063982-08

DOE/OR/20722-235

M-072

Formerly Utilized Sites Remedial Action Program (FUSRAP) Contract No. DE-AC05-81OR20722

n et se fan de service de la service de En la service de la service

RADIOLOGICAL CHARACTERIZATION REPORT FOR THE RESIDENTIAL PROPERTY AT 17 REDSTONE LANE

2620.22

Lodi, New Jersey

September 1989

Bechtel National, Inc.

063982

Bechtel National, Inc.

Systems Engineers - Constructors

800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

Mail Advess: P.O. Box 350, Oak Ridge, TN 37831-0350 Telex: 3785873

SEP 2 9 1989

Jackson Plaza Tower

U.S. Department of Energy Oak Ridge Operations Post Office Box 2001 Oak Ridge, Tennessee 37831-8723

Attention: Robert G. Atkin Technical Services Division

Subject:

ct: Bechtel Job No. 14501, FUSRAP Project DOE Contract No. DE-AC05-810R20722 Publication of Radiological Characterization Report for seventeen residential properties, four municipa properties, and seven commercial properties in Lodi and Maywood, New Jersey Code: 7315/WBS: 138

Dear Mr. Atkin:

Enclosed is one copy each of the 28 subject published reports for the properties listed in Attachment 1. These reports incorporate all comments received in this review cycle (CCNs 063165, 063327, 062285, and 061568) and are being published with approval of Steve Oldham, as reported in CCN 063868.

Also enclosed (as Attachment 2) is a proposed distribution list for these reports. Please send us any changes to the proposed distribution list at your earliest convenience so we may distribute the reports.

BNI would like to express our thanks to Mr. Oldham for his cooperation and efforts to review these drafts in an accelerate manner. His efforts have allowed us to publish these reports or schedule. If you have any questions about these documents, please call me at 576-4718.

Very truly yours,

R. C. Robertson

Project Manager - FUSRAP

CONCURRENCE

RCR:wfs:1756x Enclosure: As stated

cc: J. D. Berger, ORAU (w/e)
N. J. Beskid, ANL (w/e)

DOE/OR/20722-235

١,

.

RADIOLOGICAL CHARACTERIZATION REPORT

FOR THE RESIDENTIAL PROPERTY AT

17 REDSTONE LANE

LODI, NEW JERSEY

SEPTEMBER 1989

Prepared for

UNITED STATES DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OFFICE Under Contract No. DE-AC05-810R20722

By

N. C. Ring, D. J. Whiting, and W. F. Stanley Bechtel National, Inc. Oak Ridge, Tennessee Bechtel Job No. 14501

TABLE OF CONTENTS

h------1

÷....,

·____

÷____

.

.

			Page
List	of F	ligures	iv
List	List of Tables		
Abbr	reviat	ions	v
1.0	Intr	oduction and Summary	1
	1.1	Introduction	1
	1.2	Purpose	3
	1.3	Summary	3
	1.4	Conclusions	5
2.0	Site	History	7
	2.1	Previous Radiological Surveys	8
	2.2	Remedial Action Guidelines	9
3.0	Heal	th and Safety Plan	12
	3.1	Subcontractor Training	12
Ň	3.2	Safety Requirements	12
4.0	Char	acterization Procedures	14
	4.1	Field Radiological Characterization	14
		4.1.1 Measurements Taken and Methods Used	14
		4.1.2 Sample Collection and Analysis	17
	4.2	Building Radiological Characterization	19
5.0	Char	acterization Results	22
	5.1	Field Radiological Characterization	22
	5.2	Building Radiological Characterization	26
Refe	rence	S	35
Appe	ndix	A - Geologic Drill Logs for 17 Redstone Lane	A-1

iii

*

٩.

LIST OF FIGURES

•

-

,

S.

~

×...

×.--

`.....

Figure	Title	Page
1-1	Location of Lodi Vicinity Properties	2
1-2	Location of 17 Redstone Lane	4
4-1	Borehole Locations at 17 Redstone Lane	16
4-2	Surface and Subsurface Soil Sampling Locations at 17 Redstone Lane	18
4-3	Gamma Exposure Rate Measurement Locations at 17 Redstone Lane	21
5-1	Areas of Subsurface Contamination at 17 Redstone Lane	25

LIST OF TABLES

<u>Table</u>	Title	<u>Page</u>
2-1	Summary of Residual Contamination Guidelines for the Lodi Vicinity Properties	10
5-1	Surface and Subsurface Radionuclide Concentrations in Soil for 17 Redstone Lane	28
5-2	Downhole Gamma Logging Results for 17 Redstone Lane	29
5-3	Gamma Radiation Exposure Rates for 17 Redstone Lane	34

ABBREVIATIONS

Cm	centimeter
cm^2	square centimeter
cpm	counts per minute
dpm	disintegrations per minute
ft	foot
h	hour
in.	inch
km ²	square kilometer
L	liter
L/min	liters per minute
m	meter
m ²	square meter
MeV	million electron volts
µR/h	microroentgens per hour
mi	mile
mi ²	square mile
min	minute
mrad/h	millirad per hour
mrem	millirem
mrem/yr	millirem per year
pCi/g	picocuries per gram
pCi/L	picocuries per liter
WL	working level
yd	yard
yd ³	cubic yard

v

11

1.0 INTRODUCTION AND SUMMARY

This section provides a brief description of the history and background of the Maywood site and its vicinity properties. Data obtained from the radiological characterization of this vicinity property are also presented.

1.1 <u>INTRODUCTION</u>

The 1984 Energy and Water Appropriations Act authorized the U.S. Department of Energy (DOE) to conduct a decontamination research and development project at four sites, including the site of the former Maywood Chemical Works (now owned by the Stepan Company) and its vicinity properties. The work is being administered under the Formerly Utilized Sites Remedial Action Program (FUSRAP) under the direction of the DOE Division of Facility and Site Decommissioning Projects. Several residential, commercial, and municipal properties in Lodi, New Jersey, are included in FUSRAP as vicinity properties. Figure 1-1 shows the location of the Lodi vicinity properties in relation to the former Maywood Chemical Works.

The U.S. Government initiated FUSRAP in 1974 to identify, clean up, or otherwise control sites where low-activity radioactive contamination (exceeding current guidelines) remains from the early years of the nation's atomic energy program or from commercial operations that resulted in conditions Congress has mandated that DOE remedy (Ref. 1).

FUSRAP is currently being managed by DOE Oak Ridge Operations. As the Project Management Contractor for FUSRAP, Bechtel National, Inc. (BNI) is responsible to DOE for planning, managing, and implementing FUSRAP.

1

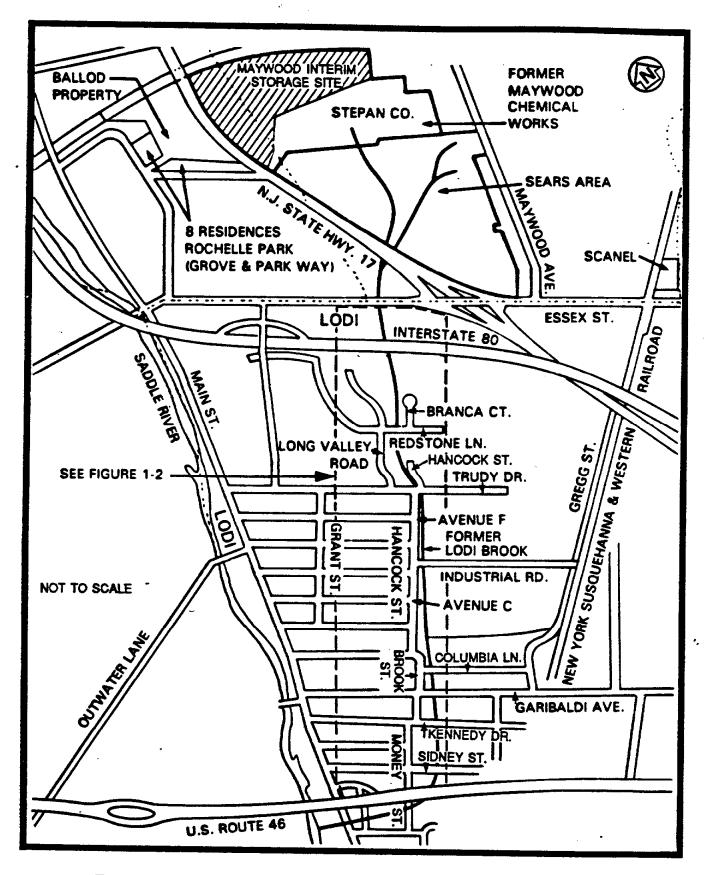


FIGURE 1-1 LOCATION OF LODI VICINITY PROPERTIES

١,

1.2 PURPOSE

The purpose of the 1986 survey performed by BNI was to locate the horizontal and vertical boundaries of radionuclide concentrations exceeding remedial action guidelines.

1.3 <u>SUMMARY</u>

This report details the procedures and results of the radiological characterization of the property at 17 Redstone Lane (Figure 1-2) in Lodi, New Jersey, which was conducted in October and December 1986.

Ultimately, the data generated during the radiological characterization will be used to define the complete scope of remedial action necessary to release the site.

This characterization confirmed that thorium-232 is the primary radioactive contaminant at this property. Results of surface soil samples for 17 Redstone Lane showed maximum concentrations of thorium-232 and radium-226 to be 3.1 and 1.2 pCi/g, respectively. The maximum concentration of uranium-238 in surface soil samples was less than 8.8 pCi/g.

Subsurface soil sample concentrations ranged from 1.5 to 7.0 pCi/g for thorium-232 and from 0.4 to 1.0 pCi/g for radium-226. The average background level in this area for both radium-226 and thorium-232 is 1.0 pCi/g. The concentrations of uranium-238 in subsurface soil samples ranged from 3.1 to less than 9.6 pCi/g. Because the major contaminants at the vicinity properties are thorium and radium, the decontamination guidelines provide the appropriate guidance for the cleanup activities. DOE believes that these guidelines are conservative for

3

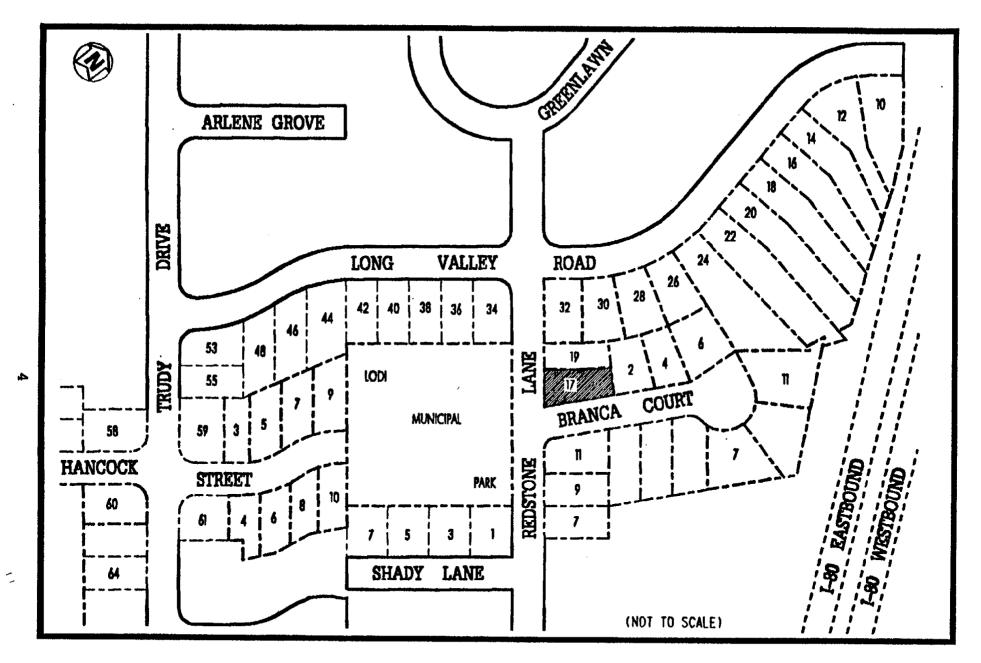


FIGURE 1-2 LOCATION OF 17 REDSTONE LANE

considering potential adverse health effects that might occur in the future from any residual contamination. The dose contributions from uranium and any other radionuclides not numerically specified in these guidelines are not expected to be significant following decontamination. In addition, the vicinity properties will be decontaminated in a manner so as to reduce future doses to levels that are as low as reasonably achievable (ALARA) (Ref. 2).

Soil analysis data for this property did not indicate surface contamination. Subsurface investigation by gamma logging indicated contamination to a depth of 2.59 m (8.5 ft).

Exterior gamma radiation exposure rates ranged from 10 to 14 μ R/h, including background. The indoor measurement showed a rate of 6 μ R/h, including background. The radon-222 measurements inside the residence indicated concentrations that ranged from less than the lower limit of detection to 0.5 pCi/L, which is within the DOE guideline of 3.0 pCi/L.

Measurements for radon daughters were both 0.002 working levels (WL), and measurements for thoron daughters were both 0.003 WL.

All data tables for this property appear at the end of this report.

1.4 <u>CONCLUSIONS</u>

Evaluation of data collected, analyses performed, and historical documentation reviewed indicates the presence of radiological contamination on the property located at 17 Redstone Lane. This contamination is primarily subsurface contamination ranging from a depth of 1.22 m (4.0 ft) to 1.98 m (6.5 ft). In addition, the contamination appears to

5

extend beneath the residence as well as into the street in front of the residence. The total affected area is estimated to be approximately 99 percent of the property. These conclusions are supported by documentation that establishes the presence of the former channel of Lodi Brook in this area. This channel is the suspected transport mechanism for the radiological contamination.

6

2.0 SITE HISTORY

The Maywood Chemical Works was founded in 1895. The company began processing thorium from monazite sand in 1916 (during World War I) for use in manufacturing gas mantles for various lighting devices. The company continued this work until 1956. Process wastes from manufacturing operations were pumped to two areas surrounded by earthen dikes on property west of the plant. Subsequently, some of the contaminated wastes migrated onto adjacent and vicinity properties.

In 1928 and again between 1944 and 1946, some of the residues from the processing operations were moved from the company's property and used as mulch and fill in nearby low-lying areas. The fill material consisted of tea and coca leaves mixed with other material resulting from operations at the plant. Some fill material apparently contained thorium process wastes (Ref. 3).

Uncertainty exists as to how the properties in Lodi were contaminated. According to an area resident, fill from an unknown source was brought to Lodi and spread over large portions of the previously low-lying and swampy area. For several reasons, however, a more plausible explanation is that the contamination migrated along a drainage ditch originating on the Maywood Chemical Works property. First, it can be seen from photographs and tax maps of the area that the course of a previously existing stream known as Lodi Brook, which originated at the former Maywood Chemical Works, generally coincides with the path of contamination in Lodi. The brook was subsequently replaced by a storm drain system as the area was developed. Second, samples taken from Lodi properties indicate elevated concentrations of a series of elements known as rare earths. Rare earth elements are

7

typically found in monazite sands, which also contain thorium. This type of sand was feedstock at the Maywood Chemical Works, and elevated levels are known to exist in the by-product of the extraction process. Third, the ratio of thorium to other radionuclides found on these Lodi properties is comparable to the ratio found in contaminated material on other properties in Lodi (Ref. 4). And finally, long-time residents of Lodi recalled chemical odors in and around the brook in Lodi and steam rising off the water. These observations suggest that discharges of contaminants occurred upstream.

The Stepan Chemical Company (now called the Stepan Company) purchased Maywood Chemical Works in 1959. The Stepan Company itself has never been involved in the manufacture or processing of any radioactive materials (Ref. 5).

2.1 PREVIOUS RADIOLOGICAL SURVEYS

Numerous surveys of the Maywood site and its vicinity properties have been conducted. Among the past surveys, three that are pertinent to this vicinity property are detailed in this section.

January 1981--The Nuclear Regulatory Commission (NRC) directed that a survey be conducted of the Stepan Company property and its vicinity properties in January 1981. Using the Stepan Company plant as the center, a 10.3-km² (4-mi²) aerial survey conducted by the EG&G Energy Measurements Group, which identified anomalous concentrations of thorium-232 to the north and south of the Stepan Company property. The Lodi vicinity properties were included in this survey (Ref. 6).

8

1.1

June 1984--In June 1984, Oak Ridge National Laboratory (ORNL) conducted a "drive-by" survey of Lodi using its "scanning van." Although not comprehensive, the survey indicated areas requiring further investigation (Ref. 7).

<u>September 1986</u>--At the request of DOE, ORNL conducted radiological surveys of the vicinity properties in Lodi in September 1986 to determine which properties contained radioactive contamination in excess of DOE guidelines and would, therefore, require remedial action (Ref. 8).

2.2 <u>REMEDIAL ACTION GUIDELINES</u>

Table 2-1 summarizes the DOE guidelines for residual contamination. The thorium-232 and radium-226 limits listed in Table 2-1 will be used to determine the extent of remedial action required at the vicinity properties. DOE developed these guidelines to be consistent with the guidelines established by the U.S. Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action Program.

9

BASIC DOSE LIMITS

The basic limit for the annual radiation dose received by an individual member of the general public is 100 mrem/yr.

SOIL GUIDELINES

Radionuciide	Soil Concentration (pCl/g) Above Background ^{a,b,c}
Radium-226 Radium-228 Thorium-230 Thorium-232	5 pCi/g when averaged over the first 15 cm of soil below the surface; 15 pCi/g when averaged over any 15-cm-thick soil layer below the surface layer.

Other Radionuclides

Soil guidelines will be calculated on a site-specific basis using the DOE manual developed for this use.

STRUCTURE GUIDELINES

Airborne Radon Decay Products

Generic guidelines for concentrations of airborne radon decay products shall apply to existing occupied or habitable structures on private property that has no radiological restrictions on its use; structures that will be demolished or buried are excluded. The applicable generic guideline (40 CFR 192) is: In any occupied or habitable building, the objective of remedial action shall be, and reasonable effort shall be made to achieve, an annual average (or equivalent) radon decay product concentration (including background) not to exceed 0.02 WL^d. In any case, the radon decay product concentration (including background) shall not exceed 0.03 WL. Remedial actions are not required in order to comply with this guideline when there is reasonable assurance that residual radioactive materials are not the cause.

External Gamma Radiation

The average level of gamma radiation inside a building or habitable structure on a site that has no radiological restrictions on its use shall not exceed the background level by more than 20 µR/h.

Indoor/Outdoor Structure Surface Contamination

	Allowable Surface Residual Contamination ^e (dpm/100 cm ²)		
Radionucilde ¹	Average ^{g,h}	Maximum ^{h,i}	Removablehj
Transuranics, Ra-226, Ra-228, Th-230, Th-228 Pa-231, Ac-227, I-125, I-129	100	300	20
Th-Natural, Th-232, Sr-90, Ra-223, Ra-224 U-232, I-126, I-131, I-133	1,000	3,000	200
U-Natural, U-235, U-238, and associated decay products	5,000 α	15,000 a	1,000 α
Beta-gamma emitters (radionuclides with decay modes other than alpha emission or spontaneous fission) except Sr-90 and others noted above	5,000 B - y	15,000 8 - γ	1,000 8 - γ

480-0650.1

TABLE 2-1 (CONTINUED)

^aThese guidelines take into account ingrowth of radium-226 from thorium-230 and of radium-228 from thorium-232, and assume secular equilibrium. If either thorium-230 and radium-226 or thorium-232 and radium-228 are both present, not in secular equilibrium, the guidelines apply to the higher concentration. If other mixtures of radionuclides occur, the concentrations of individual radionuclides shall be reduced so that 1) the dose for the mixtures will not exceed the basic dose limit, or 2) the sum of ratios of the soil concentration of each radionuclide to the allowable limit for that radionuclide will not exceed 1 ("unity").

^bThese guidelines represent allowable residual concentrations above background averaged across any 15-cm-thick layer to any depth and over any contiguous 100-m² surface area.

^CLocalized concentrations in excess of these limits are allowable, provided that the average concentration over a 100-m² area does not exceed these limits. In addition, every reasonable effort shall be made to remove any source of radionuclide that exceeds 30 times the appropriate soil limit, regardless of the average concentration in the soil.

^dA working level (WL) is any combination of short-lived radon decay products in 1 liter of air that will result in the ultimate emission of 1.3 x 105 MeV of potential alpha energy.

As used in this table, dpm (disintegrations per minute) means the rate of emission by radioactive material as determined by correcting the counts per minute observed by an appropriate detector for background, efficiency, and geometric factors associated with the instrumentation.

Where surface contamination by both alpha- and beta-gamma-emitting radionuclides exists, the limits established for alpha- and beta-gamma-emitting radionuclides should apply independently.

⁹Measurements of average contamination should not be averaged over more than 1 m². For objects of less surface area, the average shall be derived for each such object.

^hThe average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 mrad/h and 1.0 mrad/h, respectively, at 1 cm.

The maximum contamination level applies to an area of not more than 100 cm².

The amount of removable radioactive material per 100 cm² of surface area should be determined by wiping that area with dry filter or soft absorbent paper, applying moderate pressure, and measuring the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contamination on objects of surface area less than 100 cm² is determined, the activity per unit area should be based on the actual area and the entire surface should be wiped. The numbers in this column are maximum amounts.

11

١,

3.0 HEALTH AND SAFETY PLAN

BNI is responsible for protecting the health of personnel assigned to work at the site. As such, all subcontractors and their personnel were required to comply with the provisions of BNI health and safety requirements and as directed by the on-site BNI Health and Safety Officer.

3.1 SUBCONTRACTOR TRAINING

Before the start of work, all subcontractor personnel attended an orientation session presented by the BNI Health and Safety Officer to explain the nature of the material to be encountered in the work and the personnel monitoring and safety measures that are required.

3.2 SAFETY REQUIREMENTS

Subcontractor personnel complied with the following BNI requirements:

- Bioassay--Subcontractor personnel submitted bioassay samples before or at the beginning of on-site activity, upon completion of the activity, and periodically during site activities as requested by BNI.
- Protective Clothing/Equipment--Subcontractor personnel were required to wear the protective clothing/equipment specified in the subcontract or as directed by the BNI Health and Safety Officer.
- Dosimetry--Subcontractor personnel were required to wear and return daily the dosimeters and monitors issued by BNI.
- Controlled Area Access/Egress--Subcontractor personnel and equipment entering areas where access and egress were controlled for radiation and/or chemical safety purposes were surveyed by the BNI Health and Safety Officer (or personnel representing BNI) for contamination before leaving those areas.

 Medical Surveillance--Upon written direction from BNI, subcontractor personnel who work in areas where hazardous chemicals might exist were given a baseline and periodic health assessment defined in BNI's Medical Surveillance Program.

Radiation and/or chemical safety surveillance of all activities related to the scope of work was under the direct supervision of personnel representing BNI.

Health and safety-related requirements for all activities involving exposure to radiation, radioactive material, chemicals, and/or chemically contaminated materials and other associated industrial safety hazards are generated in compliance with applicable regulatory requirements and industry-wide standards. Copies of these requirements are located at the BNI project office for use by project personnel.

4.0 CHARACTERIZATION PROCEDURES

A master grid was established by the surveyor. BNI's radiological support subcontractor, Thermo Analytical/Eberline (TMA/E), established a grid on individual properties. The size of the grid blocks was adjusted to characterize each property adequately. The grid origin allows the grid to be reestablished during remedial action and is correlated with the New Jersey state grid system. All data correspond to coordinates on the characterization grid. The grid with the east and north coordinates is shown on all figures included in Sections 4.0 and 5.0 of this report.

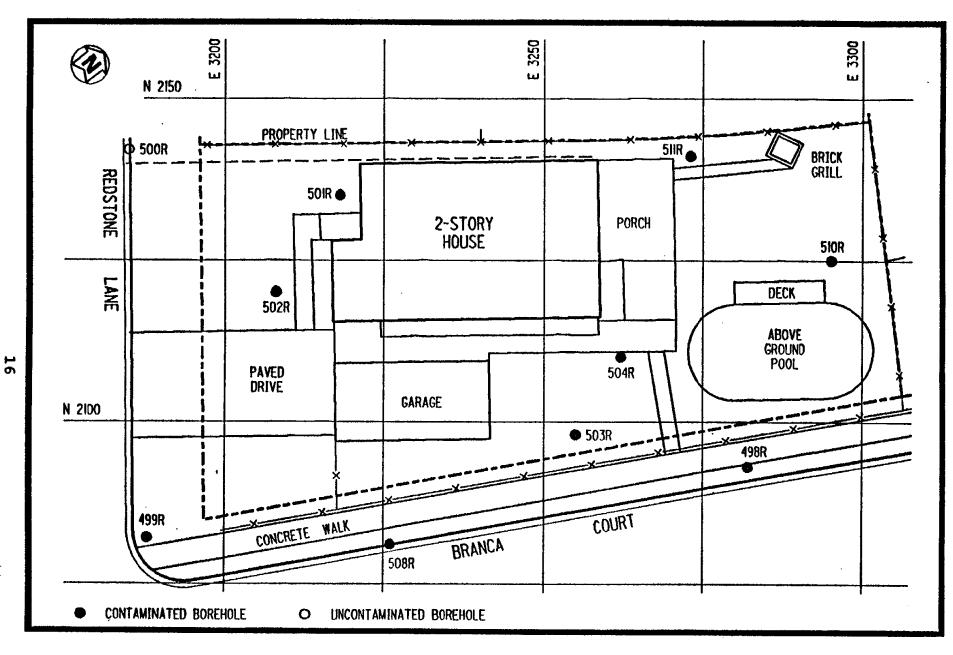
4.1 FIELD RADIOLOGICAL CHARACTERIZATION

This section provides a description of the instrumentation and methodologies used to obtain exterior surface and subsurface measurements during radiological characterization of this project.

4.1.1 Measurements Taken and Methods Used

An initial walkover survey was performed using an unshielded gamma scintillation detector [5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide probe] to identify areas of elevated radionuclide activity. Near-surface gamma measurements taken using a cone-shielded gamma scintillation detector were also used to determine areas of surface contamination. The shielded detector ensured that the majority of the radiation detected by the instrument originated from the ground directly beneath the unit. Shielding against lateral gamma flux, or shine, from nearby areas of contamination minimized potential sources of error in the measurements. The measurements were taken 30.4 cm (12 in.) above the ground at the intersections of

14


3.0-m (10-ft) grid lines. The shielded detector was calibrated at the Technical Measurements Center (TMC) in Grand Junction, Colorado, to provide a correlation of counts per minute (cpm) to picocuries per gram (pCi/g). This calibration demonstrated that approximately 11,000 cpm corresponds to the DOE guideline of 5 pCi/g plus local average background of 1 pCi/g for thorium-232 in surface soils (Ref. 9).

A subsurface investigation was conducted to determine the depth to which the previously identified surface contamination extended and to locate subsurface contamination where there was no surface manifestation. The subsurface characterization consisted of drilling ten boreholes (Figure 4-1) [using either a 7.6-cm- (3-in.-) or 15.2-cm-(6-in.-) diameter auger bit], and gamma logging them. The boreholes were drilled to depths determined in the field by the radiological and geological support representatives.

The downhole gamma logging technique was used because the procedure can be accomplished in less time than collecting soil samples, and the need for analyzing these samples in a laboratory is eliminated. A 5.0- by 5.0-cm (2- by 2-in.) sodium iodide gamma scintillation detector was used to perform the downhole logging. The instrument was calibrated at TMC where it was determined that a count rate of approximately 40,000 cpm corresponds to the 15-pCi/g subsurface contamination guideline for thorium-232. This relationship has also been corroborated by results from previous characterizations where thorium-232 was found (Ref. 9).

Gamma radiation measurements were taken at 15.2-cm (6-in.) vertical intervals to determine the depth and concentration of the contamination. The gamma-logging data were reviewed

15

ł

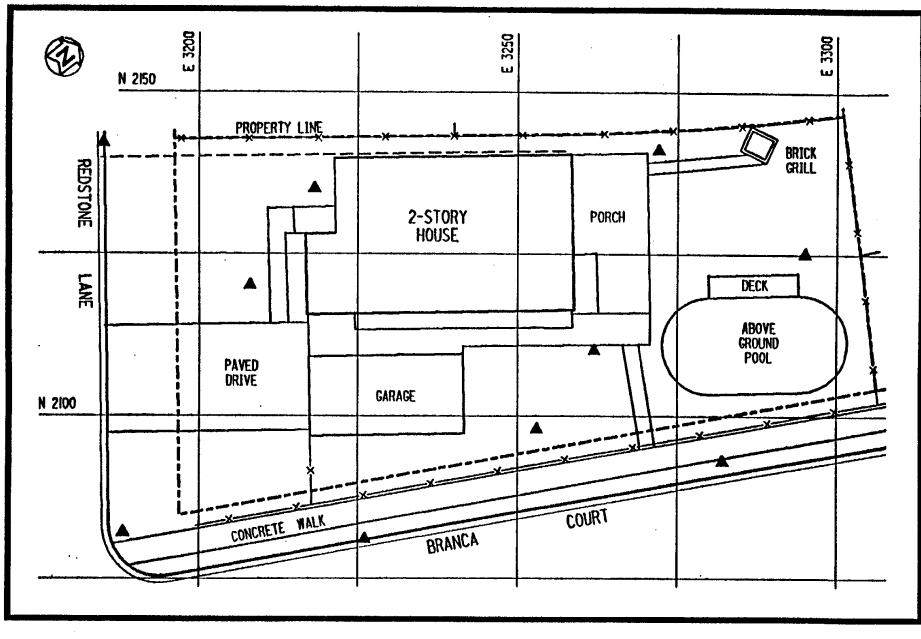
FIGURE 4-1 BOREHOLE LOCATIONS AT 17 REDSTONE LANE

**** *42,161 N38#9837.DGN

, ME

7

(


to identify trends, whether or not concentrations exceeded the guidelines.

4.1.2 Sample Collection and Analysis

To identify surface areas where the level of contamination exceeded the DOE guideline of 5 pCi/g for thorium-232, areas with measurements of more than 11,000 cpm were plotted. Using these data as well as data from previous surveys (Refs. 5, 6, 7, and 8), the locations of biased surface soil samples were selected to better define the limits of contamination. Surface soil samples were taken at ten locations (Figure 4-2) and analyzed for thorium-232. uranium-238, and radium-226. Each sample was dried, pulverized, and counted for 10 min using an intrinsic germanium detector housed in a lead counting cave lined with cadmium and copper. The pulse height distribution was sorted using a computer-based, multichannel analyzer. Radionuclide concentrations were determined by comparing the gamma spectrum of each sample with the spectrum of a certified counting standard for the radionuclide of interest.

Subsurface soil samples were collected from ten locations (Figure 4-2) using the side-wall sampling method and were analyzed to compare laboratory soil sample results to downhole gamma radiation measurements. A cup or can attached to a steel pipe or wooden stake was inserted into the borehole and used to scrape samples off the side of the borehole at a specified depth. The subsurface soil samples were analyzed for radium-226, uranium-238, and thorium-232 in the same manner as the surface soil samples.

17

.

ŗ

FIGURE 4-2 SURFACE AND SUBSURFACE SOIL SAMPLING LOCATIONS AT 17 REDSTONE LANE

81

7

. , ...

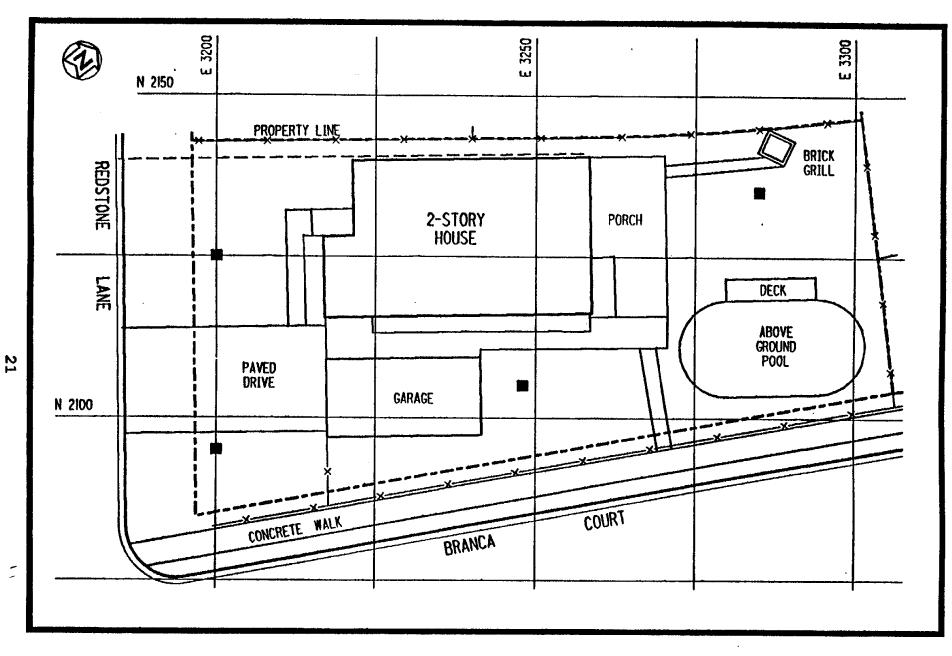
1

ſ

4.2 BUILDING RADIOLOGICAL CHARACTERIZATION

After evaluating previous radiological survey data as well as data from this characterization, it was suspected that contamination might be present under the foundation of the residence. A radon measurement was obtained to verify the presence of contaminated material under the residence and to estimate potential occupational exposures during future remedial actions.

Indoor radon measurements were made using the Tedlar bag method. Samples were collected by pumping air into a Tedlar bag at a rate of approximately 2 L/min. The air sample was transferred directly into a scintillation cell with an interior coating of zinc sulfide and an end window for viewing the scintillations. Analysis of the sample was simplified by allowing the radon decay products to build up over time. This method allowed all the radon decay products to come into secular equilibrium with the radon. The scintillation cell was placed in contact with a photomultiplier tube, and the scintillations were counted using standard nuclear counting instrumentation.


Indoor air samples were collected to determine a WL for radon and thoron daughters. To measure radon daughters, an air sample was collected for exactly 5 min through a 0.45-micron filter at a rate of 11 L/min for a total sample volume of 55 L. Alpha particle activity on the filter paper was counted from 40 to 90 min after sampling. An alpha scintillation detector coupled to a count-rate meter or digital scaler was used. Measurements for thoron daughters were made using the same method as for radon daughters with the exception of the time between collection of the air sample and counting of the alpha particle activity. In the case of thoron daughters, the sample was allowed to age for

19

at least 5 h after sampling before alpha activity was counted. This elapsed time allowed radon daughters, which may have been present with the thoron daughters, to decay sufficiently so as not to interfere in calculating the WL for thoron daughters.

Exterior gamma exposure rate measurements were made at four locations throughout the property grid system and at one location inside the residence. To obtain these measurements, either a 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector designed to detect gamma radiation only or a pressurized ionization chamber (PIC) was used. Measurement locations are shown in Figure 4-3. The PIC instrument has a response to gamma radiation that is proportional to exposure in roentgens. Α conversion factor for gamma scintillation to the PIC was established through a correlation of these two measurements at four locations in the vicinity of the property. The unshielded gamma scintillation detector readings were then used to estimate gamma exposure rates for each location. These measurements were taken 1 m (3 ft) above the ground. The locations were determined to be representative of the entire property. Interior measurements are generally obtained with the gamma scintillation instrument rather than the PIC because of its smaller size and the desire to minimize the technician's time inside the residence.

20

ſ

1

FIGURE 4-3 GAMMA EXPOSURE RATE MEASUREMENT LOCATIONS AT 17 REDSTONE LANE

ł

12.163 M38W9837.DGN

JKL

5.0 CHARACTERIZATION RESULTS

Radiological characterization results are presented in this section. The data included represent exterior surface and subsurface radiation measurements and interior radiation measurements.

5.1 FIELD RADIOLOGICAL CHARACTERIZATION

Near-surface gamma radiation measurements on the property ranged from 3,100 cpm to approximately 8,000 cpm. The average background level for this area is 5,000 cpm. A measurement of 11,000 cpm is approximately equal to the DOE guideline for thorium-232 of 5 pCi/g above background for surface soil contamination. Using this correlation, the near-surface gamma measurements were used to determine the extent of surface contamination and the basis for selecting the locations of soil samples. No areas of surface contamination were indicated by near-surface gamma measurements.

Surface soil samples [depths from 0.0 to 15.2 cm (0.5 in.)] were taken at ten locations on the property (Figure 4-2). These samples were analyzed for thorium-232, uranium-238, and radium-226. The concentrations in these samples ranged from less than 5.0 to less than 8.8 pCi/g for uranium-238, from 1.2 to 3.1 pCi/g for thorium-232, and from 0.5 to 1.2 pCi/g for radium-226. Analytical results for surface soils are provided in Table 5-1; these data showed that concentrations of thorium-232 do not exceed DOE guidelines (5 pCi/g plus background of 1 pCi/g for surface soils) with a maximum concentration of 3.1 pCi/g. Use of the "less than" (<) notation in reporting results indicates that the radionuclide was not present in concentrations that are quantitative with the instruments and techniques used. The

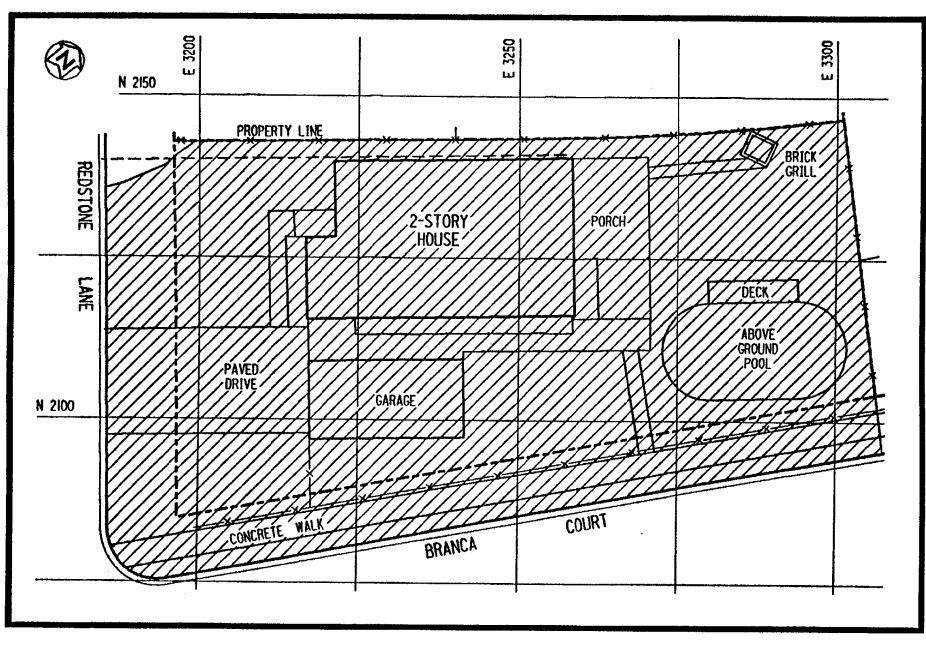
22

"less than" value represents the lower bound of the quantitative capacity of the instrument and technique used. The "less than" value is based on various factors, including the volume, size, and weight of the sample; the type of detector used; the counting time; and the background count rate. The actual concentration of the radionuclide is less than the value indicated. In addition, since radioactive decay is a random process, a correlation between the rate of disintegration and a given radionuclide concentration cannot be precisely established. For this reason, the exact concentration of the radionuclide cannot be determined. As such, each value that can be quantitatively determined has an associated uncertainty term (\pm) , which represents the amount by which the actual concentration can be expected to differ from the value given in the table. The uncertainty term has an associated confidence level of 95 percent.

Thorium-232, the primary contaminant at the site, is the radionuclide most likely to exceed a specific DOE quideline in soil. Parameters for soil sample analysis were selected to ensure that the thorium-232 would be detected and measured at concentrations well below the lower guideline value of 5 pCi/g in excess of background level. Radionuclides of the uranium series, specifically uranium-238 and radium-226, are also potential contaminants but at lower concentrations than thorium-232. Therefore, these radionuclides (considered secondary contaminants) would not be present in concentrations in excess of guidelines unless thorium-232 was also present in concentrations in excess of its guideline level. Parameters selected for the thorium-232 analyses also provide detection sensitivities for uranium-238 and radium-226 that demonstrate that concentrations of these radionuclides are below guidelines. However, because of the relatively low gamma photon abundance of uranium-238, many of the uranium-238 concentrations were below the detection

<u>ب</u>

23


sensitivity of the analytical procedure; these concentrations are reported in the data tables as "less than" values. To obtain more sensitive readings for the uranium-238 radionuclide with these analytical methods, much longer instrument counting times would be required than were necessary for analysis of thorium-232, the primary contaminant.

Analytical results for subsurface soil samples are given in Table 5-1, and gamma logging data are given in Table 5-2. The results in Table 5-2 showed a range from 8,000 cpm to 102,000 cpm. A measurement of 40,000 cpm is approximately equal to the DOE guideline for subsurface contamination of 15 pCi/g. Analyses of subsurface soil samples [taken at depths from 15.2 to 30.4 cm (0.5 to 1.0 ft)] indicated uranium-238 concentrations ranging from 3.1 to less than 9.6 pCi/g, thorium-232 concentrations ranging from 1.5 to 7.0 pCi/g, and radium-226 concentrations ranging from 0.4 to 1.0 pCi/g.

On the basis of near-surface gamma radiation measurements, surface and subsurface soil sample analyses, and downhole gamma logging, contamination on this property is believed to consist primarily of subsurface contamination at depths ranging from 0.60 m (2.0 ft) to 2.59 m (8.5 ft). The areas of subsurface contamination are shown in Figure 5-1. The subsurface contamination appears to extend beneath the residence as well as into the street in front of the property.

It is apparent from review of historical documentation (e.g., aerial photographs of the area, interviews with local residents, and previous radiological surveys) that the subsurface contamination on this property lies along the former channel of Lodi Brook and its associated floodplain.

24

I TELEPTICE CELEVICE CELE

1

FIGURE 5-1 AREAS OF SUBSURFACE CONTAMINATION AT 17 REDSTONE LANE •

~- F42,163 M38W9837,DGN

JK

-

N 5

ſ

- [

The contamination on this property is similar to contamination found on residential properties in close proximity to this property. It has been established that the Lodi Brook channel through these neighboring properties once occupied locations connecting to those where stream sediments were found at 17 Redstone Lane. Thus, the elevated gamma readings shown on gamma logs from boreholes drilled on this property serve as further indication of the suspected mechanism of transport for radiological contamination (i.e., stream deposition from Lodi Brook).

The vertical and horizontal limits of contamination as determined by this characterization effort are being evaluated to determine the volume of contaminated material that will require remedial action. To develop this estimate, BNI will consider the location of the contamination, construction techniques, and safety procedures.

5.2 BUILDING RADIOLOGICAL CHARACTERIZATION

Results of two indoor radon measurements using the Tedlar bag method indicated concentrations, which ranged from less than the lower limit of detection to 0.5 pCi/L. This measurement was substantially less than the applicable DOE guideline of 3.0 pCi/L above background (Ref. 10).

Results of two measurements for radon daughters were both 0.002 WL. These results were substantially less than the applicable generic guideline detailed in the Code of Federal Regulations, 40 CFR 192 (Ref. 10), which states that an annual average (or equivalent) radon decay product concentration not exceed 0.02 WL.

26

Results of measurements for thoron daughters were both 0.001 WL. The generic guideline is more restrictive for radon-222 (radon) than for radon-220 (thoron) according to the National Council on Radiological Protection [see NCRP Report No. 50 (Ref. 11), which was used as the guideline for thoron daughter measurements].

Exterior gamma radiation exposure rate measurements ranged from 10 to 14 μ R/h, including background. These results can be found in Table 5-3. Assuming the resident spends 36 hours per week for 52 weeks per year (1,872 hours or 8 hours per day for 2 days per week and 4 hours per day for 5 days per week) in the yard, the average exterior exposure rate of 12 μ R/h would result in a yearly dose of 5 mrem above background (after subtracting average background of 9 μ R/h; Ref. 12). The DOE guideline is 100 mrem/yr above background.

The indoor exposure rate measurement was 6 μ R/h, including background (Table 5-3). The indoor exposure rate does not exceed average background. For comparison, the DOE guideline for indoor exposure rate is 20 μ R/h.

Based on the above information, the exposure rates and doses at this property are within DOE guidelines. Further, it should be emphasized that natural background exposure rates vary widely across the United States and are often significantly higher than average background for this area.

27

SURFACE AND SUBSURFACE RADIONUCLIDE CONCENTRATIONS IN SOIL

<u>_Coord</u>	<u>inates^a</u>	Depth	Conç	entration (pCi/g ±	2 sigma)
East	North	(ft)	Uranium-238	Radium-226	Thorium-23
3185	2142	0.0 - 0.5	< 8.8	< 1.0	2.1 ± 0.0
3185	2142	0.5 - 1.0	< 6.4	1.0 ± 0.4	2.3 ± 0.7
3188	2082	0.0 - 0.5	< 7.4	0.7 ± 0.3	2.3 ± 0.9
3188	2082	0.5 - 1.0	< 6.0	1.0 ± 0.4	1.5 ± 0.4
3208	2120	0.0 - 0.5	< 7.4	1.1 ± 0.5	2.0 ± 0.0
3208	2120	0.5 - 1.0	< 7.7	1.0 ± 0.1	6.5 ± 1.4
3218	2135	0.0 - 0.5	< 8.6	1.0 ± 0.5	3.1 ± 0.2
3218	2135	0.5 - 1.0	< 9.2	1.0 ± 0.3	7.0 ± 1.0
3226	2081	0.0 - 0.5	< 5.0	0.5 ± 0.2	< 2.1
3226	2081	0.5 - 1.0	< 5.5	0.4 ± 0.2	1.5 ± 0.3
3255	2098	0.0 - 0.5	< 7.8	1.1 ± 0.04	1.2 ± 1.0
3255	2098	0.5 - 1.0	< 7.7	0.9 ± 0.5	6.0 ± 0.8
326 2	2110	0.0 - 0.5	< 5.1	1.2 ± 0.03	1.5 ± 0.6
3262	2110	0.5 - 1.0	< 6.8	1.0 ± 0.01	2.1 ± 0.3
3273	2141	0.0 - 0.5	< 6.1	< 0.9	2.0 ± 0.5
3273	2141	0.5 - 1.0	3.1 ± 1.1	0.7 ± 0.1	< 2.5
3282	2093	0.0 - 0.5	< 7.0	1.0 ± 0.3	1.6 ± 0.9
3282	2093	0.5 - 1.0	< 5.5	0.9 ± 0.2	3.1 ± 0.8
3295	2125	0.0 - 0.5	< 7.4	0.9 ± 0.3	1.7 ± 0.1
3295	2125	0.5 - 1.0	< 9.6	0.9 ± 0.3	5.6 ± 1.1

FOR 17 REDSTONE LANE

^aSampling locations are shown in Figure 4-2.

•

-

TABLE 5-2

DOWNHOLE GAMMA LOGGING RESULTS

FOR 17 REDSTONE LANE

Page 1 of 5

···· .

~--

`____

÷...-

<u>Coordi</u> East	nates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)	
<u>Borehole</u>	<u>500R</u> d			
3185 3185 3185 3185 3185 3185 3185 3185	2142 2142 2142 2142 2142 2142 2142 2142	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0	14000 17000 18000 14000 15000 15000 14000 16000 16000 20000 17000 13000	
3185 3185	2142 2142 2142	6.5 7.0	14000 13000	
Borehole				
3188 3188 3188 3188 3188 3188 3188 3188	2082 2082 2082 2082 2082 2082 2082 2082	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5	13000 14000 16000 17000 15000 22000 25000 30000 39000 46000 34000 32000 20000 11000	
Borehole 502R ^d				
3208 3208 3208	2120 2120 2120	0.5 1.0 1.5	13000 16000 23000	

29

TABLE 5-2

٠

(continued)

Page 2 of 5

·____

·

ł

`___

۲.

~---

*ن*ب

·____

- __

1

.....

Υ.

<u> Coord</u> East	inates ^a North	Depth ^b (ft)	Count Rate ^C (cpm)	
Borehole	502R (conti	nued) ^d		
3208 3208 3208 3208 3208 3208 3208 3208	2120 2120 2120 2120 2120 2120 2120 2120	2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	27000 47000 44000 45000 49000 62000 30000 22000	
3208 3208	2120 2120	6.0 6.5	13000 11000	
Borehole	_	0.0	11000	
3218 3218 3218 3218 3218 3218 3218 3218	2135 2135 2135 2135 2135 2135 2135 2135	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0	17000 21000 25000 56000 57000 53000 47000 48000 25000 19000 12000 11000	
Borehole 508R ^d				
3226 3226 3226 3226 3226 3226 3226 3226	2081 2081 2081 2081 2081 2081 2081 2081	0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	13000 14000 16000 27000 39000 33000 23000 24000	

.

<u>.</u>

<u>.</u>___

-

`.....

. ب

.....

L....

`` `~~~

. •......

`____

.

·____

Ì....

(continued)

Page 3 c	of 5		. <u></u>
<u>Coord</u> East	linates ^a North	Depth ^b (ft)	Count Rate ^C (Cpm)
Borehole	508R (cont;	inued) ^d	
3226	2081	4.5	34000
3226	2081	5.0	30000
3226	2081	5.5	27000
3226	2081	6.0	20000
3226	2081	6.5	16000
3226	2081	7.0	14000
3226	2081	7.5	14000
3226	2081	8.0	14000
3226 3226	2081	8.5	12000
3226	2081	9.0	11000
3220	2081	9.5	10000
<u>Borehole</u>	<u>503R</u> d		
3255	2098	0.5	12000
3255	2098	1.0	13000
3255	2098	1.5	13000
3255	2098	2.0	14000
3255	2098	2.5	34000
3255	2098	3.0	41000
3255	2098	3.5	42000
3255	2098	4.0	39000
3255	2098	4.5	59000
3255	2098	5.0	75000
3255	2098	5.5	81000
3255	2098	6.0	90000
3255	2098	6.5	102000
3255	2098	7.0	68000
3255	2098	7.5	29000
<u>Borehole</u>	<u>504R</u> d		
3262	2110	0.5	10000
3262	2110	1.0	12000
3262	2110	1.5	12000
3262	2110	2.0	12000
3262	2110	2.5	14000
3262	2110	3.0	13000
3262	2110	3.5	14000
3262	2110	4.0	18000

31

.

....

(continued)

<u>Page 4 of</u>	5		·····
Coordi	nates ^a	Depthb	Count Rate ^C
East	North	(ft)	(cpm)
		·····	(-1)
Borehole	504R (cont:	inued) ^d	
3262	2110	4.5	68000
3262	2110	4.5	68000
3262 ·	2110	5.0	55000
3262	2110	5.5	20000
3262	2110	6.0	19000
3262	2110	6.5	13000
3262	2110	7.0	11000
3262	2110	7.5	10000
<u>Borehole</u>	<u>511R</u> d		
3273	2141	0.5	8000
3273	2141	1.0	10000
3273	2141	1.5	12000
3273	2141	2.0	12000
3273	2141	2.5	12000
3273	2141	3.0	14000
3273	2141	3.5	18000
3273	2141	4.0	44000
3273	2141	4.5	75000
3273	2141	5.0	38000
3273	2141	5.5	34000
3273	2141	6.0	17000
3273	2141	6.5	12000
3273	2141	7.0	9000
Borehole	498R ^d		
3282	2093	0.5	9000
3282	2093	1.0	13000
3282	2093	1.5	12000
3282	2093	2.0	13000
3282	2093	2.5	13000
3282	2093	3.0	12000
3282	2093	3.5	13000
3282	2093	4.0	17000
3282	2093	4.5	49000

(continued)

^aBorehole locations are shown in Figure 4-1.

^bThe variations in depths of boreholes and corresponding results given in this table are based on the boreholes penetrating the contamination or the drill reaching refusal.

^CInstrument used was 5.0- by 5.0-cm (2- by 2-in.) thallium-activated sodium iodide gamma scintillation detector.

^dBottom of borehole collapsed.

GAMMA RADIATION EXPOSURE RATES

ì.....

FOR 17 REDSTONE LANE

Coord	linates ^a	Rateb
East	North	(µR/h)
3200	2095	. 14
3200	2125	12
3248	2105	11
3285	2135	10
Interior	of Residence	6

^aMeasurement locations are shown in Figure 4-3.

^bMeasurements include background.

REFERENCES

- U.S. Department of Energy. <u>Description of the Formerly</u> <u>Utilized Sites Remedial Action Program</u>, ORO-777, Oak Ridge, Tenn., September 1980 (as modified by DOE in October 1983).
- Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Interim Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., March 1987.
- 3. Argonne National Laboratory. <u>Action Description</u> <u>Memorandum, Proposed 1984 Remedial Actions at Maywood,</u> <u>New Jersey</u>, Argonne, Ill., June 8, 1984.
- Bechtel National, Inc. <u>Post-Remedial Action Report for</u> <u>the Lodi Residential Properties</u>, DOE/OR/20722-89, Oak Ridge, Tenn., August 1986.
- 5. NUS Corporation. <u>Radiological Study of Maywood</u> <u>Chemical, Maywood, New Jersey</u>, November 1983.
- EG&G Energy Measurements Group. <u>An Aerial Radiologic</u> <u>Survey of the Stepan Chemical Company and Surrounding</u> <u>Area, Maywood, New Jersey</u>, NRC-8109, Oak Ridge, Tenn., September 1981.
- Oak Ridge National Laboratory. <u>Results of the Mobile</u> <u>Gamma Scanning Activities in Lodi, New Jersey</u>, ORNL/RASA-84/3, Oak Ridge, Tenn., October 1984.
- 8. Oak Ridge National Laboratory. <u>Results of the</u> <u>Radiological Survey at 17 Redstone Lane (LJ030), Lodi,</u> <u>New Jersey</u>, ORNL/RASA-88/41, Oak Ridge, Tenn., June 1989.

35

- 9. Thermo Analytical/Eberline. "Technical Review of FUSRAP Instrument Calibrations by Comparison to TMC Calibration Pads," May 1989.
- 10. <u>U.S. Code of Federal Regulations</u>. 40 CFR 192, "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings," Washington, D.C., July 1986.
- National Council on Radiation Protection and Measurements. <u>Environmental Radiation Measurements</u>, NCRP Report No. 50, Washington, D.C., December 27, 1986.
- 12. Levin, S. G., R. K. Stoms, E. Kuerze, and W. Huskisson. "Summary of Natural Environmental Gamma Radiation Using a Calibrated Portable Scintillation Counter." <u>Radiological Health Data Report</u> 9:679-695 (1968).

APPENDIX A GEOLOGIC DRILL LOGS FOR 17 REDSTONE LANE

11

.

۰. ...

`___

Second

				PROJE	CT		JOB NO.	SHEET NO. HOLE NO.
	EOLOGI	C DRIL	LLOG		1 OF 1 499R			
ITE				INATES	~		ł	FROM HORIZBEARING
17] EGUN	COMPLETED		1)			N 2,082 E 3,188 MAKE AND MODEL SI	and the second	ertical
	610-30-8	1	RETRENC	1			4" 9.0	ROCK (FT.) TOTAL DEPTH 9.0
			ESISAMPLESIEL.					PTH/EL. TOP OF ROCK
	1					41.8 2 8.0/3	3.8	1
ANPLE HAD	WHER WEIGHT	/FALL CA			A./LE	NGTH LOGGED BY:		
	N/A	11075		IONE	1 1		D. McGRAN	E AB
	BAMPLE REC. SAMPLE BLOWS "N" X CORE RECOVERY	WATE PRESSI	URE	_	8			NOTES ON:
SAND DIAN.		TEST		DEPTH Y	GRAPHICS	DESCRIPTION A	ND CLASSIFICATIO	IN WATER LEVELS,
		L055 IN 0. P. M PRESS. 1.		뷤	LA L			WATER RETURN, CHARACTER OF
		LOSS IN G.P.M PRESS.	Η Σ 41	1.8	C			DRILLING, ETC.
						0.0 - 9.0 Ft. Silty SA indigenous materia	ND (SM). Fill and al. Color stratified.	Borehole advanced
							main al mith fam to	0.0-9.0 ft. using 4" solid stem augers.
					1	gravel (and occasion lithologies in the f	onal cobbles) of various ill material. Soft.	
					1	unconsolidated (lo (SC-OH), Moist t	frounded to angular onal cobbles) of various ill material. Soft, some), sometimes clayey to saturated at 8.0 Ft.	
				×			arate brown (5YR 3/4);	
·				"]	numerous grass ro	ots and organics.	Site checked for radioactive
					1	0.3-3.0 FT. Dark fill.	reddish brown (10R 3/4	i hole gamma-logged
	1			↓ ·	1	1	rate brown; difficult to	by TMA-Eberline, Corp.
			3	2.8	1	distinguish the bronative material.	cak between fill and	8.0 Ft. Groundwater observed.
	ł				Π	9.0 Ft. Bottom of bo	ble.	
						Auger spoils were rep 10/30/86.	placed in the hole,	
	1							
								•
						-		
								Description and
				1				classification of soil samples by visual
								examination.
				ļ				
		ļ						
	<u> </u>		TURE SITE					HOLE NO.
	IT SPOON; S' ISON; P = P				17	Redstone Ln.	(LODI)	499R
- VENNI		- i willing W					<u>,</u>	

	PROJECT	JOB NO. SHEET NO. HOLE NO.
GEOLOGIC DRILL LOG	FUSRAP	14501-138 1 OF 1 502R
	NATES	ANGLE FROM HORIZBEARING
17 Redstone Ln. (LODI) EGUN COMPLETED DRILLER	<u>N 2,120 E 3,208</u>	Vertical
0-30-8610-30-86 MORETRENC		OVERBURDEN ROCK (FT.) TOTAL DEPTH 9.0 9.0
ORE RECOVERY (FT./%) CORE BOXES SAMPLES EL.		
	42.4	
	OLE: DIA./LENGTH LOGGED BY:	
	ONE	D. McGRANE
HILL COURT FILEN CORE FEC. PRESSURE TESTS PRESSURE FEC. PRESSURE FEC. PRESSUR		
	. I DESCRIPTION AND CL	ASSIFICATION WATER LEVELS,
		WATER RETURN,
		CHARACTER OF Drilling, etc.
	0.0 - 9.0 Ft. Silty SAND (S	
	0.0 - 9.0 Ft. Silty SAND (S (0.0-5.0) and indigenous (material. Color stratified	Fine- to Borehole drilled
	medium-grained with few pieces of rounded to angu	lar gravel (and solid-stem augers.
	occasional cobbles) of var in the fill material. Soft,	unconsolidated Site checked for
	(loose), sometimes clayey	contamination and
	5_0.0-0.3 Ft. Moderate bro Numerous grass roots and	organics. by TMA-Eberline,
	0.3-5.0 Ft. Dark yellowis	h brown
	(10YR4/2).	
	5.0-5.5 Ft. Grayish black numerous organics. May	(N2), clayey, be stream
33		No groundwater
	5.5-9.0 Ft. Dark yellowis decomposed sandstone.	h brown. May be / observed.
	Bottom of borehole at 9.0 Ft Auger spoils were replaced in	hole, 10/30/86.
		1
		Description and classification of soil
		samples by visual examination.
		1
S = SPLIT SPOON; ST = SHELBY TUBE; SITE	47 0 1	HOLE NO.
= DENNISON; P = PITCHER; O = OTHER	17 Redstone Ln. (LOD	l) 502R

ì

.

GEOLOGIC DRILL	PROJE	ECT	JOB NO. SHE	ET NO. HOLE NO.
SLOEDGIC DRILL	····	FUSRAP	OF 1 501R	
17 Redstone Ln. (LODI)	COORDINATES	N 2,135 E 3,21		OM HORIZBEARING
BEGUN COMPLETED DRILLER	2			(FT.) TOTAL DEPTH
10-30-8610-30-86 MOR	RETRENCH	B&S Little Beaver	4" 9.0	9.0
CORE RECOVERY (FT./%) CORE BOXES	SAMPLESEL. TOP CAS	SING GROUND EL. DEPTH/	EL. GROUND WATER DEPTH,	EL. TOP OF ROCK
SAMPLE HANNER WEIGHT/FALL CASI	ING LEFT IN HOLE . D	42.5 1/		/
N/A	NONE	TA./LENGIN LUGGED BY:	D. McGRANE	Opp
			D. MCGRANE	
AND DIANE AND DIANE SAND DIAN. SAND DIAN. SA		GRAP SAU	AND CLASSIFICATION	NOTES ON: WATER LEVELS, WATER RETURN, CHARACTER OF DRILLING, ETC.
	<u>42.5</u> 5. 33.5_	0.0 - 9.0 Ft. Sility (0.0-3.0) and in material. Color medium-graine pieces of round- occasional cobb in the fill mater (loose), somstim 0.0-0.5 Ft. Mo Numerous grass 0.5-3.0 Ft. Das (10YR4/2). 3.0-6.5 Ft. Mo grayish black (1 stream sedimen horizon. 6.5-9.0 Ft. Das decomposed sar		DRILLING, ETC. Borehole drilled 0.0-9.0 Ft. using 4" solid-stem augers. Site checked for radioactive contamination and hole gramma-logged by TMA-Eberline, Corp. 9.0 Ft. no groundwater observed.
S = SPLIT SPOON; ST = SHELBY TUB = DENNISON; P = PITCHER; O = OT	BE; SITE	17 Redstone Ln.	(LODI)	HOLE NO. 501R

۱.,

	~							PROJE	CT				JOB NO.	SHE	ET NO.	HOLE NO.
		EC	DLOG	IC D	KIL	LLO					FUSRAP		4501-	138 1	OF 1	508R
ITE		P -		*			COORDIN	ATES					A		OM HORIZ	BEARING
EGU			distone MPLETED			<u>)</u>					2,081 E 3,22			Vert		
		1	0-31-8	1	-	RETR	ENCH				DBILE B-33	SIZE 6"	OVERBURDEN 11.0	ROCI	((FT.) 1.0	TOTAL DEP
					BOXE	SSAMPL	ESEL. TO	P CAS	ING	GR	OUND EL. DEPTH	/EL. GROUI	ND WATER	DEPTH	I.U /EL. TOP	12.0
		_/									42.2	0/34.2 10	/31/86		11.0/	
WP	LE N		R WEIGHT	/FALL	- CAS	SING LE			IA./L	LEN	GTH LOGGED BY:				and the second s	
1			N/A		JATER	3	NO	NE T	7	77			D. McGR	ANE	716	
Ţ	묏뿝		SAMPLE BLOWS "N" X CORE RECOVERY	PR	ESSU	RE			2							-
AND DIAN	٩ <mark>۵</mark>	Ē	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ELEV.	DEPTH	GRAPHICS	키니아이	DESCRIPTION	N AND CI	_assifica	TION		LEVELS,
2	뮌리	ĒË		G.P.H	PRESS. P.S. I.	HIN. HIN. HIN.		l 🖁	₫	E						RETURN
₹	81	õ	\$, \$	i	ă d	Σ -	42.2		C							NG, ETC
1											0.0 - 11.0 Ft. Sil (0.0-2.0) and in material. Colo	ity SAND	(SM). Fill (2.0-11.0)			
]		medium-main	ed with fey	r to numerou	, 1	Borehole	Ft. using (
]		pieces of round occasional cobl	ied to angu bles) of var	ilar gravel (ai rious lithologi	nd es	hollow-	stem auger
				1				']		(loose), someting	rial. Soft, mes clayey	unconsolidat	ed	Site che	
						 ,		5_			saturated at 8.	.0 Ft.	- ,		(contami	nation and nma-logge
				1][]		0.0-2.0 Ft. Mc mottled dark r	oderate bro eddish bro	wn (5YR3/4) wn (10R3/4)).	by TMA Corp.	-Eberline,
											Numerous gras	s roots and	i organics.			
							2	2			2.0-11.0 Ft. G	rayish bla nics. May	ck (N2). Clay	yey,		
]		sediments.	,			8.0 Ft. g	roundwate
						,		10_								••
							31.2_		1							
							30.2	'		Π	11.0 - 12.0 Ft. S/	ANDSTON	E. Dark		1	
									Τ	Π	reddish brown (argillaceous).	Soft to me	oderately har	a. ſ	1	
											Bottom of borehol	le et 12 0 1	 P+			
											Auger spoils were	replaced in	n hole, 10/31,	/86.		
			•													
																•
							-									
ĺ																
															1	
										H						
									1							
									1						1	
											•				Descript	ion and
									{	$\ $					classifics	tion of soi
									1						examina	
	1															
	601						ITE		1	Ш					NOLE NO.	
			200N; ST ; P = PI						17	R	edstone Ln.)))		HOLE NO	08R
								•	. •		CASCONC EII.		~ /	· .		<u>vvi</u> (

·....

·.....

<u>ار</u>

C	GEC	LOG		RIL	110	G	PROJE	CT			JOB		EET NO.	HOLE NO.
ITE						COORDIN	TES		FUSE	(AP	1450	1-138 1	OF <u>1</u> ROM HORIZ	5031
		dstone			()				N 2,098	E 3,255			tical	
EGUN		MPLETED	1					DRIL	NAKE AND H	DEL SIZE		EN ROC	¥ (FT.)	TOTAL DI
		0-30-8				ENCH	D CAC		GROUND EL.		4" 9.(9.0
	1						- undi		42.8	7.0/35	GROUND WATER	PEPTI	K/EL. TOP /	OF ROCK
MPLE H		R WEIGHT	T/FALL	CAS	ING LE	FT IN HOL		A./L		D BY:				·
	1.	N/A	1	10		NO	NE	-			D. Mc	GRANE	-HE	
치망		SAMPLE BLOUS "N" X CORE RECOVERY	PR	JATER ESSU Tests	RE		-	2					· · · · · ·	
AND DIAN SAMP. ADU LEN CORE		1 1 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- I	1		ELEV.	DEPTH	GRAPHICS	DESCRI	IPTION AN	D CLASSIFI	CATION	WATER	LEVELS
문물교			L035 L035 G. P. M	91 90 90	TIME MIN.		뷤	RAF						RETURN
<u>a 21</u>		a ` "			⊢ Σ	42.8		0						ING, ET
								I [0.0 - 9.0 1 (0.0-3.	t. Silty SA 0) and indige	ND (SM). Fill mous (3.0-9.0) atified. Fine-t			
	1							1					0.0-9.0	e drilled Ft. using
1	1			1			.		occasio	on rounded to mai cobbles)	of various litho	logies detect		em augers cked for
							.	 -	(loose)	, sometimes c	of various litho Soft, unconsoli layey (SC-OH)	. Moist;	radioact	
							5_	 			ddish brown (1		hole gar	nma-logg
							L .		and mo	oderate brown	n (5YRS/4). N	umerous	Corp.	
								1	-	Ft. Modera			7.0 Ft. s	roundwa
							•	1	6.0-9.0	Ft. Grayish	black (N2). C	layey,	observe	d. –
	1					33.8_	-		- numero sedime	ous organics;	may be`stréam		Ч	
									Batter - 4		0 0 P+			
									Auger spo	ils were repla	9.0 Ft. ced in hole, 10	/30/86.		
	1	ł					-							
	ļ													
	1													
l	1												1	
	1	,												
	1													
													Descript	
													samples	ation of so by visual
	1												examina	tion.
														-
													1	
= SPL	IT S	POON; ST	= SHEI	LBY TU	BE; S	ITE			<u> </u>				HOLE NO	
		; P = PI						17	Redston	<u>e Ln. (L</u>	.ODI)		5	03R

	6	EO			DILI			PROJE	CT		LIOB NO.	SHE	T NO.	HOLE NO.
		EU	LOG		KILI							138 1	OF 1	504R
SITE		P	istone	1 /1	077	、	COORDINA		M HORIZ	BEARING				
BEGU			MPLETED			<u> </u>	1				2,110 E 3,262	Vert		
)-30-8			RETR	RENCH				Little Beaver 4" 9.0	ROCK	(FT.)	TOTAL DEP 9.0
							ESEL. TO	P CAS			OUND EL. DEPTH/EL. GROUND WATER	DEPTH/	EL. TOP	OF ROCK
				1									/	
SAMP	LE H		R WEIGHT	/FALL	CAS	ING LE			A./L	EN	GTH LOGGED BY:		20p	
	-		N/A	í i			NO	NE	-	17	D. McGR	ANE	12	
AND DIAN.	SAMP ADU	0.0	SAMPLE BLOWS "N" X CORE RECOVERY	PR		RE		·	l g	ļ				
FH	₹ Ō				ESTS		ELEV.	DEPTH	GRAPHICS	SAMPLE	DESCRIPTION AND CLASSIFICA	TION	WATER	ON: LEVELS,
20	₽Z	고문		COSS INS P.H	5H 50 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	TIME MIN.	ł		1₫				WATER	RETURN,
翻	<u>S</u>	凝망	<u></u>	Ŭ,	PRESS. P. G. I.	FTE	42.8		6	[]				NG, ETC
										Ħ	0.0 - 9.0 Ft. Bilty SAND (SM). Fill			
								-			(0.0-4.0) and indigenous (4.0-9.0) material. Color stratified. Fine- to	_	Borehol	
								•	1		medium-grained with few to numerou pieces of rounded to angular gravel (a	nd i		Ft. using 4' im augers.
ł								•			occasional cobbles) of various lithologi in the fill material. Soft, unconsolidat	ies ;ed	Site che	cked for
								-	1		(loose), sometimes clayey (SC-OH). A to saturated at 7.0 Ft.	doist	radioact contami	ive nation and
								5_]		0.0-4.0 Ft. Dark reddish brown (10R:	5/4)	hole gan	-Eberline,
											and mottled moderate brown (5YR3/4 Numerous grass roots and organics (0.	í)."/	Corp.	. arwwillie
								Į.			Ft.).		70 84 -	roundwate
							1	-			4.0-6.0 Ft. Moderate brown and gray black (N2). Clayey, numerous organic	ish	observed	i.
1						•	33.8_	-	<u>[ŀ]</u>	11	May be stream sediments.	з. Г		
								•			6.0-9.0 Ft. Dark yellowish brown (10YR4/2). May be decomposed sands			
			-								(IUIR4/2). May be decomposed sands	itone.		
											Bottom of borehole at 9.0 Ft.	4		
											Auger spoils were replaced in hole, 10/30	/86.		
										11				
										11				
				[
												1		
							[1		
				1										•
							-							
									l	$\ $				
									1					
									[$\ $]		
										$\ $				
				[1			j		
									1					
												1		
									1	11			Descript	
					1				1	11		1	samples	tion of soi
										$\ $		1	examina	tion.
									1					
	601					nr. ie	ITE		1	П			HOLE NO	
			POON; ST ; P = PI				. 16	•	17	R	edstone Ln. (LODI)	1		04R
												11		V-11

	-				5 11 1			PROJE	CT		JOB NC.	SHE	ET NO.	HOLE NO.
		EL	LOG	<u>CD</u>	KIL						FUSRAP 14501-13			511R
SITI	-		• • •				COORDIN	TES			ANGL	E FR	OM HORIZ	
at a			dstone :)						Vert		
BEG		1	MPLETED 1-3-86			DETN	ENCH	1			NAKE AND NODEL SIZE OVERBURDEN	ROCK	(FT.)	TOTAL DEPTH
							ESEL. TO		1116	_	SLittle Beaver 4" 9.0 ROUND EL. DEPTH/EL. GROUND WATER D	EDTH	/EL. TOP	9.0
		1					.			ſ	COUND EL. DEPTH/EL. GROUND WATER D 42.8	5718	/sc. 10P /	UF KULK
SAN	PLE H	AMME	R WEIGHT	/FALL	CAS	ING LE	FT IN HO	LE: D	IA./I	LEI	IGTH LOGGED BY:		$\overline{\sim}$	
			N/A			· · · ·	NO				D. McGRAI	١E	YK	
뷥.	51	oj.	SAMPLE BLOWS "N" X CORE RECOVERY		JATER ESSU	2 2 2 2			m	Π				
and oithe	CORE		비는 방법		rests	5		Ξ	BRAPHICS	H			NOTES	
;Ö		<u> "</u>	2305	<u>Ω</u> _Σ	ю́н	¥	ELEU.	DEPTH	ΤĘ	SIN D. F	DESCRIPTION AND CLASSIFICATI	ON		LEVELS, RETURN,
器	SAMP.	E	951×1	LOSS IN B. P. M	- 1 • 5 • 1	HINE HINE HINE		ā	Ř	5			CHARAC	TER OF
<u>9</u> a	ត	80	<u> </u>	- 0	ãa		42.8			Ц			DRILLI	NG, ETC.
											0.0 - 9.0 Pt. <u>Silty SAND</u> (SM). Fill (0.0-4.0) and indigenous (4.0-9.0) material. Color stratified. Fine- to			
				-							medium-grained with few to numerous		Borehol	e drilled Ft. using 4"
	1								7[-]	Ħ	pieces of rounded to angular gravel (and occasional cobbles) of various lithologies in the fill material. Soft, unconsolidated		solid-ste	em augers.
									1		in the fill material. Soft, unconsolidated (loose), sometimes clayey (SC-OH). Moi		Site che radioact	
									1		saturated at 8.0 Ft.	167	contami	nation and
								5.			0.0-0.3 Ft. Moderate brown (5YR3/4). Numerous grass roots and organics.			nma-logged Eberline,
											0.3-4.0 Ft. Dark reddish brown (10R3/4 mottled moderate brown.).		
							33.8		-1		4.0-6.0 Ft. Grayish black (N2). Clayey,			roundwater
							33.0_		T		numerous organics. May be stream sediments.	Γ	observed	1.
											6.0-9.0 Ft. Dark yellowish brown (10YR4/2). May be decomposed sandsto	ne.		
											Bottom of borehole at 9.0 Ft. Auger spoils were replaced in hole, 11/3/86.			
	ł								ļ					
													ł	
	Ì													
	1													
	ł													
]	'							{				1	•
:				i		-							1	
	ł	1												
													ļ	
	ł												1	
													1	
					-				1					
	l												D	
														tion of soil
										1			samples examina	by visual tion.
									1					
S\$ 1	spl	IT S	POON; ST	= SHE	LBY TU	BE; S	ITE		<u> </u>				HOLE NO	
			P = P1						17	F	Redstone Ln. (LODI)		5	11R

							-	PROJEC	T				i		LIOB I	i0.	SHE	ET NO.	HOLE NO.
	G	EC	DLOG	CD	RIL	L LO	G				FUS	RAP				 1-13			498R
SITE		~	1			· · · · · · · · · · · · · · · · · · ·	COORDIN	TES								ANGL	E FR	ON HORIZ	
BEGL			ISTORE MPLETED)	1								Vert				
		1	0-29-8			RETR	ENCH	ľ				RDEL Seaver	SIZE	ľ	/ERBURD		RUCK	(FT.)	TOTAL DEP
							ESEL. TO	P CASI	NG	GROUN	D EL.	DEPT	/EL. GR	OUND			EPTH	/EL. TOP	OF ROCK
		/			1040						2.8	12 /	.0/34.8					/	,
2141	'LE fi		R WEIGHT N/A	/ FALL		ING LE	FT IN HOL NO		A./U	ENGTH	LOGG	D BY:		т). McC	RAI	NE	98	2
<u>ب</u>	J.,	_		Ŀ	JATE														
H	A B	R R C R C	SAMPLE BLOUS "N" X CORE RECOVERY	нч Г	ESSU ESTS	RE 5	ELEV.	E	GRAPHICS	Ч.				~ ~			-	NOTES	
SAND DIAT	a z		2000	m Σ Ω	ю́н	뿌ァ;	ELEV.	DEPTH	Ŧ		JEBUR	19110	n And	CLH	1997.17		UN		LEVELS, RETURN,
PAR PAR	N E	E S	S N N	LOSS IN G. P. M	PRESS. P. S. T	HIN NIN NIN			8	ឆ									CTER OF Ing, etc
- 10	φy.	<u>, w</u>					42.8		11	0.	0 - 9.0	Ft. Silt	SAND indigeno	(SM)	. Fill				
								-			- (4 K _C		on stanti			:0		0.0-9.0	e advanced ft. using 4"
								-			pieces	of roun	ded to a	few t nguls	o nume Ir gravel	ous (and		soud ste	m augers.
								-		1	occasi in the	onai col fill mat	ed with ded to an obles) of erial. Sc imes clay t 8.0 Ft.	vario oft, w	nconsoli	dated	-		
											10080 \$0 585), somet urated s	t 8.0 Ft.	уеу () -	90-0H)	. M 0i	32		
								5			0.0-4.	5 Ft. M	oderate	brow	n (5YR	8/4); •	Tass	Site che	cked for
								-			Ft.	(0.0-0.3); pieces		ment st	4.0		contami	ination and
								-			4.5-9.	0 Ft. G	rayish b	lack;	clayey.	May	be	by TM	nma-logge L-Eberline,
							33.8_	•••			STURE		2168.						Groundwa
								-		•	0 17+ 1	Bottom (of hole						u ,
												oils wer	replace	d in 1	the hole	,			
											20/20	,00.							
							1												
		l	1			ļ													•
					1						-								
		1	1			Į													
	ł	ł																	
]						.										
				}		1													
				ļ															
				.	ł														
		1 ·					1												
							1												··
		l			1	1	1											classific	tion and ation of so
	1			ļ														samples examin:	by visual ation.
]	1																
	1					1													
		1		 	<u> </u>	<u> </u>	<u> </u>	<u> </u>		Ц									
			POON; 51			/ [SITE		17	Dee	ict-	ne I -		חט	n			HOLE NO). 198 R
Ľ-	DEN	1500	; P = P1	TCHER;	0=1	DTHER			11	neo	1210	ILE LI	<u>1. (LC</u>		·/	···· , \			706

	G	EC)LO	Gł	CD	RIL	L LO	G	PROJI	ECT		FUSRAP	JOB NO	SHE -138 1	ET NO. OF 1	HOLE NO.
ITE		_	<u> </u>					COORD	NATES			· · · ·			ON HORIZ	510R BEARING
GU			dston MPLET		DRILL)		·····	-		2,125 E 3,295 MAKE AND MODEL SIZE		Vert		
1-	-3-8	6 1	1-3-	86	1	MO		ENCH		B	& S	Little Beaver 4"	OVERBURDEN 9.0	KUCI	((FT.)	TOTAL DEPT 9.0
DRE	REC	OVER	Y (FT.	./%)	CORE	BOXE	SAMPL	ESEL.	TOP CAS	SING	G	OUND EL. DEPTH/EL. GR		DEPTH	/EL. TOP	
WP	LE K	AMME	RMEI	GHT/	FALL	CAS	ING LE	FT IN I	IOLE: D	IA./	LEN	42.8 1 / 0/35.8)
-]	N/A				وي المراجع		ONE	_			D. McGI	ANE	OH K	
AND DIAN.	SAMP. ADU. LEN CORE	BAMPLE REC.	BLOWS "N" BLOWS "N" V CODE	RECOVERY	PR:	ATEF ESSU ESTS SSUC	RE	ELEU		GRAPHICS	SAMPLE	DESCRIPTION AND	CLASSIFIC	ATION	WATER CHARAC	LEVELS, RETURN, TER OF
	<u><u><u></u></u></u>				- G	Εά		42.	5			0.0 - 9.0 Ft. Silty SANT (0.0-3.5) and indigeno material. Color stratif medium-grained with pieces of rounded to an occasional cobbles) of in the fill material. So (loose), sometimes clay saturated at 7.0 Ft. 0.0-0.3 Ft. Moderate grayish black (N2). M sediments and buried is 6.0-9.0 Ft. Dark yello (10YR4/2). May be de Bottom of borehole at 9.0 Auger spoils were replace	ied. Fine- to few to numerou fay to numerou and a gravel (i various litholo; ft. unconsolida vey (SC-OH). brown (5YR3/ and organics. ish brown (10F brown, mottled ay be mixed st upper soil horis wish brown composed sand	ind ries ted Moist; 4). 3/4). ream con. istone.	Borehold 0.0-9.0 solid-ste Site cher radioact contami hole gan by TMA Corp. 7.0 Ft. 1 observed	ft. using 4" im augers. cked for ive nation and nma-logged Eberline, froundwater i.
					= SHEL CHER;			ITE		17	R	edstone Ln. (LC)DI)		HOLE NO	10R