in the following example for the maximally exposed individual annual effective dose for the Ballod Property from page 35:

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CAL	CULATION IDENTIFICAT	ION NUMBER	
	JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
2	08575.0207	E(B)	03	0	18 OF 61
		PATHWAY EFFECT	IVE DOSE EQUIVALENT	SUMMARY	
			Selec	ted	
			Indivi	dual	
		Pathway		u/y)	
		 			•
		INGESTI	ON 5.39E	-04	
		INHALAT	ION 1.02E	-01	
		AIR IMM	ERSION 2.35E	-07	
		GROUND	SURFACE 8.15E	-06	
		INTERNAL		-01	
		EXTERNA	L 8.38E	-06	
		TOTAL	1.03E	-01	

CONCLUSIONS

The annual effective dose to the public within 80 km of MISS from airborne particulate releases during 2000 was <u>2.11E-02 person-rem/yr</u>. The annual effective dose to the maximally exposed resident and worker (located on the west side of Highway 17 and south of the Ballod Property), primarily from inhalation of airborne particulate releases during 2000, were <u>8.41E-02 mrem/yr</u> and <u>2.02E-02 mrem</u>/yr respectively.

These doses are well below the NESHAPS standard of 10 mrem/yr (40 CFR 61.92).

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

CALCULATION IDENTIFICATION NUMBER									
JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE					
08575.0207	E(B)	03	0	19 OF 61					

REFERENCES

- 1. Parks, Barry, "CAP88-PC Version 2.0 User's Guide". U.S. Department of Energy, ER-8/GTN, Germantown, Maryland, June, 1997. Stone & Webster Library Reference No. EN-293, V00, L00.
- 2. U. S. Environmental Protection Agency, "Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources", 5th Edition, AP-42, January 1, 1995 (Sections 13.2.4 and 13.2.5).
- 3. National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Climatic Data Center. Unedited Local Climatological Data for January -December, 2000 Teterboro, NJ.
- 4. Shlein, "The Health Physics and Radiological Health Handbook", Revised Edition, Scinta, Inc. Silver Springs, MD, 1992.
- U.S. Environmental Protection Agency, "Rapid Assessment of Exposure to Particulate Emissions from Surface Contaminated Sites". EPA Report No. EPA-600/8-85/002, Office of Health and Environmental Assessment, Washington, D.C., February, 1985.
- U.S. Environmental Protection Agency, "Estimation of Impacts from Area Sources of Particulate Matter Emissions at Superfund Sites". EPA Report No. EPA-451/R-93/004, Office of Air Quality Planning and Standards, Research Triangle Park, NC, April, 1993.
- 7. Bechtel National, Inc. (BNI), "Characterization Report for the Maywood Interim Storage Site, Maywood, New Jersey". DOE/OR/20722-139, Oak Ridge, TN, June, 1987.
- Bechtel National, Inc. (BNI), "Natural Uranium Specific Activity", 14501-191-CV-005, Rev. 2, Oak Ridge, TN, 1995.
- 9. 1989-1999 Stability Array (STAR) data for Teterboro, NJ supplied by the National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC.

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CAL	CULATION IDENTIFICAT	ION NUMBER	
	JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
	08575.0207	E(B)	03	0	20 OF 61
			C A P 8 8 - P C		
			Version 2.00		
		Clean Air A	ct Assessment Packa	ge - 1988	
		SYN	OPSIS REPO	вт	
		Non-Rad	on Individual Assess	sment	
		Ма	y 8, 2001 09:13 ar	nm	
	Facility	': Maywood Int	erim Storage Site -	Pilot Demo. Area	
	City	: Maywood	er Avenue		
	State	: NJ	Zip: 07607-		
	Source C	ategory: Part	iculate Emission w r	adon daughters	
	Sour	ce Type: Area		adom adagneers	
	Emissi	on Year: 2000			
	Comments	: Stone & Webs	ster, Inc. for		
		U.S. Army Co	orps of Engineers		
					Í
		Effective I	Dose Equivalent		
		(mre	em/year)		
		9.	98E-04		
	At This Lo	ocation: 110	Meters South		
	.				
	Datase	et Name: MISS	PDA MEI 8 2001 09.11 am		
	Win	nd File: C:\DA	TA\CAP88PC2\WNDFILE	S\TET1358.WND	
					1
				•	

1

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CAL	CULATION IDENTIFICATI	ON NUMBER	
	JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
	08575.0207	E(B)	03	0	21 OF 61
,					
	No. 0 2001 (0 12 -			
ĺ	May 8,2001 (19:13 amm		SYNOPSIS	
				Page 1	
		MAXIMALLY EX	POSED INDIVIDUAL		
	T		• • • • •		
	Location	Of The Individ	ual: 110 Meters S	outh	
	DITECIME	ratal Cancer R	1SK: 1.14E-	08	
		ORGAN DOSE E	QUIVALENT SUMMARY		
			Dece		
			Equivalent		
		Organ	(mrem/y)		1
1			······································		
		GONADS	6.77E-06		
		BREAST	6.06E-06		
		K MAR	4.72E-04		
		LUNGS	6.27E-03		
		THIROLD	5.91E-06		
		ENDUST	5.87E-03		
1		RMNDR	3.05E-05		
		EFFEC	9.98E - 04		
			J.JOL 04		

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

5010.65

					CALC	CULATIO	N IDENTIF	CATIO	ON NUM	BER			
·.	JOB OR	DER NC).	DISCIPLI	NE	CALCU	JLATION N	D.		REVISIC	N NUMB	ER	PAGE
2	08575	5.0207		E(B)			03				0		22 OF 61
•	May 8	, 2001	09:	13 amm							SYNOPS Page 2	IS 2	
	Nuclide	Class	Size	Source #1 Ci/y	TOTAL Ci/y	EMISSI , ,	ONS DURIN	IG TH	E YEAR	2000			
	AC-227 AC-228 BI-211 BI-212 FR-223 PA-234M PA-231 PB-211 PO-216 PB-212 PO-215 RA-223 RA-224 TH-232 TH-231 TH-231 TH-227 TL-208 U-235 TL-207 U-238 TH-234 PA-234 U-234 TH-234 PA-234 U-234 TH-234 PA-234 DA-234 TH-230 RA-226 PO-218 PB-214 PB-214 PD-214 PD-214 PD-210 PD-210 RA-228	YYWWDWDWWWWWWWYYYYYYWWDW-DYYDWWYY	$\begin{array}{c} 1.00\\$	4.7E-10 3.5E-08 4.7E-10 3.5E-08 6.5E-12 1.0E-08 4.7E-10 4.7E-10 1.3E-12 3.5E-08 3.5E-08 3.5E-08 4.7E-10 4.7E-10 3.5E-08 3.5E-08 3.5E-08 3.5E-08 3.5E-08 3.5E-08 3.5E-08 3.5E-08 3.5E-08 4.7E-10 4.7E-10 1.2E-08 4.7E-10 1.2E-08 4.7E-10 1.0E-08 1.3E-11 1.1E-08 1.3E-11 1.1E-08 1.1E-09 7.1E-09 7.1E-09 7.1E-09 7.1E-09 7.1E-09 7.1E-09 7.1E-09 3.5E-08	$\begin{array}{c} 4.7 \\ -7 \\ -4.5 \\ -7 \\ -4.5 \\ -7 \\ -5 \\ -1.5 \\ -5 \\ -1.5 \\$	10 08 10 08 10 08 10 08 10 10 10 10 10 10 10 08 08 10 08 010 08 010 08 010 08 10 08 10 08 010 08 010 08 010 08 010 08 010 08 010 08 010 08 010 08 09 09 09 09 09 09 09 09 09 09							

SITE INFORMATION

Temperature:	12	degrees C
Precipitation:	86	cm/y
Mixing Height:	-1000	m

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CALCULATION IDENTIFICATION NUMBER								
	JOB ORDER NO.	DISCIPLINE	CALCU	LATION N	10.	REVISION NUMBER		PAGE	
I	08575.0207	E(B)		03			0	23 OF 61	
	May 8, 2001 (SYNOPSIS Page 3					
	SOURCE INFORMATION								
	Source Numbe	er: 1							
	Source Height (m Area (sq m): 0.): 5773.							
	Plume Rise Pasquill Cat:	А В	С	D	Е	F	G		
	Zero:	0. 0.	0.	0.	0.	0.	0.		
	AGRICULTURAL DATA								
				Veget	able	Milk	Meat		
	Fraction Home Produced: Fraction From Assessment Area: Fraction Imported:			0.076 0.924 0.000		0.000 1.000 0.000	0.008 0.992 0.000		
	Food Arrays were not generated for this run. Default Values used.								
	DISTANCES (M) USED FOR MAXIMUM INDIVIDUAL ASSESSMENT								
	110 120 240 270	140 155 300	175	180	185	200 2	215 220		

• • • •
, en

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CAL	CULATION IDENTIFICATI	ON NUMBER	
JOB ORDER NO.		CALCULATION NO.	REVISION NUMBER	PAGE
08575.0207	E(B)	03	0	24 OF 61
May 8, 2001	09:13 amm		SUMMARY	
			Page 2	
	NUCLIDE EFFE	CTIVE DOSE EQUIVALEN	T SUMMARY	
		Select	ed	
	Nuclide	(mrem/	.uai у)	
	AC-227	1.09E-	05	
	AC-228	1.08E-	07	
	BI-211 BT 212	1.52E-	11	
	B1-212 FR-223	4.22E- 6.31E	U8 1 3	
	PA-234M	2.67E-	12	
	PA-231	8.33E-	06	
	PB-211	1.61E-	10	
	PO-211	8.72E-	28	
	PO-216	0.00E+	00	
	PB-212	2.10E-	07	
	PO-212 PO-215	0.00E+	00	
	PO-215 RA-223			
	RA-224	4 38E-))	
	TH-232	4.48E-	04	
	TH-228	3.14E-0	04	
	TH-231	1.70E-1	11	
	TH-227	1.96E-0)7	
	TL-208	9.29E-1		
	U-235 作T. _ 207	2.14E-(
	U-238	1 - 49E 2 - 28F)5	
	TH-234	1.85E-0	08	
	PA-234	1.47E-1	.2	
	U-234	5.15E-0)5	
	TH-230	9.65E-0)5	
	RA-226	3.13E-0	06	
	PO-218 PB-214		.1	
	BI-214	3 55E-1	0 0	
	PO-214	0.00E+C	0	
	PB-210	7.12E-0	6	
	BI-210	4.96E-0	8	
	PO-210	3.22E-0	6	
	RA-228	5.18E-0	6	
	TOTAL	9.97E-0	4	

	CALCULATION IDENTIFICATION NUMBER							NUMBER			
	JOB OR 0857	DER NO. 5.0207	DISCIPL				REVI	SION NUMBER	PAGE		
)		0.0201		<u> </u>	03		<u> </u>	0	25 OF 61		
	May 8	, 2001 (IN	09:13 amm	EFFECTIVE			۱۹۳۲ (SUMMARY Page 5			
			(A	ll Radion	uclides a	nd Pathwa	ays)	/ ¥)			
				Dis	tance (m)						
	Directio	on 110	120	140	155	175	180	185			
•	N NNW NW WNW WSW SSW SSW SSE SSE SE ESE E E E E E E	7.9E-04 4.4E-04 2.3E-04 2.1E-04 2.9E-04 3.8E-04 5.1E-04 7.5E-04 1.0E-03 8.1E-04 6.2E-04 5.5E-04 5.8E-04 6.4E-04 8.5E-04 9.1E-04	$\begin{array}{c} 6.8E-04\\ 3.6E-04\\ 1.9E-04\\ 1.7E-04\\ 2.5E-04\\ 3.2E-04\\ 4.3E-04\\ 6.3E-04\\ 6.8E-04\\ 5.3E-04\\ 4.6E-04\\ 5.3E-04\\ 5.3E-04\\ 7.3E-04\\ 7.3E-04\\ 7.7E-04\\ \end{array}$	5.3E-04 $2.6E-04$ $1.4E-04$ $1.3E-04$ $2.4E-04$ $3.2E-04$ $4.6E-04$ $6.8E-04$ $4.9E-04$ $4.9E-04$ $3.3E-04$ $3.8E-04$ $3.8E-04$ $5.6E-04$	$\begin{array}{c} 4.5E-04\\ 2.1E-04\\ 1.2E-04\\ 1.0E-04\\ 1.6E-04\\ 2.0E-04\\ 2.7E-04\\ 3.7E-04\\ 3.7E-04\\ 3.3E-04\\ 2.7E-04\\ 3.3E-04\\ 3.2E-04\\ 3.0E-04\\ 4.8E-04\\ 4.7E-04\\ \end{array}$	3.7E-04 1.6E-04 9.2E-05 7.9E-05 1.3E-04 1.6E-04 2.1E-04 2.9E-04 4.9E-04 3.1E-04 2.7E-04 2.6E-04 2.3E-04 3.9E-04 3.9E-04 3.7E-04	3.6E-04 1.5E-04 8.7E-05 7.5E-05 1.3E-04 1.5E-04 2.0E-04 2.7E-04 2.7E-04 2.9E-04 2.5E-04 2.5E-04 2.2E-04 3.7E-04 3.5E-04	3.4E-04 1.4E-04 8.2E-05 7.1E-05 1.2E-04 1.4E-04 1.9E-04 2.5E-04 2.5E-04 2.8E-04 2.4E-04 1.9E-04 2.4E-04 2.4E-04 3.6E-04 3.3E-04			
				Dist	ance (m)						
	Direction	n 200	215	220	240	270	300				
	N NNW NW WNW WSW SSW SSW SSE SE ESE ESE ENE ENE NNE	3.0E-04 1.2E-04 7.2E-05 6.1E-05 1.1E-04 1.2E-04 1.7E-04 2.2E-04 4.0E-04 2.4E-04 2.1E-04 1.6E-04 2.1E-04 3.1E-04 2.9E-04	2.6E-04 1.0E-04 6.3E-05 5.4E-05 9.3E-05 1.1E-04 1.5E-04 1.9E-04 3.5E-04 2.1E-04 1.4E-04 1.8E-04 1.5E-04 2.7E-04 2.5E-04	2.5E-04 1.0E-04 6.1E-05 5.3E-05 8.9E-05 1.0E-04 1.4E-04 1.8E-04 2.0E-04 1.8E-04 1.8E-04 1.4E-04 1.8E-04 1.5E-04 2.6E-04 2.4E-04	$\begin{array}{c} 2.1E-04\\ 8.6E-05\\ 5.3E-05\\ 4.6E-05\\ 7.7E-05\\ 9.1E-05\\ 1.2E-04\\ 1.6E-04\\ 2.8E-04\\ 1.7E-04\\ 1.5E-04\\ 1.2E-04\\ 1.2E-04\\ 1.2E-04\\ 2.2E-04\\ 2.2E-04\\ 2.1E-04\\ \end{array}$	1.7E-047.1E-054.5E-053.9E-056.4E-057.5E-051.0E-041.3E-042.3E-041.4E-041.2E-049.5E-051.2E-041.0E-041.8E-041.7E-04	1.4E-04 6.0E-05 3.8E-05 3.4E-05 5.4E-05 6.3E-05 8.4E-05 1.1E-04 1.9E-04 1.0E-04 8.0E-05 1.0E-04 8.5E-05 1.5E-04 1.4E-04				

	CAI	CULATION IDENTIFICAT	ION NUMBER	
JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
08575.0207	E(B)	03	0	26 OF 61
		САР88-РС		
		Version 2 00		
		VCID1011 2.00		
	Clean Air A	act Assessment Packa	ge - 1988	
	SYN	OPSIS REPO	RТ	
	Non-Rad	on Population Assess	amont	
	Mon Ma	y 8, 2001 09:28 ar	nm	
		-		
Facility	: Maywood Int	erim Storage Site -	Pilot Demo. Area	
Address	s: 100 W. Hunt 7: Maywood	er Avenue		
State	e: NJ	Zip: 07607-		
Source C	ategory: Part	iculate Emission w r	adon daughters	
Sour	ce Type: Area			
Emissi	on Year: 2000			
Comments	: Stone & Webs	ster, Inc. for		
	U.S. Army Co	orps of Engineers		
	Effective I	Dose Equivalent		
	(mre	em/year)		
	2.	53E-04		
At This Lo	ocation: 250	Meters South		
Datase	et Name: MISS	PDA POP		
Datase	et Date: May	8, 2001 09:12 am		
Wir Populatio	nd File: C:\DA	TA\CAP88PC2\WNDFILE	S\TET1358.WND	
roparatio	ALLIE. C. (DA	TA (CAPOOPCZ (PUPFILE	S VERINOUD. PUP	

Г

	000000			ULATION II	DENTIFICATIO	ON NUMBER		
JOB	ORDER NO.	DISCIP	LINE	CALCULA	TION NO.	REVIS	ION NUMBER	PAGI
0	85/5.0207	<u> </u>)	03			0	27 OF
Mair	P 2001	00.20						
riay	0, 2001	09:28 amm					SYNOPSIS	
							Page 1	
		MAXIMA	LLY EXP	OSED INDI	VTDUAL.			
					TDOAD			
	Location	n Of The I	ndividu	al: 25	0 Meters So	outh		
	Lifetime	e Fatal Ca	ncer Ri	sk:	2.90E-0)9		
		OPCAN		171777 TINTE				
		OKGAN	DOSE EQU	JIVALENT :	SUMMARY			
				Selected	1	Collectiv	70	
				Individua	- al	Populatio		
	C	rgan		(mrem/y)	1	(person-rem	$\frac{1}{\sqrt{2}}$	
	-						·· 2 /	
	~							
	G	ONADS		1.26E-06	5	8.06E-06		
	В	REAST		1.09E-06	5	7.15E-06		
	R T	INCS		1.17E-04		6.96E-04		
	ц т	UNGS UVDATA		1.61E-03		9.50E-03		
	יב יד	NDOST		1.05E-06	•	6.81E-06		
	R	MNDR		1.40E-03		8.65E-03		
	10			4.0/8-00		3.11E-05		
	E	FFEC		2.53E-04		1 505-03	ĩ	
						T. JOE-03		
	FRE(QUENCY DIS	TRIBUTI	ON OF LIF	ETIME FATA	L CANCER RI	SKS	
			# _ E ·	D = = = 1	. . •			
		# ~ f	# OI] in m⊾	reopie	Deaths/Yea	ar Deaths/	Year	
Ris	k Range	People	Pango	LS KISK	in This	in This	Risk	
		reobte	ranye (, aigner	KISK Kange	e Range or	Higher	
.0E+0	0 TO 1.0E-0	01 0		0	0.00 ± 00) ი ი		
.0E-0	1 TO 1.0E-0	02 0		0	0.00E+00)E+00	
.0E-0	2 TO 1.0E-0	3 0		0	0.00E+00) 0.00)E+00	
.0E-0	3 TO 1.0E-0	4 0		0	0.00E+00) 0.00)E+00	
.0E-0	4 TO 1.0E-0	5 0		0	0.00E+00	0.00)E+00	
.0E-0	5 TO 1.0E-0	6 0		0	0.00E+00	0.00)E+00	
LESS	THAN 1.0E-0	617937859	179378	59	2.43E-07	2.43	BE-07	

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

JOB OB		5	DISCIPLU			ATION NO	TION N	UMBER		
0857	5.0207		E(B)			-21 1011 110. 13		REVISI		PAGE
				1					0	 28 OF 61
May 8	, 2001	09:	28 amm						SYNOPSIS	
									Page 2	
			RADIONU	CLIDE	EMISSION	IS DURING	THE YE	AR 2000		
						5 20112110				
			Source							
Nuclide	Clace	Sizo		TOTAL	-					
Nucrice	CIASS	D126	CI/Y	CIV	1					
AC-227	Y	1.00	4.7E-10	4.7E-	-10					
AC-228	Y	1.00	3.5E-08	3.5E-	-08					
BI-211	W	1.00	4.7E - 10	4.7E-	·10					
BI-212	W	1.00	3.5E-08	3.5E-	.08					
FR-223	D	1.00	6.5E-12	6.5E-	.12					
PA-234M	Y	1.00	1.0E-08	1.0E-	.08					
PA-231	I D	1 00	4.7E-10	4.7E-	10					
PO = 211	-	0 00	4.7E-10	4./E-	10					
PO-216	w	1.00	3.5E-08	3 5E-	-08					
PB-212	D	1.00	3.5E-08	3.5E-	08					
PO-212	W	1.00	2.2E-08	2.2E-	08					
PO-215	W	1.00	4.7E-10	4.7E-	10					
RA-223	W	1.00	4.7E-10	4.7E-	10					
RA-224	W	1.00	3.5E-08	3.5E-	08					
TH-232	Y	1.00	3.5E-08	3.5E-	08					
TH-228	Y	1.00	3.5E-08	3.5E-	08					
TH-231	Y	1.00	4.7E-10	4.7E-	10					
TH-22/	Y	1.00	4.6E-10	4.6E-	10					
11-200	v	1 00	1.2E-08	1.28-	08					
TI_{-207}	л П	1 00	4.7E - 10 4.7F - 10	4.75-	10					
U-238	Ŷ	1.00	1.0E - 08	1.0E-	08					
TH-234	Ŷ	1.00	1.0E-08	1.0E-	08					
PA-234	Y	1.00	1.3E-11	1.3E-	11					
U-234	Y	1.00	1.1E-08	1.1E-0	08					
TH-230	Y	1.00	1.1E-08	1.1E-0	08					
RA-226	W	1.00 '	7.1E-09	7.1E-0	09					
PO-218	W	1.00	7.1E-09	7.1E-0) 9					
PB-214	D	1.00	7.1E-09	7.1E-(39					
BI-214	W	1.00	/.1E-09	7.1E-()9					
FU-214	W	1.00	/.1E-09	7.1E-(J9					
FD-210 BT_210	L) Tat	1 00 7	/.1E-09 7	/.1E-(7 15 /	19 10					
PO = 210	VV Taj	1 00 7	/.IE-U9 / 1E-00 '	/・1ビー(7 1日 /	19 10					
RA-228	W	1 00 7	3 5E-09	/・⊥些ー(3 5₽_/	<i>בו</i> 19					
	••			J.J.J.	, 0					

SITE INFORMATION

Temperature:	12 degrees C	
Precipitation:	86 cm/y	
Mixing Height:	1000 m	

		CAI	LCULATION	IDENTIFIC	CATION	INUMBER			_
	JOB ORDER NO.	DISCIPLINE	CALCUL	ATION NC).	REVIS	ION NUMBER	PAGE	_
1	08575.0207	<u>E(B)</u>		03			0	29 OF 61	
•	May 8, 2001	09:28 amm					SYNOPSIS Page 3	 	
		SOURCE INFOR	RMATION						
	Source Numb	er: 1							
	Source Height (Area (sq	m): 0. m): 5773.							
	Plume Rise Pasquill Cat: 	А В	с	D	E	F	G		
	Zero:	0. 0.	0.	0.	0.	0.	0.		
		AGRICULTURAL	DATA						
				Vegeta	ble	Milk	Meat		
	Fractio	Fraction Home P on From Assessme Fraction I	roduced: nt Area: mported:	0.0 0.9 0.0	76 24 00	0.000 1.000 0.000	0.008 0.992 0.000		
		Beef Ca Milk Ca Land Fraction (for Vege	ttle Dens ttle Dens Cultivate etable Cr	ity: ity: d ops:	4.25E- 3.29E- 1.82E-	-02 -02 -02			

-

JOB ORDE	R NO.	DISCIPLI	NE CA	LCULATION		REVISI		
085/5.02	207 [E(B)	l,,	03			0	
May 8,2	2001 09	:28 amm					SYNOPSIS	
							Page 4	
			POPULATI	ON DATA				
			Dista	unce (m)				
_	··· _ · · _ · · -=	<u> </u>						
Direction	ı 250	750	1500	2500	3500	4500	7500	
N NNW	67 67	201	802 802	1337	1872	2407	20057	
NW	67	201	802 802	⊥ 337 1 7 7 7	10/2 1970	240/ 2407	20057	
WNW	67	201	802	1337	1872	2407	18015	
W	67	201	802	1337	1872	2407	15973	
WSW	67	201	802	1337	1872	2407	15973	
SW	67	201	802	1337	1872	2407	16228	
SSW	67	201	802	1337	1872	2407	20057	
S	67	201	802	1337	1872	2407	20057	
SSE	67	201	802	1337	1872	2407	25914	
FSF	67	201	802	1337	1872	2407	20057	
E	67	201	802	1337	1872	2407	20057	
ENE	67	201	802	1337	1872	2407	20057	
NE	67	201	802	1337	1872	2407	20057	
NNE	67	201	802	1337	1872	2407	20057	
			Dista	nce (m)				
 Direction	15000	25000	35000	45000	55000	65000	75000	
				49000		03000	/5000	
N	74537	60196	70814	29909	28375	32864	31652	
NNW	80228	100151	38356	25800	31534	37267	40828	
NW	74537	78697	106487	126587	47978	25581	31795	
WNW	56704	65308	91431	43632	20950	24760	25044	
W	64114	84087	47693	59939	47949	40968	30281	
WSW	122233	167453	56447	59420	70303	592514	29756	
SSW	142152	221394 229191	231145 283107	14/38U 211907	152402	/9165	12/971	
S	236424	356896	203497	27391	48812	100380	303/9U 91523	
SSE	537391	974408	1119592	38176		0	د ۲۵۲۶ ۱	
SE	813384	678682	772130	363126	35070	õ	0	
ESE	837313	483781	278841	306070	279511	103569	51542	
E	566935	290745	57469	146563	75595	89339	103084	
ENE	84525	76576	79890	60083	55076	6509 <u>0</u>	75104	
NE	65381	57432	102568	129885	161178	126989	143397	
AINTH'	65457	30109	80543	125688	76315	38109	40796	

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CALCULATION IDENTIF	ICATION NUMBER	
JOB ORDER N	O. DISCIPL	INE CALCULATION N	IO. REVISION NUMBER	PAGE
08575.0207	E(B)	03	0	31 OF 6
May 8, 200	1 09:28 amm		SUMMARY	
			Page 2	
	NUCLID	E EFFECTIVE DOSE EQUI	VALENT SUMMARY	
		Selected	Collective	
		Individual	Population	
r	Juclides	(mrem/y)	(person-rem/y)	
-	a 227			
F	C = 227	2.75E-06	1.63E-05	
F T	U-220	2.76E-08	1.38E-07	
Ē		2.93E-12	2.05E-12	
E	212-12 222 קי	1.0/E-08	3.08E-08	
r T	R-223	1.5/E-13	2.55E-13	
r T	A-234M	4.288-13	2.74E-13	
r t	A-251 9-211	2.09E-06	1.24E-05	
	0-211		8.83E-11	
	0-216	0.002+00	0.0000	
י ק	B-212	5 37E-08	0.00E+00 2.97E 07	
r P	0-212	0.00E+00		
P	0-215	0 00E+00	0.00E+00	
R	A-223	3,59E-08	$2 13E_07$	
R	A-224	1.12E-06	6 52E-06	
т	н-232	1.14E-04	6.77E-04	
т	H-228	8.04E-05	4.75E-04	
Т	H-231	4.37E-12	2.51E-11	
Т	H-227	5.01E-08	2.96E-07	
т	L-208	1.94E-10	1.46E-10	
U	-235	5.37E-07	3.22E-06	
Т	L-207	3.35E-14	2.81E-14	
U	-238	1.08E-05	6.38E-05	
T.	H-234	3.35E-09	2.13E-08	
P.	A-234	3.77E-13	2.16E-12	
U	-234	1.29E-05	7.67E-05	
T	H-230	2.46E-05	1.46E-04	
R	A-226	5.88E-07	3.74E-06	
P	J-218	2.42E-12	1.82E-12	
PI	5-214	6.93E-11	1.28E-10	
B.	L-214 D_211	8.8UE-11	1.37E-10	
P	J-210	U.UUE+00	0.00E+00	
PI T	5-210 1-210	9.10E-U/ 1 07E 00	6.40E-06	
ם. סמ		1.2/E-U8 5 695 07	/.43E-U8	
R	A-228	7.85E-07	5.24E-06	
ጥ/	ንጥሏፒ.	2 535 04	1 505 02	
10		4.00世-04	1.30E-03	

			CALCU	ATION IDE	NTIFICATIO	N NUMBER			
JOB O	RDER NO.	DISCIP	LINE C	CALCULATIC	DN NO.	REV	SION NUMBER		PAGE
085	75.0207	E(B)	03			0		32 OF 61
					_				
May	8, 2001	09:28 amm					CIMMADV		
							Page 6		
							1490 0		
	1		REFECTIVE	DOGD DOM		/			
	-	(Z	All Radion	uclides a	IVALENT F nd Pathwa	(ATE (mrem	/y)		
			Dis	tance (m)					
Direct		0 750	1500						
				2500	3500	4500	7500		
N	1.9E-0	4 2.4E-05	6.9E-06	2.9E-06	1.7E-06	1.2E-06	5.3E-07		
NNW	7.1E-0	5 8.9E-06	2.6E-06	1.1E-06	6.4E-07	4.3E-07	2.0E-07		
NW	4.0E-0	5 5.1E-06	1.5E-06	6.3E-07	3.6E-07	2.5E-07	1.1E-07		
WNW	3.4E-0	5 4.3E-06	1.3E-06	5.3E-07	3.0E-07	2.1E-07	9.4E-08		
W	6.38-0	5 8.0E-06	2.3E-06	9.8E-07	5.7E-07	3.9E-07	1.7E-07		
WSW	7.5E-0	5 9.6E-06	2.8E-06	1.2E-06	6.8E-07	4.6E-07	2.1E-07		
SW	1.0E-0	4 1.3E-05	3.8E-06	1.6E-06	9.4E-07	6.4E-07	2.9E-07		
55W C	1.46-0	4 I./E-U5	5.0E-06	2.1E-06	1.2E-06	8.4E-07	3.8E-07		:
205	2.5E-0	4 3.1E-05 4 1.0E.05	9.1E-06	3.8E-06	2.2E-06	1.5E-06	7.0E-07		
225	1 35.0	4 1.96-05	5.5E-06	2.3E-06	1.3E-06	9.2E-07	4.2E-07		
ESE	1.3E-0	4 1.78-03 5 1 35 05	4.98-06	2.1E-06	1.2E-06	8.3E-07	3.8E-07		
23E F	1 3 - 0		3.7E-06	1.6E-06	9.1E-07	6.2E-07	2.9E-07		
ENE	1 1 1 - 0	4 1.7E-05	4.08-06	2.0E-06	1.2E-06	8.1E-07	3.7E-07		
NE	2 0E-04	± 1.5E-05 4 2 5E-05	J.JE-00 7 1E-06	1.7E-06	9.7E-07	6.6E-07	3.0E-07		
NNE	1.8E-04	4 2.3E-05	6.6E-06	2.8E-06	1.8E-06 1.6E-06	1.2E-06 1.1E-06	5.5E-07 5.0E-07		
			Dist	ance (m)					
Directi	op 15000	25000	35000	45000					
				45000	55000	65000	75000		
N	2.0E-07	9.0E-08	5.6E-08	3.9E-08	2.8E-08	1.9E-08	1.5E-08		
NNW	7.2E-08	3.3E-08	2.0E-08	1.4E-08	1.0E-08	6.8E-09	5.4E-09		
NW	4.1E-08	1.8E-08	1.1E-08	7.8E-09	5.6E-09	3.8E-09	3.1E-09		
WNW	3.4E-08	1.5E-08	9.2E-09	6.3E-09	4.5E-09	3.2E-09	2.5E-09		
W	6.2E-08	2.7E-08	1.7E-08	1.1E-08	8.0E-09	5.5E-09	4.4E-09		
WSW	7.4E-08	3.3E-08	2.0E-08	1.4E-08	9.6E-09	6.6E-09	5.2E-09		
SW	1.0E-07	4.7E-08	2.9E-08	2.0E-08	1.4E-08	9.4E-09	7.5E-09		
55W	1.4E-07	6.3E-08	3.9E-08	2.7E-08	1.9E-08	1.3E-08	1.0E-08		
5 CCF	2.68-07	1.2E-07	7.3E-08	5.0E-08	3.6E-08	2.3E-08	1.8E-08		
22E CF	1.08-07	7.2E-08	4.5E-08	3.2E-08	0.0E+00	0.0E+00	0.0E+00		
35 727	1.48-07	0.6E-08	4.2E-08	2.9E-08	2.1E-08	0.0E+00	0.0E+00		
LOL	1.15-07	4.9E-08	3.1E-08	2.2E-08	1.6E-08	1.1E-08	9.0E-09		
e. Ene	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4E-08	4.1E-08	2.8E-08	2.1E-08	1.4E-08	1.1E-08		
NF	1.1E-U/	5.3E-U8	3.4E-08	2.3E-08	1.7E-08	1.2E-08	9.4E-09		
NNF	2.0E-07 1 9E-07	שייאר איז א ארי ארי	5.9E-08	4.⊥E-08	2.9E-08	1.9E-08	1.5E-08		
+47477	1.96-0/	0.35-08	J.4E-U8	3./E-08	∠./E-08	1.7E-08	1.4E-08		
								-	

			CALCUL	ATION IDE	NTIFICATIO	N NUMBER		
JOB ORDER NO. DISCIPLINE CALCULATION NO. REVISION NUMBER							PAG	
08575.0	0207	E(B)		03			0	33 OF
May 8,	2001 0)9:28 amm					SIMMARY	
							Page 7	
							5	
	0.01							
	COL	רא ברביביני גע	FFECTIVE	DOSE EQUI	VALENT (pe	erson rem	/y)	
		(A		uciides a	nd Pathway	ys)		
			Dis	tance (m)				
Direction		750	1500	2500		45.00		
		750	1500	2500	3500	4500	7500	
N	1.3E-05	4.8E-06	5.6E-06	3.9E-06	3.2E-06	2.8E-06	1.1E-05	
NNW	4.7E-06	1.8E-06	2.1E-06	1.5E-06	1.2E-06	1.0E-06	4.0E-06	
NW	2.7E-06	1.0E-06	1.2E-06	8.4E-07	6.8E-07	6.0E-07	2.3E-06	
WNW :	2.3E-06	8.7E-07	1.0E-06	7.0E-07	5.7E-07	5.0E-07	1.7E-06	
W	4.2E-06	1.6E-06	1.9E-06	1.3E-06	1.1E-06	9.3E-07	2.8E-06	
WSW !	5.0E-06	1.9E-06	2.2E-06	1.6E-06	1.3E-06	1.1E-06	3.3E-06	
SW CCM (7.0E-06	2.6E-06	3.1E-06	2.2E-06	1.8E-06	1.5E-06	4.7E-06	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9.1E-06	3.5E-06 6 3E-06	4.0E-06	2.8E-06	2.3E-06	2.0E-06	7.6E-06	
- C 322	9 98-05	3 85-06	7.3E-06	5.1E-06	4.2E-06	3.7E-06	1.4E-05	
SE 8	B.8E-06	3.4E-06	4.0E-06	2 8E-06	2.56-06	2.2E-06 2 0F 06	1.1E-05 7 7E 06	
ESE (5.6E-06	2.5E-06	3.0E-06	2.1E-06	1.7E-06	2.0E-06	7.7E-06 5 7E 06	
Ε 8	3.8E-06	3.3E-06	3.9E-06	2.7E-06	2.2E = 06	2 05-06	7 5 0 0 C	
ENE 7	7.1E-06	2.7E-06	3.2E-06	2.2E-06	1.8E-06	1.6E = 0.06	6 1E-06	
NE 1	L.3E-05	4.9E-06	5.7E-06	4.0E-06	3.3E-06	2.9E-06	1.1E-05	
NNE 1	l.2E-05	4.5E-06	5.3E-06	3.7E-06	3.0E-06	2.6E-06	1.0E-05	
			Dist	ance (m)				
-								
Direction	15000	25000	35000	45000	55000	65000	75000	
N 1	.5E-05	5.4E-06	4.0E-06	1.2E-06	7 98-07	6 1	4 75-07	
NNW 5	.8E-06	3.3E-06	7.8E-07	3.6E-07	3.2E-07	2.5E-07	1.75-07 2 2E-07	
NW 3	.0E-06	1.4E-06	1.2E-06	9.9E-07	2.7E-07	9.8E-08	9.8E-08	
WNW 1	.9E-06	9.8E-07	8.4E-07	2.8E-07	9.5E-08	7.8E-08	6.3E-08	
W 4	.0E-06	2.3E-06	7.9E-07	6.8E-07	3.8E-07	2.3E-07	1.3E-07	
WSW 8	.3E-06	5.5E-06	1.1E-06	8.0E-07	6.7E-07	3.9E-06	1.5E-07	
SW 1	.3E-05	1.1E-05	6.9E-06	2.9E-06	1.6E-06	7.5E-07	9.5E-07	
SSW 2	.0E-05	1.6E-05	1.1E-05	5.7E-06	2.9E-06	2.3E-06	4.0E-06	
5 6	.1E-05	4.1E-05	2.1E-05	1.4E-06	1.7E-06	2.3E-06	1.7E-06	
SSE 8	.4E-05	/.UE-05	5.1E-05	1.2E-06	0.0E+00	0.0E+00	0.0E+00	
SE 1	.ZE-04	4.5E-05	3.2E-05	1.1E-05	7.5E-07	0.0E+00	0.0E+00	
-D	. 9ビーUS	2.4E-05	8.7E-06	6.7E-06	4.4E-06	1.2E-06	4.6E-07	
P /	.95-05 65-06	1.9E-05 1 1E 06	2.3E-06	4.2E-06	1.5E-06	1.2E-06	1.2E-06	
, בעוק באובי	0 8 - 110	4.16-06	ス./ビーU6	1 48-06	9 4E-07	7 68-07	7.1E - 07	
ENE 9 NE 1	35-05	5 3 2 0 4		E 2E 0C		0.4= 0.7		
ENE 9 NE 1 NE 1	.3E-05	5.3E-06	6.0E-06	5.3E-06	4.7E-06	2.4E-06	2.2E-06	

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CAL	LCULATION IDENTIFICAT	ION NUMBER	
JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
08575.0207	E(B)	03	0	34 OF 61
		C A P 8 8 - P C		
		Version 2.00		
	Clean Air A	act Assessment Packa	ge - 1988	
	SYN	OPSIS REPO	RТ	
	Non-Rad Ma	on Individual Asses: r 9, 2001 01:29 pr	sment n	
Facility Address City State	: Maywood Inte : 100 W. Hunte : Maywood : NJ	erim Storage Site - er Avenue Zip: 07607-	Ballod Property	
Source C Sour Emissi	ategory: Parti ce Type: Area on Year: 2000	iculate Emission w r	adon daughters	
Comments	: Stone & Webs U.S. Army Co	ster, Inc. for orps of Engineers		
	Effective D (mre	Dose Equivalent em/year)		
	1.	03E-01		
At This Lo	cation: 35	Meters Southwest		
Datase Datase Win	t Name: MISS t Date: Mar d File: C:\DA	BP MEI 8, 2001 05:12 pm TA\CAP88PC2\WNDFILE:	S\TET1358.WND	

• ...

ĺ		CAL	CULATION IDENTIFICATI	ON NUMBER	
	JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
	08575.0207	E(B)	03	0	35 OF 61
	, <u> </u>			· · · · · · · · · · · · · · · · · · ·	
	Mar 9, 2001 ()1:29 pm		SYNOPSIS	
				Page 1	
		MAXIMALLY EX	POSED INDIVIDUAL		
	Location	. Of The Individ	ual: 35 Meters S	outhwest	
	Lifetime	e Fatal Cancer F	isk: 1.18E-	06	
		ORGAN DOSE E	QUIVALENT SUMMARY		
			D		
			Dose Equivalent		
		Organ	(mrem/y)		
			· <u>·····</u>		
		GONADS	5.48E-04		
		BREAST	4.94E-04		
		R MAR	4.76E-02		
		LUNGS	6.53E-01		
		THYROID	4.82E-04		
		ENDOST	5.91E-01		
		RMINDR	1.//E-03		
		EFFEC	1.03E-01		
		PATHWAY EFFE	CTIVE DOSE EQUIVALEN	T SUMMARY	
			Select	ed	
			Individ	ual	
		Pathway	(mrem/	<u>у</u>)	
		INGESTI	ON 5.39E-	04	
		INHALAT:	I.02E-	01	
		AIR IMM	ERSION 2.35E-	07	
		GROUND S	SURFACE 8.15E-	06	
		INTERNAL			
		BAIBIUA	0.505-		
		TOTAL	1.03E-	01	
		-			
.				- 	

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

					CALCUL	ATION IDE	NTIFICATI	ON NUM	BER			
	JOB OR	DER NO	D.	DISCIPLIN	IE C	ALCULATI	ON NO.		REVISION	NUMBER		PAGE
ì	08575	5.0207		E(B)		03				0		36 OF 61
/	Mar 9	, 2001	01:	29 pm			<u>, , , , , , , , , , , , , , , , , , , </u>		S	SYNOPSIS Page 2	, J	
				RADIONU	CLIDE EM	ISSIONS	DURING TH	HE YEAR	2000			
	Nuclide	Class	Size	Source #1 Ci/y	Source #2 Ci/y	Source #3 Ci/y	TOTAL Ci/y					
	AC-227 AC-228 BI-211 BI-212 FR-223 PA-234M PA-231 PB-211 PO-211 PO-216 PB-212 PO-212 PO-215 RA-223 RA-224 TH-232 TH-228 TH-231 TH-227	Y W W D Y Y D W W W W Y Y Y	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.1E-10 1.5E-09 1.1E-10 1.5E-09 1.6E-12 2.4E-09 1.1E-10 1.1E-10 3.1E-13 1.5E-09 9.8E-10 1.1E-10 1.1E-10 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.5E-09 1.1E-10 1.1E-10	$1.9E-09 3.5E-07 1.9E-09 3.5E-07 2.5E-11 4.0E^{08}1.9E-091.9E-091.9E-095.0E-123.5E-073.5E-072.3E-071.9E-091.9E-093.5E-073.5E-093.5E-093.5E-073.5E-093.5E-093.5E-093.5E-093.5E-093.5E-073.5E-093.5E-0$	2.9E-09 1.2E-07 2.9E-09 1.2E-07 4.0E-11 6.2E-08 2.9E-09 2.9E-09 8.0E-12 1.2E-07 1.2E-07 7.5E-08 2.9E-09 2.9E-09 2.9E-09 1.2E-07 1.2E-07 1.2E-07 2.9E-09 2.9E-09 2.9E-09	$\begin{array}{c} 4.9E-09\\ 4.7E-07\\ 4.9E-09\\ 4.7E-07\\ 6.7E-11\\ 1.0E-07\\ 4.9E-09\\ 4.9E-09\\ 4.9E-09\\ 1.3E-11\\ 4.7E-07\\ 4.7E-07\\ 4.9E-09\\ 4.9E-09\\ 4.9E-09\\ 4.9E-09\\ 4.7E-07\\ 4.7E-07\\ 4.7E-07\\ 4.7E-07\\ 4.9E-09\\ 4.8E-09\\ 4.8E-09\\ \end{array}$					
	TL-208 U-235 TL-207 U-238 TH-234 PA-234 U-234 TH-230 RA-226 PO-218 PB-214 BI-214 PD-214 PB-210 BI-210 PO-210 RA-228	DYDYYYYWDWDWWWWWWWW	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	5.5E-10 1.1E-10 2.4E-09 2.4E-09 3.2E-12 2.6E-09 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10 2.8E-10	$\begin{array}{c} 1.3E-07\\ 1.9E-09\\ 1.8E-09\\ 4.0E-08\\ 4.0E-08\\ 5.1E-11\\ 4.2E-08\\ 4.2E-08\\ 1.6E-08\\ 3.5E-07\\ \end{array}$	$\begin{array}{c} 4.2E-08\\ 2.9E-09\\ 2.9E-09\\ 6.2E-08\\ 6.2E-08\\ 8.1E-11\\ 6.7E-08\\ 6.7E-08\\ 1.4E-08\\ 1.2E-07\\ \end{array}$	1.7E-07 4.9E-09 4.9E-09 1.0E-07 1.0E-07 1.4E-10 1.1E-07 3.1E-08 3					

SITE INFORMATION

Temperature:	12	degrees	С
Precipitation:	86	cm/y	
Mixing_Height:	1000	m	

		CA	LCULATION IDENTIF	CATION N	IUMBER		· · · · · · · · · · · · · · · · · · ·
	JOB ORDER NO.	DISCIPLINE	CALCULATION N	0.	REVISION	NUMBER	PAGE
)	08575.0207	E(B)	03		()	37 OF 61
/	Mar 9, 2001 0	01:29 pm			S P	YNOPSIS Page 3	
		SOURCE INFO	RMATION				
	Source Numbe	r: 1	2 3				
	Source Height (m Area (sq m): 0.): 2746.	0. 0. 731. 900.				
	Plume Rise Pasquill Cat:	A B	C D	E	F	G	
	Zero:	0. 0.	0. 0.	0.	0.	0.	
		AGRICULTURA	L DATA				
			Veget	able	Milk M	eat	
)	I Fraction	Fraction Home D n From Assessme Fraction 1	Produced: 0. ent Area: 0. Imported: 0.	076 924 000	0.000 0 1.000 0 0.000 0	.008 .992 .000	
		Food Arrays v De	vere not generate efault Values use	d for th d.	is run.		
	DISTANCES (M) U	JSED FOR MAXIMU	JM INDIVIDUAL ASS	ESSMENT			
	35 60	85 120	125 140	145 3	150 180	240	
			-				

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CAL	CULATION IDENTIFICATI	ON NUMBER	
JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
08575.0207	E(B)	03	0	38 OF 61
Mar 9, 2001	01:29 pm		SIMMADY	
	or the Print		Page 2	
	NUCLIDE EFFE	CTIVE DOSE EQUIVALEN	IT SUMMARY	
		Select	ed	
		Individ	lual	
	Nuclide	(mrem/	y)	
			- ·	
	<u>xa</u> -227	0 505	04	
	AC-221	8.38E- 1.30m	04	
	RT_211	1 40F	09	
	BT-212	1.40E- 4 71E-	06	
	FR-223	5.078-	11	
	PA-234M	2.79E-	10	
	PA-231	6.53E-	04	
	PB-211	1.28E-	08	
	PO-211	1.87E-	18	
	PO-216	8.29E-	23	
	PB-212	2.33E-	05	
	PO-212	0.00E+	00	
	PO-215	0.00E+	00	
	RA-223	1.14E-	05	
	RA-224	4.84E-	04	
	TH-232	4.96E-	02	
	1n-220 mu-231	ン・48ビー 1 25 F	02	
	TH-201 TH-207	エ・3つビー 1 55日 -	05	
	TL-208	1 158-	07	
	U-235	1.68E-	04	
	TL-207	1.27E-	11	
	U-238	3.38E-	03	
	TH-234	1.31E-0	06	
	PA-234	1.15E-1	10	
	U-234	4.06E-0	03	
	TH-230	7.65E-0	03	
	RA-226	9.57E-0	05	
	PO-218	4.42E-		
	PB-214 PT 014	9.52E-(19	
	BI-214 BO-214	1.23E-(
	PU-214 DB-210		70 NA	
	PD-210 RT_210	1.96E-U 1 60E () 6 / 14	
	PO = 210	1.09E-1 9 66F-0	15	
	RA-228	4.80E-0)4	
	-			
	TOTAL	1.03E-0)1	

-

		······	CALCUL	ATION IDEN	TIFICATIO	N NUMBER	·····	· · · · · · · · · · · · · · · · · · ·
JOB ORDE	R NO.	DISCIPL	INE C	ALCULATIO	N NO.	REVIS	SION NUMBER	PAGE
08575.0	207	E(B)	<u> </u>	03			0	39 OF 6
Mar 9,	2001 0	1:29 pm					SUMMARY Page 5	
	IN	DIVIDUAL (A	EFFECTIVE 11 Radion	DOSE EQUI uclides ar	IVALENT RAND	ATE (mrem/ ys)	/y)	
			Dist	ance (m)				
Direction	35	60	85	120	125	140	145	
N NNW NW WNW WSW SSW SSW SSW SSE SSE ESE ESE ENE ENE NE	2.5E-02 $2.5E-02$ $3.4E-02$ $4.6E-02$ $6.5E-02$ $9.0E-02$ $1.0E-01$ $8.4E-02$ $6.6E-02$ $6.2E-02$ $6.2E-02$ $7.9E-02$ $9.6E-02$ $9.6E-02$ $9.6E-02$ $7.5E-02$ $4.2E-02$	1.3E-02 8.1E-03 8.6E-03 1.3E-02 1.6E-02 2.3E-02 3.3E-02 4.2E-02 2.8E-02 2.4E-02 2.4E-02 2.4E-02 2.7E-02 3.7E-02 3.5E-02 2.9E-02	7.5E-03 4.4E-03 3.7E-03 6.5E-03 7.7E-03 1.1E-02 1.4E-02 2.6E-02 1.5E-02 1.3E-02 1.3E-02 1.3E-02 1.3E-02 1.1E-02 2.0E-02 1.9E-02 1.9E-02	$\begin{array}{c} 4.0E-03\\ 2.4E-03\\ 2.1E-03\\ 3.5E-03\\ 4.2E-03\\ 5.7E-03\\ 7.4E-03\\ 1.4E-02\\ 8.1E-03\\ 7.1E-03\\ 5.4E-03\\ 7.2E-03\\ 5.9E-03\\ 1.1E-02\\ 9.8E-03\\ 1.0E-02\\ \end{array}$	3.8E-03 2.3E-03 2.0E-03 3.3E-03 3.9E-03 5.3E-03 6.8E-03 1.3E-02 7.5E-03 6.6E-03 5.1E-03 6.7E-03 9.9E-03 9.5E-03	7.7E-03 $3.1E-03$ $1.9E-03$ $1.6E-03$ $2.7E-03$ $3.2E-03$ $4.4E-03$ $5.6E-03$ $1.0E-02$ $6.1E-03$ $5.4E-03$ $4.1E-03$ $5.4E-03$ $4.5E-03$ $8.0E-03$ $7.4E-03$	7.2E-03 $2.9E-03$ $1.8E-03$ $1.6E-03$ $2.6E-03$ $3.0E-03$ $4.1E-03$ $5.3E-03$ $9.6E-03$ $5.7E-03$ $5.1E-03$ $3.9E-03$ $5.1E-03$ $4.2E-03$ $7.5E-03$ $7.0E-03$	
-			Dist	ance (m)				
Direction	150	180	240					
N 6 NNW 1 WNW 1 WNW 1 WSW 2 SSW 2 SSW 3 SSE 5 SE 4 ESE 3 E 4 ENE 3 NE 7 NNE 6	5.8E-03 2.7E-03 2.5E-03 2.4E-03 2.9E-03 2.9E-03 2.9E-03 2.9E-03 2.6E-03 2.8E-03 2.8E-03 2.8E-03 2.8E-03 2.8E-03 2.8E-03 2.9E-0	$\begin{array}{c} 4.9E-03\\ 2.0E-03\\ 1.3E-03\\ 1.1E-03\\ 1.8E-03\\ 2.1E-03\\ 2.8E-03\\ 3.6E-03\\ 3.6E-03\\ 3.9E-03\\ 3.5E-03\\ 2.7E-03\\ 3.5E-03\\ 2.9E-03\\ 3.5E-03\\ 2.9E-03\\ 5.1E-03\\ 4.7E-03\\ \end{array}$	3.0E-03 1.3E-03 9.0E-04 8.1E-04 1.2E-03 1.4E-03 1.4E-03 2.2E-03 3.9E-03 2.2E-03 1.7E-03 2.2E-03 1.8E-03 3.1E-03 2.9E-03					
						-		

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CAL	CULATION IDENTIFICATI	ON NUMBER	
JOB ORDER	NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
06575.020		E(B)	03	0	40 OF 61
			САР88-РС		
			Version 2 00		
			VOIDION 2.00		
		Clean Air A	ct Assessment Packag	o _ 1999	
			ee the obstance ruckuy	6 - 1900	
		SYNO	OPSIS REPO	RТ	
		Non-Rado	on Population Assess	ment	
		Maı	9,2001 01:36 pm		
Fa	~ili+v·	Maynuood Tota	nim Chomoga Cita		
Ac	ddress:	100 W. Hunte	erim Storage Site - j er Avenue	Ballod Property	
	City:	Maywood			
	state:	мО	Zip: 0/60/-		
Sol	irce Cat	egory, Parti	Culato Emigrica e u		
500	Source	Type: Area	curace mussion w ra	adon daughters	
F	Emission	Year: 2000			
~		6 .			
Con	ments:	U.S. Army Co	ter, Inc. for rps of Engineers		
		Effective D	ose Equivalent		
		(mre)	m/year)		
		3.3	2/E-U3		
At T	his Loca	tion: 250	Meters South		
	Dataset				
·	Dataset	Date: Mar 9	9, 2001 01:35 pm		
Don	Wind	File: C:\DAT	A\CAP88PC2\WNDFILES	TET1358.WND	
Рорі	ulation	rile: C:\DAT	A\CAP88PC2\POPFILES	\MAYWOOD.POP	
					1

~ ~

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		C	ALCULATION IDENTIFICA	TION NUMBER	
	JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
,	08575.0207	E(B)	03	0	41 OF 61
1	Mar 9, 2001 0	1:36 pm		SYNOPSIS	
		-		Page 1	
		MAXIMALLY I	EXPOSED INDIVIDUAL		
	Location Lifetime	Of The Indivi Fatal Cancer	idual: 250 Meters	South	
	Directile	ratar cancer	KISK. 5.7/E	08	
		ORGAN DOSE	EQUIVALENT SUMMARY		
			Selected	Collective	
			Individual	Population	
	O	rgan	(mrem/y)	(person-rem/y)	
			1 495 05	0.007.05	
	GC	SEACT	1.48E-05	9.33E-05	
	R	MAR	1.50E-03	0.41E-VO 9.03E 00	
	T,T	INGS	2 09E-02		
		IYROID	1.26E = 05	2.24E-01 8.04E-05	
	EN	JDOST	1.202-00	1 110 01	
	RM	INDR	4.38E-05	2.84E-04	
	EF	FFEC	3.27E-03	1.94E-02	
		PATHWAY EFF	ECTIVE DOSE EQUIVALEN	NT SUMMARY	
			Selected	Collective	
			Individual	Population	
	Pathw	ay	(mrem/y)	(person-rem/y)	
	INGES	TION	5.11E-07	3.37E-05	
	INHAL	ATION	3.27E-03	1.93E-02	
	AIR I.	MMERSION	6.48E-09	1.92E-08	
	GROUN	D SURFACE	2.79E-07	2.56E-06	
	INTER	NAL	3.27E-03	1.93E-02	
	EXTER	NAL	2.86E-07	2.58E-06	
	TOTAL		3.27E-03	1.94E-02	

.....

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

					CALCUL	ATION IDE	ENTIFICATI	ON NUMBER		
•	JOB OR	DER NO).	DISCIPLIN	NE C	ALCULAT	ON NO.	REVISIO	N NUMBER	PAGE
Ì	08575	5.0207		E(B)		03			0	42 OF 61
/					<u>-</u>					
	Mar 9	, 2001	01:	36 pm					SYNOPSIS	
				-					Page 2	
				RADIONU	CLIDE EM	ISSIONS	DURING TH	HE YEAR 2000		
				Source	Source	Source				
				#1	#2	#3	TOTAL			
	Nuclide	Class	Size	Ci/y	Ci/y	Ci/y	Ci/y			
			<u> </u>							
	30.000			1 1	4 0					
	AC-227	Y	1.00	1.1E-10	1.9E-09	2.9E-09	4.9E-09			
	AC-228	Y	1.00	1.5E-09	3.5E-07	1.2E-07	4.7E-07			
ĺ	BI-211 DT 212	W	1.00	1.18-10	1.9E-09	2.9E-09	4.9E-09			
	BI-212	W	1.00	1.5E-09	3.5E-07	1.2E-07	4.7E-07			
	FR-225	v	1 00	1.0E - 12	2.5E-11 4 0E 00	4.0E-11	6./E-II			
	PA-234M	v	1 00	1 15-10	4.02-08	0.26-00	1.0E-07			
	PB-211	т П	1 00	1.1E = 10 1.1E = 10	1 95-09	2.9E-09	4.96-09			
	PO-211	-	0.00	3.1E - 13	5.0E - 12	2.9E=03	4.9E-09			
	PO-216	W	1.00	1.5E-09	3.5E-07	1.2E-07	4.7E-07			
	PB-212	D	1.00	1.5E-09	3.5E-07	1.2E-07	4.7E-07			
	PO-212	W	1.00	9.8E-10	2.3E-07	7.5E-08	3.0E-07			
	PO-215	W	1.00	1.1E-10	1.9E-09	2.9E-09	4.9E-09			
	RA-223	W	1.00	1.1E-10	1.9E-09	2.9E-09	4.9E-09			
	RA-224	W	1.00	1.5E-09	3.5E-07	1.2E-07	4.7E-07			
٠, ١	TH-232	Y	1.00	1.5E-09	3.5E-07	1.2E-07	4.7E-07			
1	TH-228	Y	1.00	1.5E-09	3.5E-07	1.2E-07	4.7E-07			
	TH-231	Y	1.00	1.1E-10	1.9E-09	2.9E-09	4.9E-09			
i	TH-227	Y	1.00	1.1E-10	1.8E-09	2.9E-09	4.8E-09			
1	TL-208	D	1.00	5.5E-10	1.3E-07	4.2E-08	1.7E-07			
	U-230 TT-207	х П	1 00	1.1E-10	1.98-09	2.98-09	4.9E-09			
	11-238	v	1 00	1.1E-10 2 1E-00	1.0E-U9 1.0E-09	2.9E-09 6 2E AD	4.95-09 1 05 07			
	TH-234	Ý	1 00	2.4E-09	4 05-00	6 28-00	1 05-07			
	PA-234	Ŷ	1.00	3.2E-12	5.1E-11	8.1E-11	1 4E - 10			
	U-234	Ŷ	1.00	2.6E-09	4.2E-08	6.7E - 08	1.1E-07			
	TH-230	Ÿ	1.00	2.6E-09	4.2E-08	6.7E-08	1.1E-07			1
	RA-226	W	1.00	2.8E-10	1.6E-08	1.4E-08	3.1E-08			
	PO-218	W	1.00	2.8E-10	1.6E-08	1.4E-08	3.1E-08			
	PB-214	D	1.00	2.8E-10	1.6E-08	1.4E-08	3.1E-08			
	BI-214	W	1.00	2.8E-10	1.6E-08	1.4E-08	3.1E-08			
	PO-214	W	1.00 2	2.8E-10	1.6E-08	1.4E-08	3.1E-08			
	PB-210	D	1.00 2	2.8E-10	1.6E-08	1.4E-08	3.1E-08			
	BI-210	W	1.00 2	2.8E-10	1.6E-08	1.4E-08	3.1E-08			
	PO-210	W	1.00 2	2.8E-10 1	1.6E-08	1.4E-08	3.1E-08			
	KA-228	W	т.00 -	L.5E-09 3	3.5E-07	1.2E-07	4.7E-07			
- 1										

SITE INFORMATION

Temperature:	12	degrees	С
Precipitation:	86	cm/y	
Mixing Height:	1000	m	

×.1

			CALCULA	ATION IDE	NTIFICATIO	N NUMBER		· ·····
	JOB ORDER NO.	DISCIPLI	NE CA	LCULATI	ON NO.	REVIS	SION NUMBER	PAGE
)	08575.0207	E(B)		03			0	43 OF 61
	Mar 9, 2001 (01:36 pm					SYNOPSIS Page 3	
		SOURCE	INFORMATI	ON				
ĺ	Source Numbe	er: 1 	2	3				
	Source Height (π Area (sq π	a): 0. a): 2746.	0. 731.	0. 900.				
	Plume Rise Pasquill Cat: 	А в	с	D	E	F	G	
	Zero:	0.	0. ().	0. 0	. 0.	0.	
		AGRICULI	URAL DATA	A				
				v 	egetable	Milk	Meat	
	Fraction	Fraction Ho n From Asse Fracti	me Produc ssment Ar on Import	ed: ea: ed:	0.076 0.924 0.000	0.000 1.000 0.000	0.008 0.992 0.000	
		Bee Mil Land Fract for	f Cattle k Cattle ion Culti Vegetabl	Density Density vated e Crops	: 4.25E : 3.29E : 1.82E	E-02 E-02 E-02		

0000		DIOCIDI		TION IDENT	FIFICATION	NUMBER	
08575 0	207				INO.	REVIS	ON NUMBE
007.5.0	201		l	03			0
r 9,	2001 01	:36 pm					SYNOPSIS
							Page 4
			POPITIAT	איזיאס ד			
			LOLODAL	ION DAIA			
-	·····		Dista	ance (m)			
rection	n 250	750	1500	2500	3500	4500	7500
N	67	201	802	1337	1872	2407	20057
W	67	201	802	1337	1872	2407	20057
W	67	201	802	1337	1872	2407	20057
W	67	201	802	1337	1872	2407	18015
W	67	201	802	1337	1872	2407	15973
W	67	201	802	1337	1872	2407	15973
W	67	201	802	1337	1872	2407	16228
W	67	201	802	1337	1872	2407	20057
ב ד	67	201	802	1337	1872	2407	20057
E	67	201	802	133/	1872	2407	25914
E	67	201	802	1337	1872	2407	20057
E	67	201	802	1337	1872	2407	20057
E	67	201	802	1337	1872	2407	20057
E	67	201	802	1337	1872	2407	20057
E	67	201	802	1337	1872	2407	20057
			Dista	nce (m)			
 action	15000	. 25000	35000	45.000			
				45000	55000	. 65000	75000
N 7	/4537	60196	70814	29909	28375	32864	31652
4 7	80228 71527	100151	38356	25800	31534	37267	40828
r T	14331 56701	1009/ 65300	LU6487	126587	47978	25581	31795
1	64114	84087	91431 17602	436 <i>32</i> 50020	20950	24760	25044
I	112233	167453	56447	59120	4/949 70202	40968	30281
ī	120063	227594	237745	147380	112162	JJZJ14 701∠⊑	29/56
I	142152	249194	283497	211897	153403	180380	12/9/1 385700
	236424	356896	290094	27391	48812	100953	91522
	537391	974408	1119592	38176	0	0	0
	813384	678682	772130	363126	35070	õ	ñ
	837313	483781	278841	306070	279511	103569	51542
	566025	290745	57469	146563	75595	89339	103084
	200322		0/100				
	84525	76576	79890	60083	55076	65090	75104
	84525 65381	76576 57432	79890 102568	60083 129885	55076 161178	65090 126989	75104 143397

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CA	LCULATION IDENTIFIC	ATION NUMBER	
	JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
	08575.0207	<u> </u>	03	0	45 OF 61
	Mar 9, 2001 (01:36 pm		SUMMARY	
		-		Page 2	
		NUCLIDE EFF	ECTIVE DOSE EQUIVA	LENT SUMMARY	
			Selected	Collective	
			Individual	Population	
	Nucl	ides	(mrem/y)	(person-rem/y)	
	Nuclides AC-227 AC-228				
	AC-2	27	2.86E-05	1.69E-04	
	AC-2	20 11	3./9E-07	1.89E-06	
	AC-228 BI-211 BI-212 FR-223 PA-234M PA-231 PB-211 PO-211	12	3.04E-11 1 47E 07	2.13E-11	
1		23	1 63 - 12	4.22E-07	
		34M	4.46E - 12	2.00E-12 2.95E-12	
		31	4.46E-12 2.16E-05	2.00E-12 1.28E-04	
	PB-2	11	4.19E - 10	9 15F - 10	
	PO-2	11	0.00E+00	0.00E+00	
	PO-2	16	0.00E+00	0.00E+00	
	PB-2	12	7.38E-07	3.93E-06	
	PO-2	12	0.00E+00	0.00E+00	
	PO-2.	15	0.00E+00	0.00E+00	
	RA-21	23	3.72E-07	2.21E-06	
)	RA-Z.	24	1.53E-05	8.94E-05	
	TH-2. TH-2.	28	1.5/E-03	9.29E-03	
	TH-22	20 31	1.10E-03	6.52E-U3 2.00T 10	
	TH-22	27	5.19E-07	2.00E-10 3.06E-06	
	TL-20	08	2.66E-09	2.00E-09	
	U-235	5	5.57E-06	3.34E-05	
	TL-20	77	3.47E-13	2.92E-13	
	U-238	3	1.12E-04	6.65E-04	
	TH-23	34	3.49E-08	2.22E-07	
	PA-23	34	3.89E-12	2.24E-11	
	U-234		1.35E-04	7.99E-04	
	TH-23	50 D C	2.56E-04	1.52E-03	
	PO-21	8	2.5/E-06	1.63E-05	
	PB-21	4	3 01F - 10	7.90E-12 5.54E 10	
	BI-21	4	3.84E = 10	5.97 ± 10	
	PO-21	.4	0.00E+00	0.00E+00	
	PO-214 PB-210 BI-210 PO-210		4.00E-06	2.79E-05	
			5.54E-08	3.24E-07	
			2.48E-06	1.59E-05	
	RA-22	8	1.08E-05	7.19E-05	
	TOTAL		3.27E-03	1.94E-02	

-

			CALCUL	ATION IDEN	TIFICATIO	N NUMBER			
JOB OF	DER NO.	DISCIPL	INE C	ALCULATIO	N NO.	REVIS	SION NUMBER	PAGI	Ē
0857	5.0207	E(B)		03			0	46 OF	61
/									
Mar 9	, 2001 (01:36 pm					SUMMARY		
							Page 6		
							5		
	IN	VDIVIDUAL	EFFECTIVE	DOSE EQU	IVALENT R	ATE (mrem/	/y)		
		(A	ll Radion	uclides an	nd Pathwa	ys)	-		
			Dist	tance (m)					
Directi	on 250) 750	1500	2500	3500	4500	7500		
			1500			4500	/500		
N	2.4E-03	3.1E-04	9.0E-05	3.8E-05	2.2E-05	1.5E-05	6.9E-06		
NNW	9.2E-04	1.2E-04	3.4E-05	1.4E-05	8.2E-06	5.6E-06	2.6E-06		
NW	5.2E-04	6.6E-05	1.9E-05	8.1E-06	4.7E-06	3.2E-06	1.5E-06		
WNW	4.4E-04	5.6E-05	1.6E-05	6.8E-06	3.9E-06	2.7E-06	1.2E-06		
W	8.1E-04	1.0E-04	3.0E-05	1.3E-05	7.4E-06	5.0E-06	2.3E-06		
WSW	9.7E-04	1.2E-04	3.6E-05	1.5E-05	8.8E-06	6.0E-06	2.7E-06		
SW	1.3E-03	1.7E-04	5.0E-05	2.1E-05	1.2E-05	8.2E-06	3.7E-06		
SSW	1.8E-03	2.2E-04	6.5E-05	2.7E-05	1.6E-05	1.1E-05	4.9E-06		
S	3.3E-03	4.1E-04	1.2E-04	5.0E-05	2.9E-05	2.0E-05	9.0E-06		
SSE	1.9E-03	2.4E-04	7.1E-05	3.0E-05	1.7E-05	1.2E-05	5.4E-06		
SE	1.7E-03	2.2E-04	6.4E-05	2.7E-05	1.6E-05	1.1E-05	4.9E-06		
ESE	1.3E-03	1.6E-04	4.8E-05	2.0E-05	1.2E-05	8.0E-06	3.7E-06		
E	1.7E-03	2.1E-04	6.3E-05	2.6E-05	1.5E-05	1.1E-05	4.8E-06		
ENE	1.4E-03	1.7E-04	5.1E-05	2.2E-05	1.3E-05	8.6E-06	3.9E-06		
NE	2.6E-03	3.2E-04	9.2E-05	3.9E-05	2.3E-05	1.5E-05	7.1E-06		
NNE	2.3E-03	2.9E-04	8.5E-05	3.6E-05	2.1E-05	1.4E-05	6.5E-06		
			Dist	ance (m)					
		05000				• • • • •	.	-	
Directio	on 15000	25000	35000	45000	55000	65000	75000		
N	2.5E-06	1.2E-06	7.3E-07	5.0E-07	3.6E-07	2.4E-07	1.9E-07		
NNW	9.3E-07	4.2E-07	2.6E-07	1.8E-07	1.3E-07	8.7E-08	6.9E-08		
NW	5.3E-07	2.4E-07	1.5E-07	1.0E-07	7.2E-08	4.9E-08	3.9E-08		
WNW	4.3E-07	1.9E-07	1.2E-07	8.1E-08	5.8E-08	4.0E-08	3.2E-08		
W	8.0E-07	3.5E-07	2.1E-07	1.5E-07	1.0E-07	7.1E-08	5.6E-08		
WSW	9.6E-07	4.2E-07	2.6E-07	1.7E-07	1.2E-07	8.4E-08	6.6E-08		j
SW	1.4E-06	6.0E-07	3.7E-07	2.5E-07	1.8E-07	1.2E-07	9.6E-08		
SSW	1.8E-06	8.1E-07	5.0E-07	3.5E-07	2.5E-07	1.7E-07	1.3E-07		
S	3.3E-06	1.5E-06	9.4E-07	6.5E-07	4.6E-07	3.0E-07	2.4E-07		
SSE	2.0E-06	9.3E-07	5.9E-07	4.1E-07	0.0E+00	0.0E+00	0.0E+00		
SE	1.8E-06	8.6E-07	5.4E-07	3.8E-07	2.8E-07	0.0E+00	0.0E+00		
ESE	1.4E-06	6.4E-07	4.0E-07	2.8E-07	2.1E-07	1.4E-07	1.2E-07		
E	1.8E-06	8.3E-07	5.3E-07	3.7E-07	2.6E-07	1.8E-07	1.4E-07		
ENE	1.5E-06	6.8E-07	4.3E-07	3.0E-07	2.2E-07	1.5E-07	1.2E-07		
NE	2.6E-06	1.2E-06	7.6E-07	5.3E-07	3.8E-07	2.5E-07	2.0E-07		
NNE	2.4E-06	1.1E-06	6.9E-07	4.8E-07	3.4E-07	2.2E-07	1.8E-07		
					-				
·····									1

08575	.0207	E(B)		03	IN INO.	REVI			ЗЕ Е е
			I	0				47 01	- 6
Mar 9,	2001 0	1:36 pm					SUMMARY		
							Page 7		
	COL	LECTIVE E	FFECTIVE	DOSE EQUIT	VALENT (p	erson rem	/y)		
		(A	II Radion	uclides an	nd Pathwa	ys)			
			Dis	tance (m)					
Directio	n 250	750	1500	2500	3500	4500	7500		
	1 (7 04	6 25 05	7 25 65						
NNW	6.1E-04	2.3E-05	2.7E-05	5.1E-05 1.9E-05	4.1E-05 1 5E-05	3.6E-05 1 4F-05	1.4E-04 5 1E-05		
NW	3.5E-05	1.3E-05	1.6E-05	1.1E-05	8.8E-06	7.7E-06	2.9E-05		
WNW	2.9E-05	1.1E-05	1.3E-05	9.1E-06	7.4E-06	6.5E-06	2.2E-05		
W	5.4E-05	2.1E-05	2.4E-05	1.7E-05	1.4E-05	1.2E-05	3.6E-05		
WSW	6.5E-05	2.5E-05	2.9E-05	2.0E-05	1.7E-05	1.4E-05	4.3E-05		
SW	9.0E-05	3.4E-05	4.0E-05	2.8E-05	2.3E-05	2.0E-05	6.1E-05		
SSW	1.2E-04	4.5E-05	5.2E-05	3.6E-05	3.0E-05	2.6E-05	9.9E-05		
S	2.2E-04	8.2E-05	9.5E-05	6.6E-05	5.4E-05	4.8E-05	1.8E-04		
SSE	1.3E-04	4.9E-05	5.7E-05	4.0E-05	3.2E-05	2.9E-05	1.4E-04		
SE	1.1E-04	4.4E-05	5.1E-05	3.6E-05	2.9E-05	2.6E-05	9.9E-05		
ESE	8.6E-05	3.3E-05	3.8E-05	2.7E-05	2.2E-05	1.9E-05	7.4E-05		
E	1.1E-04	4.3E-05	5.0E-05	3.5E-05	2.9E-05	2.5E-05	9.7E-05		
ENE	9.2E-05	3.5E-05	4.1E-05	2.9E-05	2.3E-05	2.1E-05	7.9E-05		
NE	1.7E-04	6.4E-05	7.4E-05	5.2E-05	4.2E-05	3.7E-05	1.4E-04		
NNE	1.6E-04	5.9E-05	6.8E-05	4.8E-05	3.9E-05	3.4E-05	1.3E-04		
			Dist	ance (m)					
Directior	n 15000	25000	35000	45000	55000	65000	75000		
N	1.9E-04	7.0E-05	5.1E-05	1.5E-05	1.0E-05	7.9E-06	5.1E-06		
NNW	7.5E-05	4.2E-05	1.0E-05	4.6E-06	4.1E-06	3.2E-06	2.8E-06		
NW	3.9E-05	1.9E-05	1.6E-05	1.3E-05	3.4E-06	1.3E-06	1.2E-06		
WNW	2.5E-05	1.3E-05	1.1E-05	3.5E-06	1.2E-06	1.0E-06	8.0E-07		
W	5.1E-05	3.0E-05	1.0E-05	8.7E-06	4.9E-06	2.9E-06	1.7E-06		
WSW	1.1E-04	7.1E-05	1.5E-05	1.0E-05	8.7E-06	5.0E-05	2.0E-06		
SW	1.6E-04	1.4E-04	8.9E-05	3.8E-05	2.0E-05	9.6E-06	1.2E-05		
SSW	2.6E-04	2.0E-04	1.4E-04	7.3E-05	3.8E-05	3.0E-05	5.1E-05		
S	7.9E-04	5.3E-04	2.7E-04	1.8E-05	2.3E-05	3.0E-05	2.2E-05		
SSE	1.1E-03	9.1E-04	6.6E-04	1.6E-05	0.0E+00	0.0E+00	0.0E+00		
SE	1.5E-03	5.8E-04	4.2E-04	1.4E-04	9.6E-06	0.0E+00	0.0E+00		
ESE	1.1E-03	3.1E-04	1.1E-04	8.6E-05	5.7E-05	1.5E-05	6.0E-06		
E	1.0E-03	2.4E-04	3.0E-05	5.4E-05	2.0E-05	1.6E-05	1.5E-05		
ENE	1.2E-04	5.2E-05	3.5E-05	1.8E-05	1.2E-05	9.8E-06	9.1E-06		
NE	1.7E-04	6.9E-05	7.8E-05	6.8E-05	6.1E-05	3.1E-05	2.8E-05		
NNE	1.6E-04	3.3E-05	5.6E-05	6.0E-05	2.6E-05	8.5E-06	7.3E-06		
						-			

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE					
08575.0207	E(B)	03	0	48 OF 61					
		C A P 8 8 - P C							
		Version 2.00							
	Clean Air A	act Assessment Packag	je – 1988						
	SYN	OPSIS REPO	RТ						
	Non-Rad	on Individual Accord	mont						
	Ma	y 8, 2001 08:17 an	1						
Facility	: Maywood Int	erim Storage Site -	Swale						
Address	: 100 W. Hunt	er Avenue							
State	: Maywood	Zin: 07607-							
20000		dip. 0/00/-							
Source C Sour	ce Type: Area	iculate Emission w r	adon daughters						
Emissi	on Year: 2000								
Comments	: Stone & Webs	ster, Inc. for							
	U.S. Army Co	orps of Engineers							
	Effective I	Dose Equivalent							
	(mre	em/year)							
	7.	84E-03							
At This Lo	ocation: 12	Meters North North	east						
Datase	et Name: MISS	SWALE MET							
Datase	et Date: May	8, 2001 08:14 am							
Wir	nd File: C:\DA	TA\CAP88PC2\WNDFILES	S\TET1358.WND						

_

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE						
) -	08575.0207	E(B)	03	0	49 OF 61						
					- •						
	Matt 9 2001 0	9.17									
	May 0, 2001 0	8:1/ am		SYNOPSIS							
				Page 1							
	MAXIMALLY EXPOSED INDIVIDUAL										
	Location Of The Individual: 12 Meters North Northeast Lifetime Fatal Cancer Risk: 8.97E-08										
		ODON DOGD D									
		ORGAN DOSE E	QUIVALENT SUMMARY								
			Dose								
		_	Equivalent								
		Organ	(mrem/y)								
		GONADS	4.02E-05								
		BREAST	3.48E-05								
		R MAR	3.65E-03								
		LUNGS	4.99E-02								
		THYROID	3.38E-05								
		ENDOST	4.54E-02								
		RMNDR	1.23E-04								
		EFFEC	7 848-03								
			1.046-05								

....

_

							TIFICATIC			· · · · · · · · · · · · · · · · · · ·
	JOB OR	DER NO).	DISCIPLINE		ULATIO	NO.	REVIS		PAGE
-	08575	5.0207		E(B)		03			0	50 OF 61
,	May 8,	, 2001	08:	17 am RADIONUCL Source	IDE EMISS	IONS DU	RING THE	E YEAR 2000	SYNOPSIS Page 2	
	Nuclide	Class	Size	#1 T Ci/y (OTAL Ci/y					
	AC-227 AC-228 BI-211 BI-212 FR-223 PA-234M PA-231 PD-211 PO-211 PO-212 PO-212 PO-212 PO-215 RA-223 RA-224 TH-232 TH-231 TH-227 TL-208 U-235 TL-207 U-238 TH-234 PA-234 U-234 TH-234 PA-234 U-234 TH-234 PA-234 U-234 TH-230 RA-226 PO-218 PB-214 BI-214 PO-214 PD-210 BI-210 PO-210 RA-228	YYWWDYYD - WDWWWWYYYYDYDYYYYWWDWWDWWWWWWWWWW	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	7.3E-11 7 5.6E-09 5 7.3E-11 7 5.6E-09 5 1.0E-12 1 1.6E-09 1 7.3E-11 7 2.0E-13 2 5.6E-09 5 3.6E-09 5 3.6E-09 5 5.6E-09 5 5.6E-09 5 5.6E-09 5 5.6E-09 5 5.6E-09 5 5.6E-09 5 5.6E-09 5 7.3E-11 7 7.3E-11 7 7.3E-10 2 7.3E-10 2	.3E-11 .6E-09 .3E-11 .6E-09 .3E-11 .3E-11 .0E-13 .6E-09 .6E-09 .6E-09 .6E-09 .6E-09 .3E-11 .6E-09 .6E-09 .3E-11 .6E-09 .6E-09 .3E-11 .6E-09 .6E-09 .3E-11 .6E-09 .6E-09 .6E-09 .3E-11 .6E-09 .6E-09 .6E-09 .3E-11 .6E-09 .6E-				·	
			:	SITE INFOR	MATION					
				Temp Precip Mixing	erature: itation: Height:	12 86 1000-	degrees cm/y m	С	-	

			CALCULATIO	N IDENTIFICA					
	JOB ORDER NO.	DISCIPLINE	CALCU	ILATION NO.		REVIS	SION NUM	IBER	PAGE
)	08575.0207	E(B)	I	03			0		51 OF 61
/									
	May 8, 2001	08:17 am					SYNOP	SIS	
							Page	3	
		SOURCE IN	FORMATION						
	Source Numbe	er: 1							
	Source Height (n Area (sg n	n): 0. n): 1897.							
		, • 20011							
	Plume Rise	A B	C	П	E.	P	Ċ		
		<u></u>							
	Zero	0 0	0	· 0	0	0	0		
	2010.	0. 0.	. 0.	0.	0.	0.	υ.		
		AGRICULTU	RAL DATA						
				Vegetab	ا م	Milk	Moat		
							meat		1
\mathbf{v}		Fraction Home	Produced.	0 07	6	0 000	0 008		
/	Fractio	n From Assess	sment Area:	0.92	4	1.000	0.992		
		Fraction	Imported:	0.00	0	0.000	0.000		
		Food Arrays	were not Default Va	generated	for t	his run.			
	DISTANCES (M)	USED FOR MAXI	MUM INDIVI	DUAL ASSES	SMENT				
	(,								
	12 35	40 6	0 65	85 1	00	145	155 1	175	[
	180 200	225			•••			.,,,	

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

	CAL	CULATION IDENTIFICATIO	ON IDENTIFICATION NUMBER					
JOB ORDER NO.	OB ORDER NO. DISCIPLINE CA		REVISION NUMBER	PAGE				
08575.0207	E(B)	03	0	52 OF 61				
May 8, 2001	08:17 am		SUMMARY					
			Page 2					
	NUCLIDE EFFEC	CTIVE DOSE EQUIVALEN	I SUMMARY					
		Selecte	ed					
		Individu	lal					
	Nuclide	(mrem/)	7)					
								
	AC-227	8.30E-0)5					
	AC-228	8.69E-0)7					
	BI-211	1.43E-1	10					
BI-212 FR-223		3.42E-0)7					
	FR-223	4.95E-1	.2					
	PA-234M	2.96E-1	.1					
	PA-231 DR 211	6.31E-U	15					
	PO_211		רי רי					
PO-211 PO-216 PB-212 PO-212		0.1/E-1 1 97F-1	5					
		1 695-0	16					
		0.00E+0						
	PO-215	0.00E+0	0					
	RA-223	1.10E-0	6					
	RA-224	3.52E-0	5					
	TH-232	3.60E-0	3					
	TH-228	2.53E-0	3					
	TH-231	1.31E-1	0					
	TH-22/	1.50E-0	6					
	Т <u>Б</u> -208 11_225	8.65E-0	ש ב					
	0-235 TT207	1 26日 1	ວ າ					
	U-238	エ・20ビーエ ス クトマーク	Δ					
	TH-234	1.22E-0	- 7					
	PA-234	1.12E-1	1					
	U-234	3.93E-0	4					
	TH-230	7.41E-0	4					
	RA-226	3.95E-0	6					
	PO-218	1.95E-1	1					
	PB-214	4.09E-1	0					
	BI-214	5.27E-1	0					
	PO-214	0.00E+0	0					
	PB-210	7.85E-0	6					
	B1-210 B0 210	7.19E-0						
	PU-210 RA-228	3.9/E-U 3.3/E-U						
	······································	5.54E-0	2					
	TOTAL	7.84E-0	3					

_

JOB ORD	JOB ORDER NO. DISCIPI 08575.0207 E(B		NE C	ALCULATIO	N NÔ.	REVIS	SION NUMBER	PAC
085/5	.0207	E(B)		03			0	53 O
May 8,	2001 0	8:17 am					SUMMARY	
							Page 5	
	IN	DIVIDUAL P	FFECTIVE	DOSE FOU	WALENT R	ATE (mrem/	(v)	
		(A]	1 Radion	uclides ar	nd Pathway	/s)	Y /	
			Dist	ance (m)				
	10							
Directio	n 12	35	40		65		100	
N	7.8E-03	1.0E-03	8.1E-04	4.1E-04	3.6E-04	2.4E-04	1.9E-04	
NNW	7.8E-03	7.1E-04	5.4E-04	2.4E-04	2.0E-04	1.2E-04	8.7E-05	
NW	7.8E-03	3.8E-04	2.7E-04	1.3E-04	1.1E-04	7.2E-05	5.7E-05	
WNW	7.8E-03	3.4E-04	2.5E-04	1.2E-04	1.0E-04	6.5E-05	5.1E-05	
W INICINI	7.8E-03	4.1E-04 5 7E-04	3.2E-04	1.6E-04 2 1E-04	1.4E-04	9.3E-05	7.4E-05 9 7E 05	
SW	7.8E-03	7 6E - 04	5.7E-04	2.1E-04 2 7E-04	1.8E-04 2 3F-04	1.1E-04 1 5E-04	0./E-05 1 1E-04	
SSW	7.8E-03	1.1E-03	8.9E-04	3.9E-04	3.4E-04	2.0E-04	1.5E-04	
S	7.8E-03	1.2E-03	9.9E-04	5.1E-04	4.5E-04	3.0E-04	2.4E-04	
SSE	7.8E-03	1.2E-03	9.6E-04	4.2E-04	3.6E-04	2.2E-04	1.6E-04	
SE	7.8E-03	9.1E-04	6.8E-04	3.2E-04	2.8E-04	1.8E-04	1.4E-04	
ESE	7.8E-03	8.5E-04	6.5E-04	2.9E-04	2.5E-04	1.5E-04	1.1E-04	
E	7.8E-03	8.1E-04	6.2E-04	3.0E-04	2.7E-04	1.7E-04	1.4E-04	
ene Ne	7.85-03	1.02-03 1.2E-03	7.9E-04 8 9E-04	3.4E-04	2.9E-04	1./E-04	1.2E-04	
NNE	7.8E-03	1.3E-03	1.0E-03	4.7E-04	4.1E-04	2.5E-04 2.5E-04	1.9E-04 1.9E-04	
			Dist	ance (m)				
Direction	n 145	155	175	180	200	225		
						····		
N	1.0E-04	9.4E-05	7.9E-05	7.6E-05	6.5E-05	5.6E-05		
NNW	5.1E-05	4.7E-05	4.1E-05	4.0E-05	3.6E-05	3.3E-05		
NW	3.7E-05	3.5E-05	3.2E-05	3.1E-05	2.9E-05	2.7E-05		
WNW	3.4E-05	3.2E-05	3.0E-05	2.9E-05	2.7E-05	2.6E-05		
W	4.7E-05	4.4E-05	3.9E-05	3.8E-05	3.4E-05	3.1E-05		
WSW	5.2E-05	4.8E-05	4.2E-05	4.1E-05	3.7E-05	3.4E-05		
SW	6.5E-05	6.0E-05	5.2E-05	5.0E-05	4.4E-05	3.9E-05		
55W C	8.0E-05	1.3E-05	6.2E-05 9 9E-05	5.9E-05	5.2E-05	4.6E-05		
SSE	1.3E-04 8 5E-05	7.7E-04	9.9£-05 6 6F-05	9.5E-05 6 3E-05	5.1E-05	6.9E-05		
SE	7.8E-05	7.1E-05	6.0E = 05	5.8E-05	5 1E-05	4.5E-05		
ESE	6.3E-05	5.8E-05	5.0E-05	4.8E-05	4.3E-05	3.8E-05		
E	7.8E-05	7.1E-05	6.0E-05	5.8E-05	5.1E-05	4.5E-05		
ENE	6.7E-05	6.1E-05	5.2E-05	5.1E-05	4.5E-05	4.0E-05		
	1 15 04	9 7 8 - 0 5	8 1 E - 05	7 8F-05	6 7 8 - 05	5 8F-05		
NE	1.15-04	J.) 🖬 🔰	0.10 05		0.75 05	5.01 05		

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

		CAL	CULATION IDENTIFICATI	ON NUMBER	
~	JOB ORDER NO.	DISCIPLINE	CALCULATION NO.	REVISION NUMBER	PAGE
)	08575.0207	E(B)	03	0	54 OF 61
,			C A P 8 8 - P C Version 2.00		
		Clean Air A	Act Assessment Packag	ge - 1988	
		SYN	OPSIS REPO	RТ	
		Non-Rad Ma	lon Population Assess Ay 8, 2001 08:17 am	nent	
	Facilit Addres Cit Stat	y: Maywood Int s: 100 W. Hunt y: Maywood e: NJ	erim Storage Site - er Avenue Zip: 07607-	Swale	
	Source Sou Emiss	Category: Part rce Type: Area ion Year: 2000	iculate Emission w r	adon daughters	
ار	Comment	s: Stone & Web U.S. Army C	ster, Inc. for orps of Engineers		
		Effective (mr	Dose Equivalent em/year)		
		4	.06E-05		
	At This I	Location: 25	0 Meters South		
	Data: Data: W Populat:	set Name: MISS set Date: May ind File: C:\Di ion File: C:\Di	SWALE POP 8, 2001 08:16 am ATA\CAP88PC2\WNDFILE; ATA\CAP88PC2\POPFILE;	S\TET1358.WND S\MAYWOOD.POP	

.

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

			CALCULATION ID	ALCULATION IDENTIFICATION NUMBER					
	JOB ORDER NO.	DISCIPLIN	NE CALCULAT	ION NO.	REVISION NUMBER	PAGE			
1	08575.0207	E(B)	03		0	55 OF 61			
1	May 8, 2001 ()8:17 am			SYNOPSIS Page 1	*			
		MAXIMAL	LY EXPOSED INDIV	IDUAL					
	Locatior Lifetime) Of The Ind Fatal Cand	dividual: 250 cer Risk:	Meters Sout 4.65E-10	h				
		ORGAN DO	DSE EQUIVALENT S	UMMARY					
	c)rgan	Selected Individua (mrem/y)	1 (p	Collective Population (person-rem/y)				
	G	ONADS	1.81E-07		1 14E-06				
	B	REAST	1.55E-07		9.97E-07				
	R	MAR	1.87E-05		1.11E-04				
	L	UNGS	2.59E-04		1.53E-03				
	T	HYROID	1.49E-07		9.48E-07				
``		NDOST	2.33E-04 5 15E-07		1.38E-03				
	R	FINDR	5.13E-07		3.32E-00				
	Е	FFEC	4.06E-05		2.40E-04				
	202				CANCER DICKC				
	FRE	QUENCI DISI	RIBUTION OF DIF	ETIME FAIAL	CANCER RISKS				
		# • 5	# of People	Deaths/Year	Deaths/Year				
	Dick Danco	# OI People	IN This Risk Pango or Wighor	in This Pick Pargo	in Inis Risk Pango on Highor				
		01 0	0		0.000.00				
	1.0E+00 TO $1.0E-$		0	0.008+00	0.00E+00				
	1.0E-02 TO 1.0E-	03 0	0	0.00E+00	0.00E+00				
	1.0E-03 TO 1.0E-	04 0	Õ	0.00E+00	0.00E+00				
	1.0E-04 TO 1.0E-	05 0	0	0.00E+00	0.00E+00				
	1.0E-05 TO 1.0E-	06 0	0	0.00E+00	0.00E+00				
	LESS THAN 1.0E-	0617937859	17937859	3.89E-08	3.89E-08				

~

				С	ALCULATIC	ON IDEN	TIFICATIC		R		
	JOB ORD	DER NO	.	DISCIPLINE	CALC	ULATIO	NNO.	RE	VISION N	UMBER	PAGE
١	08575	.0207		E(B)		03			0		56 OF 61
1	May 8,	2001	08:	17 am					SYN Pag	IOPSIS je 2	
	Nuclide AC-227 AC-228 BI-211 BI-212 FR-223 PA-234M PA-231	Class Y Y W W D Y Y	Size 1.00 1.00 1.00 1.00 1.00 1.00	RADIONUCLI Source #1 TO Ci/y C 7.3E-11 7. 5.6E-09 5. 7.3E-11 7. 5.6E-09 5. 1.0E-12 1. 1.6E-09 1.0 7.3E-11 7.	DE EMISSI TAL i/y 3E-11 6E-09 3E-11 6E-09 0E-12 5E-09 3E-11	ONS DU	RING TH	E YEAR 2	000		
	PA-231 PB-211 PO-216 PB-212 PO-215 RA-223 RA-224 TH-232 TH-231 TH-227 TL-208 U-235 TL-207 U-238 TH-234 PA-234 U-234 U-234	Y D W W W W Y Y Y D Y Y Y Y Y Y	1.00 1.00	7.3E-11 7. 7.3E-11 7. 2.0E-13 2.0 5.6E-09 5.0 3.6E-09 3.0 7.3E-11 7. 5.6E-09 5.0 5.6E-09 5.0 5.6E-09 5.0 5.6E-09 5.0 7.3E-11 7.3 7.2E-11 7.3 7.2E-11 7.3 7.3E-11	3E-11 3E-11 3E-11 3E-13 5E-09 5E-09 3E-11 3E-11 5E-09 3E-11 3E-11 3E-11 3E-11 3E-11 3E-11 3E-11 3E-11 3E-11 3E-11 3E-11 3E-12 3E-11 3E-12 3E-12 3E-12 3E-09 3E-12 3E-09 3E-12 3E-09 3E-12 3E-09 3E-12 3E-09 3E-12 3E-09 3E-11 3E-09 3E						
	TH-230 RA-226 PO-218 PB-214 BI-214 PO-214 PB-210 BI-210 PO-210 RA-228	Y W D W D W W W	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.7E-09 1.7 2.1E-10 2.1 2.1E-10 2.1 2.1E-10 2.1 2.1E-10 2.1 2.1E-10 2.1 2.1E-10 2.1 2.1E-10 2.1 2.1E-10 2.1 2.1E-10 2.1 5.6E-09 5.6 SITE INFORM	E-09 E-10 E-10 E-10 E-10 E-10 E-10 E-10 E-09 ATION	12	dogroop	C			
				Tempe Precipi Mixing	rature: tation: _ Height:	12 86 1000	degrees cm/y m	С			

STONE & WEBSTER ENGINEERING CORPORATION CALCULATION SHEET

 м	OB ORDER NO. 08575.0207	DISCI E(PLINE B)	CALCUL (ATION N()3	Э.	REVIS	ION NUMBER 0	PAG 57 OF
м	lay 8, 2001	18.17 am							
						SYNOPSIS Page 3			
		SOUR	CE INFOI	RMATION					
	Source Numb	er: 1 							
So	urce Height (1 Area (sq 1	m): m): 189	0.)7.						
Pa	Plume Rise squill Cat: 	A	в	с	D	E	F	G	
	Zero:	0.	0.	0.	0.	0.	0.	0.	
		AGRIC	ULTURAI	DATA					
					Veget	able	Milk	Meat	
	Fraction Home Produced: Fraction From Assessment Area: Fraction Imported:				0.076 0.924 0.000		0.000 1.000 0.000	0.008 0.992 0.000	
Beef Cattle Density: 4.25E-02 Milk Cattle Density: 3.29E-02 Land Fraction Cultivated									
for Vegetable Crops: 1.82E-02									

-

			CALCULA	TION IDENT	IFICATION N	NUMBER	
08575 0	R NO.	DISCIPLIN F(B)			NO.	REVISIO	
0007 0.07		2(0)	l	00			
ay 8,2	2001 08	8:17 am					SYNOPSIS
							Page 4
			זייע וווססס				
		<u> </u>	FOFULATI				
			Dista	nce (m)			
irectior	n 250	750	1500	2500	3500	4500	7500
N	67 67	201	802	1337	1872	2407	20057
NW	07 67	201	802 802	1777	1872	2407 2407	20057
WNW	67	201	802	1337	1872	2407	18015
W	67	201	802	1337	1872	2407	15973
WSW	67	201	802	1337	1872	2407	15973
SW	67	201	802	1337	1872	2407	16228
SSW	67	201	802	1337	1872	2407	20057
S	67	201	802	1337	1872	2407	20057
SSE	67	201	802	1337	1872	2407	25914
SE	67	201	802	±337 1337	1872	2407	20057
ESE E	67	201	802	1337	1872	2407	20057
ENE	67	201	802	1337	1872	2407	20057
NE	67	201	802	1337	1872	2407	20057
NNE	67	201	802	1337	1872	2407	20057
			Dista	nce (m)			
-							
irection	15000	25000	35000	45000	55000	65000	75000
	- 45 - 5	6010 <i>6</i>			00075		
N	74537	60196 100151	70814	29909	283/5	32864	31652
NW	74537	78697	106487	126587	31334 47978	25581	4U828 31795
WNW	56704	65308	91431	43632	20950	24760	25044
W	64114	84087	47693	59939	47949	40968	30281
WSW	112233	167453	56447	59420	70303	592514	29756
SW	120063	227594	237745	147380	112163	79165	127971
SSW	142152	249194	283497	211897	153403	180380	385790
S	236424	356896	290094	27391	48812	100953	91523
SSE	537391	974408	1119592	38176	0	0	0
SE	813384	6/8682	772130	363126	35070	102550	0
252 5	03/313 566075	483/81 2907/5	2/0041 57160	306070	2/9511	T0320A	51542
ENF	84525	290743	J/409 79890	EUU83 740303	70070 55076	07337 65090	±03084 75104
NE	65381	57432	102568	129885	161178	126989	143397
NNE	65457	30109	80543	125688	76315	38109	40796

	CALCULATION IDENTIFICATION NUMBER												
JOB ORDE	JOB ORDER NO. DISCIPLINE				N NO.	REVIS	ION NUMBER		PAGE				
08575.0	207	E(B)		03			0		60 OF 61				
May 8,	2001 08	3:17 am					SUMMARY Page 6						
	INDIVIDUAL EFFECTIVE DOSE EQUIVALENT RATE (mrem/y) (All Radionuclides and Pathways)												
-													
Direction	250	750	1500	2500	3500	4500	7500						
N NNW NW WNW WSW SSW SSW SSW SSE SSE ESE ESE ENE ENE NNE	3.0E-05 1.1E-05 6.5E-06 5.4E-06 1.0E-05 1.2E-05 2.2E-05 4.1E-05 2.4E-05 2.4E-05 1.6E-05 1.7E-05 1.7E-05 2.2E-05 2.9E-05	3.8E-06 1.4E-06 8.2E-07 6.9E-07 1.3E-06 1.5E-06 2.1E-06 3.0E-06 2.7E-06 2.7E-06 2.7E-06 2.2E-06 3.9E-06 3.6E-06	1.1E-06 4.2E-07 2.4E-07 2.0E-07 3.8E-07 4.5E-07 6.2E-07 8.0E-07 1.5E-06 8.8E-07 7.9E-07 7.8E-07 6.3E-07 1.1E-06 1.1E-06	$\begin{array}{c} 4.7E-07\\ 1.8E-07\\ 1.0E-07\\ 8.5E-08\\ 1.6E-07\\ 1.9E-07\\ 2.6E-07\\ 3.4E-07\\ 6.2E-07\\ 3.7E-07\\ 3.3E-07\\ 2.5E-07\\ 3.3E-07\\ 2.7E-07\\ 4.8E-07\\ 4.4E-07\\ \end{array}$	$\begin{array}{c} 2.7E-07\\ 1.0E-07\\ 5.9E-08\\ 4.9E-08\\ 9.1E-08\\ 1.1E-07\\ 1.5E-07\\ 2.0E-07\\ 3.6E-07\\ 2.2E-07\\ 1.9E-07\\ 1.5E-07\\ 1.9E-07\\ 1.6E-07\\ 2.8E-07\\ 2.6E-07\\ 2.6E-07\\ \end{array}$	1.9E-077.0E-084.0E-083.3E-086.2E-087.4E-081.0E-071.3E-071.5E-071.3E-071.3E-071.3E-071.3E-071.3E-071.1E-071.9E-071.8E-07	8.5E-08 3.2E-08 1.8E-08 1.5E-08 2.8E-08 3.4E-08 4.6E-08 6.1E-08 1.1E-07 6.7E-08 6.1E-08 4.6E-08 4.6E-08 4.6E-08 4.9E-08 8.8E-08 8.8E-08 8.1E-08						
- Direction	15000	25000	Dist 35000	ance (m) 45000	55000	65000	75000						
N 3 NNW 1 NW 6 WNW 5 WSW 1 SW 1 SW 1 SSW 2 SSW 2 SE 2 SE 2 ESE 1 EEE 1 NE 3 NNE 3	3.2E-08 2.2E-08 5.5E-09 5.4E-09 5.2E-08 2.2E-08 2.2E-08 2.2E-08 2.2E-08 2.5E-08 2.3E-08 2.2E-08 2.3E-08 2.2E-08 2.3E-08 2.2E-08 2.3E-08 2.2E-08 2.3E-08 2.2	1.4E-08 5.2E-09 2.9E-09 2.4E-09 4.4E-09 5.2E-09 7.5E-09 1.0E-08 1.9E-08 1.2E-08 1.1E-08 7.9E-09 1.0E-08 8.5E-09 1.5E-08 1.4E-08	9.0E-09 3.2E-09 1.8E-09 1.5E-09 2.7E-09 3.2E-09 4.6E-09 6.3E-09 1.2E-08 7.3E-09 6.7E-09 5.0E-09 5.0E-09 5.4E-09 9.4E-09 8.6E-09	6.2E-09 2.2E-09 1.2E-09 1.0E-09 1.8E-09 2.2E-09 3.2E-09 4.3E-09 8.1E-09 5.1E-09 4.7E-09 3.5E-09 4.5E-09 3.7E-09 6.5E-09	$\begin{array}{c} 4.5E-09\\ 1.6E-09\\ 8.9E-10\\ 7.2E-10\\ 1.3E-09\\ 1.5E-09\\ 2.2E-09\\ 3.1E-09\\ 5.7E-09\\ 0.0E+00\\ 3.4E-09\\ 2.5E-09\\ 3.3E-09\\ 2.5E-09\\ 3.3E-09\\ 2.7E-09\\ 4.7E-09\\ 4.2E-09\\ \end{array}$	3.0E-09 1.1E-09 6.1E-10 5.0E-10 8.8E-10 1.0E-09 1.5E-09 2.1E-09 3.7E-09 0.0E+00 0.0E+00 1.8E-09 2.2E-09 1.9E-09 3.1E-09 2.8E-09	2.4E-09 8.5E-10 4.8E-10 4.0E-10 6.9E-10 8.2E-10 1.2E-09 1.6E-09 2.9E-09 0.0E+00 0.0E+00 1.4E-09 1.8E-09 1.5E-09 2.4E-09 2.2E-09						
	5010.65		STO	NE & WEB	STER ENG CALCULAT	INEERING	CORPOR						
-----	-----------------------------------	--------------------------------------	-------------------------------	-------------------------------	-------------------------------	-------------------------------	-------------------------------	-------------------------------	------	------			
1	CALCULATION IDENTIFICATION NUMBER												
	JOB ORD	DRDER NO. DISCIPLINE CALCULATION NO.				NNO.	REVIS	PA	PAGE				
	08575.	0207	E(B)		03			0	61 C)F 6			
	000101												
	May 8,	2001 08	3:17 am					SUMMARY Page 7					
		COLI	LECTIVE EF (Al	FECTIVE D	OSE EQUIV Clides an	ALENT (pe d Pathway	rson rem/ s)	у)					
				Dist	ance (m)								
	Direction	n 250	750	1500	2500	3500	4500	7500					
	N NNW NW	2.0E-06 7.6E-07 4.3E-07	7.7E-07 2.9E-07 1.7E-07	8.9E-07 3.4E-07 1.9E-07	6.3E-07 2.4E-07 1.3E-07	5.1E-07 1.9E-07 1.1E-07	4.5E-07 1.7E-07 9.6E-08	1.7E-06 6.4E-07 3.6E-07					
	WNW	3.6E-07	1.4E-07	1.6E-07	1.1E-07	9.2E-08	8.0E-08	2.7E-07					
	W	6.7E-07	2.6E-07	3.0E-07	2.1E-07	1.7E-07	1.5E-07	4.5E-07					
	WSW	8.0E-07	3.1E-07	3.6E-07	2.5E-07	2.0E-07	1.8E-07	5.4E-07					
	SW	1.1E-06	4.2E-07	4.9E-07	3.5E-07	2.8E-07	2.5E-07	7.5E-07					
	SSW	1.5E-06	5.5E-07	6.5E-07	4.5E-07	3.7E-07	3.2E-07	1.2E-06					
	S	2.7E-06	1.0E-06	1.2E-06	8.2E-07	6.7E-07	5.9E-07	2.2E-06					
	SSE	1.6E-06	6.0E-07	7.0E-07	4.9E-07	4.0E-07	3.5E-07	1.7E-06					
	SE	1.4E-06	5.4E-07	6.3E-07	4.5E-07	3.6E-07	3.2E-07	1.2E-00 9 2E 07					
-	ESE	1.1E-06	4.1E-07	4.0E-07	3.3E-07	2.7E-07 3.6E-07	2.4E-07 3 1E-07	9.2E-07 1 2E-06					
1	E	1.4E-06	3.3E=07	5.2E-07	3 6E-07	2.9E-07	2.6E-07	9.8E-07					
· '	DINE	1.1E-00 2 1F-06	7.9E-07	9.2E-07	6.4E-07	5.3E-07	4.6E-07	1.8E-06					
	NNE	1.9E-06	7.3E-07	8.4E-07	5.9E-07	4.8E-07	4.2E-07	1.6E-06					
				Dist	ance (m)								
	Directio	n 15000	25000	35000	45000	55000	65000	75000					
	N	2.3E-06	8.6E-07	6.4E-07	1.9E-07	1.3E-07	9.8E-08	7.5E-08					
	NNW	9.3E-07	5.2E-07	1.2E-07	5.8E-08	5.0E-08	4.0E-08	3.5E-08					
	NW	4.9E-07	2.3E-07	1.9E-07	1.6E-07	4.3E-08	1.6E-08	1.5E-08					
	WNW	3.0E-07	1.6E-07	1.3E-07	4.4E-08	1.5E-08	1.2E-08	9.9E-09					
	W	6.4E-07	3.7E-07	1.3E-07	1.1E-07	6.1E-08	3.6E-08	2.1E-08					
	WSW	1.3E-06	8.8E-07	1.8E-07	1.3E-07	1.1E-07	6.2E-07	2.4E-08					
	SW	2.0E-06	1.7E-06	1.1E-06	4.7E-07	2.5E-07	1.2E-07	1.5E-07					
	SSW	3.2E-06	2.5E-06	1.8E-06	9.1E-07	4.7E-07	3.7E-07	6.3E-07					
	S	9.8E-06	6.6E-06	3.4E-06	2.2E-07	2.8E-07	3.7E-07	2./E-U/					
	SSE	1.3E-05	1.1E-05	8.1E-06	1.98-07	0.0E+00							
	SE	1.9E-05	7.2E-06	5.2E-06	1./E-U6	エ・2ピーリ/ フ 1ピ 0フ	1 25.07	7 48-09					
	ESE	1.4E-05	3.8E-06	1.4E-VO	1.1E-VO 6 7E-07	7.15-07 2.55-07	1.05-07 2 05-07	1 88-07					
	E	1.35-05	5.UE-UO	3.7E-07	0.7E-07 2 3E-07	2.55-07	1 2 - 07	1 1 E = 07					
	LNE	1.3E-U0 2 1E 04	0.55-07 8 65-07	9 7F-07	2.5E-07 8 5E-07	7.58-07	3.9E-07	3.5E-07					
	NE NDVE	2.15-00	0.0E-07	5.7E-07	7 5E-07	3.2E-07	1.1E = 07	9.0E-08					
_	ININE	2.05-00	H.IL-U/	0.70-07	·····	5.25 07	±•±□ 0/	2.22 00	-				

RADIONUCLIDE SOURCE TERM EMISSIONS CALCULATIONS

FUSRAP - MISS YEAR 2000

IN SITU SOIL (AP-42, Chapter 13.2.5, "Industrial Wind Erosion", 01/95)

WIND EROSION			Vegetative Cover/Gravel					
EMISSIONS	INPUT PARAMETERS:			TSP	PM-10	TSP	PM-10	
	Particle Size Multiplier (k)			1	0.5	1	0.5	
	Number of Disturbances per Period	(Assumption)		1	1	1	1	
	Surface Area of Soil (m^2)	(Assumption)		44873	44873	5017	5017	
	Threshold Friction Velocity (m/s)	(Table 13.2.5-2)		1.02	1.02	1.02	1.02	
	Anemometer Height (m)	(Teterboro LCD)		6.10	6.10	6.10	6.10	
	Roughness Height (m)	(Table 13.2.5-2) -	Overburden	0.003	0.003	0.003	0.003	
	Fastest Mile Wind Speed (mph)	(Teterboro LCD)	Week					
	January		1-4	34	34	34	34	
	February		1-4	29	29	29	29	
	March		1-4	29	29	29	29	
	April		1	24	24	24	24	
			2	28	28	28	28	
			3	24	24	24	24	
			4	26	26	26	26	
	Мау		1	26	26	26	26	
			2	23	23	23	23	
			3	30	30	30	30	
			4	25	25	25	25	
	June		1	39	39	39	39	
	ι.		2	21	21	21	21	
			3	22	22	22	22	
			4	24	24	24	24	
	July		1	18	18	18	18	
			2	20	20	20	20	
			3	24	24	24	24	
			4	16	16	16	16	
			5	16	16	16	16	
	August		1	22	22	22	22	
			2	17	17	17	17	
			3	23	23	23	23	
			4	18	18	18	18	
			5	18	18	18	18	
	September		1	23	23	23	23	
	-		2	22	22	22	22	
			3	24	24	24	24	
	N							

P. A-1 08575.0207 E(B)-03 Rev. 0

4 13 18 18 18 Otoker 1.4 2.4 2.4 2.4 2.4 November 1.4 2.3))		
October 1-1 1-2 1-3 1-3 1-3 1-3 November 1-4 2-3 2-3 3-3 3-3 December 1-4 2-3 2-3 3-3 3-3 December 1-4 0-6 0-65 0-65 0-65 Permany 1-4 0-73 0-73 0-73 0-73 March 1-4 0-73 0-73 0-73 0-73 April 1 0-61 0-61 0-61 0-61 0-61 March 1 0-61 0-61 0-66 0-6	-		4	18	19	10	10
November 1-1 1-	October		1-4	20 94	94	10	18
Deember 1.4 a.c. a.c. a.g. g.g. g.g. <thg.g.< th=""> g.g. g.g. <t< td=""><td>November</td><td></td><td>1-4</td><td>23</td><td>23</td><td>24</td><td>24</td></t<></thg.g.<>	November		1-4	23	23	24	24
Andreion Volocity (m*i) January 1-4 086 086 086 086 086 February 14 073 0.73 0.73 0.73 April 1 061 061 061 061 061 2 071 071 071 071 071 3 061 061 061 066 066 086	December		1.4	36	36	20	23
January 14 0.86 0.86 0.86 Péloruary 14 0.73 0.73 0.73 March 14 0.73 0.73 0.73 April 1 0.61 0.61 0.61 2 0.71 0.71 0.71 0.71 3 0.61 0.61 0.61 0.61 4 0.66 0.66 0.66 0.66 May 1 0.66 0.66 0.66 1 0.53 0.58 0.58 0.58 3 0.76 0.76 0.76 0.76 3 0.76 0.76 0.76 0.76 3 0.76 0.76 0.76 0.76 3 0.76 0.76 0.76 0.76 3 0.76 0.76 0.76 0.76 3 0.76 0.76 0.76 0.76 3 0.61 0.61 0.61 0.61	Friction Velocity (m/s)			00	50	30	30
Pertwary 1-4 0.03 0.03 0.03 0.03 March 1-4 0.73 0.73 0.73 0.73 March 1-4 0.73 0.73 0.73 0.73 April 1 0.61 0.61 0.61 0.61 2 0.71 0.71 0.71 0.71 0.71 3 0.61 0.61 0.61 0.61 0.61 May 1 0.66 0.66 0.66 0.66 May 1 0.66 0.66 0.66 0.66 June 4 0.63 0.63 0.63 0.63 July 1 0.66 0.66 0.66 0.66 July 1 0.65 0.65 0.56 0.56 July 1 0.45 0.61 0.61 0.61 July 1 0.56 0.56 0.56 0.56 July 1 0.56 0.56 0.56 0.56 July 1 0.56 0.56 0.56 0.5	January		1-4	0.86	0.86	0.96	0.90
Notariy 1-4 0.13 0.13 0.13 0.13 0.13 0.13 April 1 0.61 0.61 0.61 0.61 0.61 2 0.71 0.71 0.71 0.71 0.71 0.71 3 0.61 0.61 0.61 0.61 0.61 0.61 4 0.66 0.66 0.66 0.66 0.66 0.66 May 1 0.66 0.66 0.66 0.66 0.66 May 1 0.63 0.63 0.63 0.63 0.63 June 1 0.98	February		1-4	0.30	0.80	0.86	0.86
April 1 0.63 0.61 0.66 <	March		1-4	0.73	0.73	0.73	0.73
1 0.01 0.01 0.01 0.01 2 071 0.01 0.01 0.01 3 0.01 0.01 0.01 0.01 4 0.66 0.66 0.66 0.66 May 1 0.66 0.66 0.66 0.66 1 0.63 0.65 0.66 0.66 0.66 3 0.76 0.76 0.76 0.76 0.76 3 0.76 0.76 0.76 0.76 0.76 June 1 0.98 0.98 0.98 0.98 0.98 3 0.56 0.55 0.53 0.53 0.53 4 0.61 0.61 0.61 0.61 0.61 3 0.56 0.55 0.50 0.50 0.50 4 0.61 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 0.40 4 0.40	Anril		1-4	0.73	0.73	0.73	0.73
3 0.11 0.71 0.71 0.71 3 0.61 0.61 0.61 0.61 4 0.66 0.66 0.66 0.66 9 0.58 0.58 • 0.58 0.58 2 0.58 0.63 0.63 0.63 3 0.76 0.76 0.76 0.76 4 0.63 0.63 0.63 0.63 3 0.56 0.56 0.58 0.53 9 0.56 0.56 0.56 0.56 1 0.98 0.98 0.98 0.98 1 0.56 0.56 0.56 0.56 1 0.56 0.56 0.56 0.56 3 0.61 0.61 0.61 0.61 1 0.45 0.45 0.45 0.45 2 0.50 0.50 0.50 0.50 0.50 3 0.61 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 0.40			1	0.01	0.01	0.61	0.61
May 4 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.66 0.6			2	0.71	0.71	0.71	0.71
May 1 0.00 0.05 0.66 0.6			3	0.01	0.61	0.61	0.61
August 1 0.66	Mav		4	0.00	0.66	0.66	0.66
2 0.58 0.68 0.68 0.58 0.58 3 0.76 0.76 0.76 0.76 4 0.63 0.63 0.63 0.63 June 1 0.98 0.98 0.98 0.98 2 0.53 0.53 0.53 0.53 3 0.56 0.56 0.56 0.56 4 0.61 0.61 0.61 0.61 July 1 0.45 0.45 0.45 4 0.61 0.61 0.61 0.61 4 0.61 0.61 0.61 0.61 5 0.40 0.40 0.40 0.40 6 0.56 0.56 0.56 7 0.43 0.43 0.43 9 0.40 0.40 0.40 4 0.40 0.40 0.40 4 0.45 0.56 0.56 5 0.43 0.43 0.43 6 0.45 0.45 0.45 7 0.43 0.43 0.43 8 0.58 0.58 0.58 9 0.56 0.56 0.56 9 0.56 <t< td=""><td>мау</td><td></td><td>1</td><td>0.66</td><td>0.66</td><td>0.66</td><td>0.66</td></t<>	мау		1	0.66	0.66	0.66	0.66
3 0.76 0.			2	0.58	0.58	0.58	0.58
June 1 0.63 0.63 0.63 0.63 0.63 June 1 0.98 0.98 0.98 0.98 0.98 2 0.53 0.53 0.53 0.53 0.56 3 0.56 0.56 0.56 0.56 July 1 0.45 0.45 0.45 0.45 2 0.50 0.50 0.50 0.50 0.50 3 0.61 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 0.40 5 0.40 0.40 0.40 0.40 0.40 6 0.56 0.56 0.56 0.56 0.56 0.56 5 0.45 0.45 0.45			3	0.76	0.76	0.76	0.76
June 1 0.98 0.98 0.98 0.98 0.98 2 0.53 0.53 0.53 0.53 0.53 3 0.56 0.56 0.56 0.56 4 0.61 0.61 0.61 0.61 July 1 0.45 0.45 0.45 0.45 2 0.50 0.50 0.50 0.50 3 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 5 0.40 0.40 0.40 0.40 6 0.56 0.56 0.56 0.56 6 0.43 0.43 0.43 0.43 6 0.45 0.45 0.45 7 0.58 0.58 0.58 0.58 6 0.56 0.56 0.56 0.56 7 0.58 0.58			4	0.63	0.63	0.63	0.63
2 0.53 0.53 0.53 0.53 3 0.56 0.56 0.56 0.56 4 0.61 0.61 0.61 0.61 July 1 0.45 0.45 0.45 0.45 2 0.50 0.50 0.50 0.50 3 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.41 0.43 0.43 0.43 5 0.43 0.43 0.43 0.43 5 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 6 0.45 0.45 0.45 0.45 9 0.45 0.45 0.45 0.45 <t< td=""><td>June</td><td></td><td>1</td><td>0.98</td><td>0.98</td><td>0.98</td><td>0.98</td></t<>	June		1	0.98	0.98	0.98	0.98
3 0.56 0.56 0.56 0.56 0.56 4 0.61 0.61 0.61 0.61 July 1 0.45 0.45 0.45 0.45 2 0.50 0.50 0.50 0.50 0.50 3 0.61 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 0.40 August 1 0.56 0.56 0.56 0.56 2 0.43 0.43 0.43 0.43 0.43 3 0.58 0.58 0.58 0.58 0.58 5 0.45 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 0.56 5 0.45 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 0.56 0.56 6 0.56 0.56 0.56 0.56 0.56			2	0.53	0.53	0.53	0.53
4 0.61 0.61 0.61 0.61 July 1 0.45 0.45 0.45 2 0.50 0.50 0.50 0.50 3 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.56 0.56 0.56 0.56 5 0.43 0.43 0.43 0.43 6 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 6 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 7 0.56 0.56 </td <td></td> <td></td> <td>3</td> <td>0.56</td> <td>0.56</td> <td>0.56</td> <td>0.56</td>			3	0.56	0.56	0.56	0.56
July 1 0.45 0.45 0.45 0.45 2 0.50 0.50 0.50 0.50 3 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 4 0.45 0.56 0.56 0.56 2 0.43 0.43 0.43 0.43 4 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 6 0.56 0.56 0.56 0.56 7 1 0.58 0.58 0.58 0 0.51			4	0.61	0.61	0.61	0.61
2 0.50 0.50 0.50 0.50 0.50 0.50 3 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 5 0.40 0.40 0.40 0.40 5 0.40 0.40 0.40 0.40 4 0.40 0.40 0.40 0.40 5 0.40 0.40 0.40 0.40 5 0.40 0.40 0.40 0.40 6 0.56 0.56 0.56 0.56 0.56 6 0.58 0.58 0.58 0.58 5 0.45 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 0.56 1 0.58 0.58 0.58 0.58 1 0.58 0.58 0.58 0.58 5 0.45 0.45 0.45 0.45 0.45 1 0.58 0.58 0.58 0.58 0.58 1 0.56 0.56 0.56 0.56 0.56 0.56 0.56 1 0.61 0.61 0.61 1 0	July		1	0.45	0.45	0.45	0.45
3 0.61 0.61 0.61 0.61 4 0.40 0.40 0.40 0.40 5 0.40 0.40 0.40 0.40 4 0.56 0.56 0.56 0.56 2 0.43 0.43 0.43 0.43 3 0.58 0.58 0.58 0.58 4 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 5 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 9 0.56 0.56 0.56 0.56 9 0.56 0.56 0.56 0.56 9 0.58 0.58 0.58 0.58 9 0.56 0.45 0.45 0.45 10 0.58 0.58 0.58 0.58 10 0.58 0.58 0.58 0.58 10 0.58 0.5			2	0.50	0.50	0.50	0.50
4 0.40 0.40 0.40 0.40 5 0.40 0.40 0.40 0.40 August 1 0.56 0.56 0.56 0.56 2 0.43 0.43 0.43 0.43 0.43 3 0.58 0.58 0.58 0.58 0.58 4 0.45 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 0.45 6 0.58 0.58 0.58 0.58 0.58 0.58 5 0.45 0.45 0.45 0.45 0.45 0.45 6 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.45			3	0.61	0.61	0.61	0.61
August 1 0.60 0.40 0.40 0.40 August 1 0.56 0.56 0.56 0.56 2 0.43 0.43 0.43 0.43 0.43 3 0.58 0.58 0.58 0.58 0.58 4 0.45 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 0.45 6 0.56 0.56 0.58 0.58 0.58 5 0.45 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 0.56 6 0.61 0.61 0.61 0.61 0.61 7 14 0.58 0.58 0.58 0.58 0.58 0 0.51 0.51 0.51 0.61 0.61 0.61 7 14 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 <td></td> <td></td> <td>4</td> <td>0.40</td> <td>0.40</td> <td>0.40</td> <td>0.40</td>			4	0.40	0.40	0.40	0.40
August 1 0.56 0.56 0.56 0.56 2 0.43 0.43 0.43 0.43 3 0.58 0.58 0.58 0.58 4 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 6 0.56 0.56 0.56 0.56 6 0.56 0.56 0.56 0.56 9 0.56 0.56 0.56 0.56 1 0.58 0.58 0.58 0.58 2 0.56 0.56 0.56 0.56 3 0.61 0.61 0.61 0.61 4 0.45 0.45 0.45 0.45 October 1.4 0.61 0.61 0.61 November 1.4 0.58 0.58 0.58 December 1.4 0.91 0.91 0.91 0.91			5	0.40	0.40	0.40	0.40
2 0.43 0.43 0.43 0.43 3 0.58 0.58 0.58 0.58 4 0.45 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 0.45 2 0.56 0.56 0.56 0.56 0.56 3 0.61 0.61 0.61 0.61 4 0.45 0.45 0.45 0.45 0.45 0.45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	August		1	0.56	0.56	0.56	0.56
3 0.58 0.58 0.58 0.58 4 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 September 1 0.58 0.58 0.58 0.58 2 0.56 0.56 0.56 0.56 0.56 3 0.61 0.61 0.61 0.61 4 0.45 0.45 0.45 0.45 0 0.56 0.56 0.56 0.56 0 0.61 0.61 0.61 0.61 0 0.58 0.58 0.58 0.58 October 1.4 0.61 0.61 0.61 November 1.4 0.58 0.58 0.58 0.58 December 1.4 0.91 0.91 0.91 0.91			2	0.43	0.43	0.43	0.43
4 0.45 0.45 0.45 0.45 5 0.45 0.45 0.45 0.45 September 1 0.58 0.58 0.58 0.58 2 0.56 0.56 0.56 0.56 0.56 3 0.61 0.61 0.61 0.61 4 0.45 0.45 0.45 0.45 0ctober 1.4 0.61 0.61 0.61 0.61 November 1.4 0.58 0.58 0.58 0.58 December 1.4 0.91 0.91 0.91 0.91			3	0.58	0.58	0.58	0.58
5 0.45 0.45 0.45 0.45 September 1 0.58 0.58 0.58 0.58 2 0.56 0.56 0.56 0.56 0.56 2 0.56 0.61 0.61 0.61 0.61 4 0.45 0.45 0.45 0.45 0.45 October 1-4 0.61 0.61 0.61 0.61 November 1-4 0.58 0.58 0.58 0.58 December 1-4 0.91 0.91 0.91 0.91			4	0.45	0.45	0.45	0.45
September 1 0.58 0.58 0.58 0.58 2 0.56 0.56 0.56 0.56 3 0.61 0.61 0.61 0.61 4 0.45 0.45 0.45 0.45 October 1-4 0.61 0.61 0.61 0.61 November 1-4 0.58 0.58 0.58 0.58 December 1-4 0.91 0.91 0.91 0.91			5	0.45	0.45	0.45	0.45
2 0.56 0.56 0.56 0.56 0.56 3 0.61 0.61 0.61 0.61 4 0.45 0.45 0.45 0.45 0.45 October 1-4 0.61 0.61 0.61 0.61 November 1-4 0.58 0.58 0.58 0.58 0.58 December 1-4 0.91 0.91 0.91 0.91	September		1	0.58	0.58	0.58	0.58
3 0.61 0.61 0.61 0.61 4 0.45 0.45 0.45 0.45 October 1-4 0.61 0.61 0.61 0.61 November 1-4 0.58 0.58 0.58 0.58 December 1-4 0.91 0.91 0.91 0.91			2	0.56	0.56	0.56	0.56
4 0.45 0.45 0.45 0.45 October 1-4 0.61 0.61 0.61 0.61 November 1-4 0.58 0.58 0.58 0.58 December 1-4 0.91 0.91 0.91 0.91	,		3	0.61	0.61	0.61	0.61
October 1-4 0.61 0.61 0.61 0.61 November 1-4 0.58 0.58 0.58 0.58 December 1-4 0.91 0.91 0.91 0.91	1		4	0.45	0.45	0.45	0.45
November 1-4 0.58 0.58 0.58 0.58 December 1-4 0.91 0.91 0.91 0.91 Vegetative Cover Bare Soil	October		1-4	0.61	0.61	0.61	0.61
December 1-4 0.91 0.91 0.91 0.91 0.91	November		1-4	0.58	0.58	0.58	0.58
Vegetative Cover Bare Soil	December		1-4	0.91	0.91	0.91	0.91
		Vegetative Cover	Bare Soil				
CONTROL EFFICIENCY (%)- 99 0	CONTROL EFFICIENCY (%)-	- 99	0				

P. A-2 08575.0207 E(B)-03 Rev. 0

EMISSION FACTO	DR - E (g/m^2):							
	January	1-4	0.00	0.00	-2.53	0.00	0.00	-2.53
	February	1-4	0.00	0.00	-2.39	0.00	0.00	-2.39
	March	1-4	0.00	0.00	-2.39	0.00	0.00	-2.39
	April	1	0.00	0.00	-0.40	0.00	0.00	-0.40
		2	0.00	0.00	-2.14	0.00	0.00	-2.14
		3	0.00	0.00	-0.40	0.00	0.00	-0.40
N		4	0.00	0.00	-1.41	0.00	0.00	-1.41
	Мау	1	0.00	0.00	-1.41	0.00	0.00	-1.41
		2	0.00	0.00	0.22	0.00	0.00	0.22
		3	0.00	0.00	-2.56	0.00	0.00	-2.56
		4	0.00	0.00	-0.94	0.00	0.00	-0.94
	June	1	0.00	0.00	-0.83	0.00	0.00	-0.83
		2	0.00	0.00	1.68	0.00	0.00	1.68
		3	0.00	0.00	0.92	0.00	0.00	0.92
		4	0.00	0.00	-0.40	0.00	0.00	-0.40
	July	1	0.00	0.00	4.43	0.00	0.00	4.43
		2	0.00	0.00	2.52	0.00	0.00	2.52
		3	0.00	0.00	-0.40	0.00	0.00	-0.40
		4	0.00	0.00	6.62	0.00	0.00	6.62
		5	0.00	0.00	6.62	0.00	0.00	6.62
	August	1	0.00	0.00	0.92	0.00	0.00	0.92
		2	0.00	0.00	5.49	0.00	0.00	5.49
		3	0.00	0.00	0.22	0.00	0.00	0.22
		4	0.00	0.00	4.43	0.00	0.00	4.43
		5	0.00	0.00	4.43	0.00	0.00	4.43
	September	1	0.00	0.00	0.22	0.00	0.00	0.22
		2	0.00	0.00	0.92	0.00	0.00	0.92
		3	0.00	0.00	-0.40	0.00	0.00	-0.40
		4	0.00	0.00	4.43	0.00	0.00	4.43
	October	1-4	0.00	0.00	-0.40	0.00	0.00	-0.40
	November	1-4	0.00	0.00	0.22	0.00	0.00	0.22
	December	1-4	0.00	0.00	-2.07	0.00	0.00	-2.07

Bare Soil Total Emissions

ANNUAL EMISSIONS (grams/yeliegetative Cover/Gravel

É\TSP) =	0.00	0.00	0.00
E (PM-10) =	0.00	0.00	0.00

P. A-3 08575.0207 E(B)-03 Rev. 0

RADIONUCLIDE	AVERAGE DETECTED ACTIVITY	(MEASURED)	•					
CONCENTRATION	INPUT PARAMETERS:		U238	U234	1)235	Ra226	Th232	
	Activity Concentration (S) - pCi/g		27.5	N/A	N/A	43	94 9	
	Isotope Contribution to Total Uraniu	n (P) - %	47.249	50.539	2.212	N/A	24.8 N/A	

)

P. A-4 08575.0207 E(B)-03 Rev. 0

ANNUAL RADIOACTIVITY EMISSION RATES (Ci/yr)

1

١

1

U238	0.00E+00
Th234	0.00E+00
Pa234m	0.00E+00
Pa234	0.00E+00
U234	0.00E+00
Th230	0.00E+00
Ra226	0.00E+00
Po218	0.00E+00
Pb214	0.00E+00
Bi214	0.00E+00
Po214	0.00E+00
Pb210	0.00E+00
Bi210	0.00E+00
Po210	0.00E+00
U235	0.00E+00
Th231	0.00E+00
Pa231	0.00E+00
Ac227	0.00E+00
Th227	0.00E+00
Fr-223	0.00E+00
Ra223	0.00E+00
Po215	0.00E+00
Pb211	0.00E+00
Bi211	0.00E+00
Po211	0.00E+00
T1207	0.00E+00
Th232	0.00E+00
Ra228	0.00E+00
Ac228	0.00E+00
Th228	0.00E+00
Ra224	0.00E+00
Po216	0.00E+00
Pb212	0.00E+00
Bi212	0.00E+00
Po212	0.00E+00
T1208	0.00E+00

•)		_))		
PDA SOIL	EQUATION: $E = k(0.0032)(1/5)$	5)^1.3/(M/2)^1.4	(AP-42 Chapter 13.2.4 "A	ogregate Handling	and Storage Piles"	01/95)		P. A-5 08575.0207		
TRANSFER		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Soil A	Soil Acouis. Area						
EMISSIONS	INPUT PARAMETERS:		TSP	PM-10				Rev. 0		
	Destisle Size Mathinking (b)			0.05						
	Mann Wind Speed II (wok)	(The task of LOD)	0.74	0.35						
	Meterial Moisture Content M (%)	(Teterboro, LCD)	7.5	7.5						
	Tons of Material Dronned	(7 x 6 965 tons)	12.0	12.0						
	Tons of Material Dropped	(7 x 0,503 tons)	46700	40700						
	EMISSION FACTOR -E (lb/ton):	Soil Acquis. Area								
	E (TSP) =	3.27E-04								
	E (PM-10) =	1.54E-04								
	CONTROL EFFICIENCY (%).	0								
		Ū								
	ANNUAL EMISSIONS (grams/year)):								
	١									
	E(TSP) =	7220.7								
	E (PM-10) =	3415.2								
RADIONUCLIDE	AVERAGE DETECTED ACTIVITY	(MEASURED)								
SOURCE										
CONCENTRATIONS	INPUT PARAMETERS:		<u>U238</u>	1/234	<u>1J235</u>	<u>Ra226</u>	<u>Th232</u>			
	Activity Concentration (S) - pCi/g	(Soil Acquis. Area)	2.94	N/A	N/A	2.07	10.1			
	Isotope Contribution to Total Urania	um (P) - %	47.249	50.539	2.212	N/A	N/A			
	ANNUAL RADIOACTIVITY EMISS	SION RATES (Ci/yr)	Soil Acquis. Area							
		U238	1.00E-08							
		Th234	1.00E-08							
		Pa234m	1.00E-08							
		Pa234	1.31E-11							
		U234	1.07E-08							
		Th230	1.07E-08							
		Ra226	7.07E-09							
		Po218	7.07E-09							
		Pb214	7.07E-09							
		Bi214	7.07E-09							
		Po214	7.07E-09							
		Рь210	7.07E-09							
		Bi210	7.07E-09							
		Po210	7.07E-09							

U235	4.70E-10
Th231	4.70E-10
Pa231	4.70E-10
Ac227	4.70E-10
Th227	4.64E-10
Fr-223	6.49E-12
Ra223	4.70E-10
Po215	4.70E-10
РЬ211	4.70E-10
Bi211	4.70E-10
Po211	1.28E-12
T1207	4.69E-10
Th232	3.45E-08
Ra228	3.45E-08
Ac228	3.45E-08
Th228	3.45E-08
Ra224	3.45E-08
Po216	3.45E-08
Pb212	3.45E-08
Bi212	3.45E-08
Po212	2.21E-08
T1208	1.24E-08

BP	SOIL	

EQUATION: $E = k(0.0032)(U/5)^{1.3}/(M/2)^{1.4}$

١.

ł

(AP-42, Chapter 13.2.4, "Aggregate Handling and Storage Piles", 01/95)

TRANSFER					Zone 1		Zone 2		Zone 3
EMISSIONS	INPUT PARAMETERS:			TSP	PM-10	TSP	PM-10	TSP	PM-10
	Particle Size Multiplier (k)			0.74	0.35	0.74	0.35	0.74	0.35
	Mean Wind Speed - U (mph)	(Teterboro, LCD)		7.5	7.5	7.5	7.5	7.5	7.5
	Material Moisture Content - M (%)			12.0	12.0	12.0	12.0	12.0	12.0
	Tons of Material Dropped	(5 x 5,913 tons))		9925	9925	8800	8800	10840	10840
	EMISSION FACTOR -E (lb/ton):	Zone 1	Zone 2	Zone 3					
	E (TSP) =	3.27E-04	3.27E-04	3.27E-04					
	E (PM-10) =	1.54E-04	1.54E-04	1.54E-04					
	CONTROL EFFICIENCY (%)-	0	0	0					
	ANNUAL EMISSIONS (grams/year):								
	E (TSP) =	1469.9	1303.3	1605.4					
	E (PM-10) =	695.2	616.4	759.3					

RADIONUCLIDE	AVERAGE DETECTED ACTIVITY	(MEASURED)

SOURCE							
CONCENTRATIONS	INPUT PARAMETERS:		U238	U234	U235	Ra226	Th232
	Activity Concentration (S) - pCi/g	(Zone 1)	3.5	N/A	N/A	0.4	2.2
	Activity Concentration (S) - pCi/g	(Zone 2)	64.0	N/A	N/A	26.2	574.0
	Activity Concentration (S) - pCi/g	(Zone 3)	82.0	N/A	N/A	18.9	155.0
	Isotope Contribution to Total Uranium (P) - % ANNUAL RADIOACTIVITY EMISSION RATES (Ci/yr) {		47.249	50.539	2.212	N/A	N/A
			Zone 1	Zone 2	Zone 3	Total	
		U238	2.43E-09	3.95E-08	6.23E-08	1.04E-07	
		Th234	2.43E-09	3.95E-08	6.23E-08	1.04E-07	
		Pa234m	2.43E-09	3.95E-08	6.23E-08	1.04E-07	
		Pa234	3.16E-12	5.13E-11	8.09E-11	1.35E-10	
		U234	2.60E-09	4.22E-08	6.66E-08	1.11E-07	
		Th230	2.60E-09	4.22E-08	6.66E-08	1.11E-07	
		Ra226	2.78E-10	1.62E-08	1.44E-08	3.08E-08	
		Po218	2.78E-10	1.62E-08	1.44E-08	3.08E-08	
		Pb214	2.78E-10	1.61E-08	1.43E-08	3.08E-08	
		Bi214	2.78E-10	1.62E-08	1.44E-08	3.08E-08	
		Po214	2.78E-10	1.61E-08	1.43E-08	3.08E-08	
		Pb210	2.78E-10	1.62E-08	1.44E-08	3.08E-08	
		Bi210	2.78E-10	1.62E-08	1.44E-08	3.08E-08	
		Po210	2.78E-10	1.62E-08	1.44E-08	3.08E-08	
		U235	1.14E-10	1.85E-09	2.91E-09	4.88E-09	
	1	Th231	1.14E-10	1.85E-09	2.91E-09	4.88E-09	
		Pa231	1.14E-10	1.85E-09	2.91E-09	4.88E-09	
		Ac227	1.14E-10	1.85E-09	2.91E-09	4.88E-09	
		Th227	1.12E-10	1.82E-09	2.87E-09	4.81E-09	
		Fr-223	1.57E-12	2.55E-11	4.02E-11	6.73E-11	
		Ra223	1.14E-10	1.85E-09	2.91E-09	4.88E-09	
		Po215	1.14E-10	1.85E-09	2.91E-09	4.88E-09	
		Pb211	1.14E-10	1.85E-09	2.91E-09	4.88E-09	
		Bi211	1.14E-10	1.85E-09	2.91E-09	4.88E-09	
		Po211	3.11E-13	5.04E-12	7.96E-12	1.33E-11	
		T1207	1.14E-10	1.84E-09	2.91E-09	4.86E-09	
		Th232	1.53E-09	3.54E-07	1.18E-07	4.73E-07	
		Ra228	1.53E-09	3.54E-07	1.18E-07	4.73E-07	
		Ac228	1.53E-09	3.54E-07	1.18E-07	4.73E-07	
		Th228	1.53E-09	3.54E-07	1.18E-07	4.73E-07	
		Ra224	1.53E-09	3.54E-07	1.18E-07	4.73E-07	
		Po216	1.53E-09	3.54E-07	1.18E-07	4.73E-07	
		Pb212	1.53E-09	3.54E-07	1.18E-07	4.73E-07	
		Bi212	1.53E-09	3.54E-07	1.18E-07	4.73E-07	

P. A-7 08575.0207 E(B)-03 Rev. 0

)))
~	<i></i>	Po212	9 80E-10	2 27E-07	7.54E-08	3.035.07		У Р. А-8
		T1208	5.50E-10	1.27E-07	4.23E-08	1.70E-07		08575.0207
								E(B)-03
SWALE SOIL	EQUATION: $E = k(0.0032)(U/5)$)^1.3/(M/2)^1.4	(AP-42, Chapter 13.2.4,	(AP-42, Chapter 13.2.4, "Aggregate Handling and Storage Piles", 01/95)				
EXCAVATION			Swale Soil Excay.					
EMISSIONS	INPUT PARAMETERS:		TSP	PM-10				
	Particle Size Multiplier (k)		0.74	0.35				
	Mean Wind Speed - U (mph)	(Teterboro, LCD)	7.5	7.5				
	Material Moisture Content · M (%)		12.0	12.0				
	Tons of Material Dropped	(Assumption)	3375	3375				
	EMISSION FACTOR -E (lb/ton):	Swale Soil Excav.						
	E (TSP) =	3.27E-04						
	E (PM-10) =	1.54E-04						
	CONTROL EFFICIENCY (%)-	0						
	ANNUAL EMISSIONS (grams/year):	:						
	E (TSP) =	499.8						
	E (PM-10) =	236.4						
RADIONUCLIDE	AVERAGE DETECTED ACTIVITY	(MEASURED)						
SOURCE CONCENTRATIONS	INPUT PARAMETERS:		U238	U234	U235	Ra226	Tb232	
	Activity Concentration (S) - pCi/g		6.6	N/A	N/A	0.88	23.8	
	Isotope Contribution to Total Uraniu	ım (P) - %	47.249	50.539	2.212	N/A	N/A	
	ANNUAL RADIOACTIVITY EMISS	ION RATES (Ci/yr)	Swale Soil Excay.					
		U238	1.56E-09					
		Th234	1.56E-09					
		Pa234m	1.56E-09					
		Pa234	2.03E-12					
		U234	1.67E-09					
		Th230	1.67E-09					
		Ra226	2.08E-10					
		Po218	2.08E-10					
		Pb214	2.08E-10					
		Bi214	2.08E-10					
		Po214	2.08E-10					
		Pb210	2.08E-10					

P. A-9 08575.0207 E(B)-03 Rev. 0

1

Bi210 2.08E-10 Po210 2.08E-10 U235 7.30E-11 Th231 7.30E-11 Pa231 7.30E-11 Ac227 7.30E-11 Th227 7.20E-11 Fr-223 1.01E-12 Ra223 7.30E-11 Po215 7.30E-11 Pb211 7.30E-11 Bi211 7.30E-11 Po211 1.99E-13 T1207 7.28E-11 Th232 5.63E-09 Ra228 5.63E-09 Ac228 5.63E-09 Th228 5.63E-09 Ra224 5.63E-09 Po216 5.63E-09 Pb212 5.63E-09 Bi212 5.63E-09 Po212 3.60E-09 T1208 2.02E-09

ł

١